qemu-e2k/hw/vfio/pci-quirks.c
Alex Williamson 2d82f8a3cd vfio/pci: Convert all MemoryRegion to dynamic alloc and consistent functions
Match common vfio code with setup, exit, and finalize functions for
BAR, quirk, and VGA management.  VGA is also changed to dynamic
allocation to match the other MemoryRegions.

Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2016-03-10 20:50:38 -07:00

1206 lines
41 KiB
C

/*
* device quirks for PCI devices
*
* Copyright Red Hat, Inc. 2012-2015
*
* Authors:
* Alex Williamson <alex.williamson@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "pci.h"
#include "trace.h"
#include "qemu/range.h"
/* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
{
return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
(device == PCI_ANY_ID || device == vdev->device_id);
}
static bool vfio_is_vga(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
return class == PCI_CLASS_DISPLAY_VGA;
}
/*
* List of device ids/vendor ids for which to disable
* option rom loading. This avoids the guest hangs during rom
* execution as noticed with the BCM 57810 card for lack of a
* more better way to handle such issues.
* The user can still override by specifying a romfile or
* rombar=1.
* Please see https://bugs.launchpad.net/qemu/+bug/1284874
* for an analysis of the 57810 card hang. When adding
* a new vendor id/device id combination below, please also add
* your card/environment details and information that could
* help in debugging to the bug tracking this issue
*/
static const struct {
uint32_t vendor;
uint32_t device;
} romblacklist[] = {
{ 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
};
bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
{
int i;
for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
romblacklist[i].vendor,
romblacklist[i].device);
return true;
}
}
return false;
}
/*
* Device specific region quirks (mostly backdoors to PCI config space)
*/
/*
* The generic window quirks operate on an address and data register,
* vfio_generic_window_address_quirk handles the address register and
* vfio_generic_window_data_quirk handles the data register. These ops
* pass reads and writes through to hardware until a value matching the
* stored address match/mask is written. When this occurs, the data
* register access emulated PCI config space for the device rather than
* passing through accesses. This enables devices where PCI config space
* is accessible behind a window register to maintain the virtualization
* provided through vfio.
*/
typedef struct VFIOConfigWindowMatch {
uint32_t match;
uint32_t mask;
} VFIOConfigWindowMatch;
typedef struct VFIOConfigWindowQuirk {
struct VFIOPCIDevice *vdev;
uint32_t address_val;
uint32_t address_offset;
uint32_t data_offset;
bool window_enabled;
uint8_t bar;
MemoryRegion *addr_mem;
MemoryRegion *data_mem;
uint32_t nr_matches;
VFIOConfigWindowMatch matches[];
} VFIOConfigWindowQuirk;
static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
hwaddr addr,
unsigned size)
{
VFIOConfigWindowQuirk *window = opaque;
VFIOPCIDevice *vdev = window->vdev;
return vfio_region_read(&vdev->bars[window->bar].region,
addr + window->address_offset, size);
}
static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
uint64_t data,
unsigned size)
{
VFIOConfigWindowQuirk *window = opaque;
VFIOPCIDevice *vdev = window->vdev;
int i;
window->window_enabled = false;
vfio_region_write(&vdev->bars[window->bar].region,
addr + window->address_offset, data, size);
for (i = 0; i < window->nr_matches; i++) {
if ((data & ~window->matches[i].mask) == window->matches[i].match) {
window->window_enabled = true;
window->address_val = data & window->matches[i].mask;
trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
memory_region_name(window->addr_mem), data);
break;
}
}
}
static const MemoryRegionOps vfio_generic_window_address_quirk = {
.read = vfio_generic_window_quirk_address_read,
.write = vfio_generic_window_quirk_address_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOConfigWindowQuirk *window = opaque;
VFIOPCIDevice *vdev = window->vdev;
uint64_t data;
/* Always read data reg, discard if window enabled */
data = vfio_region_read(&vdev->bars[window->bar].region,
addr + window->data_offset, size);
if (window->window_enabled) {
data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
memory_region_name(window->data_mem), data);
}
return data;
}
static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOConfigWindowQuirk *window = opaque;
VFIOPCIDevice *vdev = window->vdev;
if (window->window_enabled) {
vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
memory_region_name(window->data_mem), data);
return;
}
vfio_region_write(&vdev->bars[window->bar].region,
addr + window->data_offset, data, size);
}
static const MemoryRegionOps vfio_generic_window_data_quirk = {
.read = vfio_generic_window_quirk_data_read,
.write = vfio_generic_window_quirk_data_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/*
* The generic mirror quirk handles devices which expose PCI config space
* through a region within a BAR. When enabled, reads and writes are
* redirected through to emulated PCI config space. XXX if PCI config space
* used memory regions, this could just be an alias.
*/
typedef struct VFIOConfigMirrorQuirk {
struct VFIOPCIDevice *vdev;
uint32_t offset;
uint8_t bar;
MemoryRegion *mem;
} VFIOConfigMirrorQuirk;
static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOConfigMirrorQuirk *mirror = opaque;
VFIOPCIDevice *vdev = mirror->vdev;
uint64_t data;
/* Read and discard in case the hardware cares */
(void)vfio_region_read(&vdev->bars[mirror->bar].region,
addr + mirror->offset, size);
data = vfio_pci_read_config(&vdev->pdev, addr, size);
trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
memory_region_name(mirror->mem),
addr, data);
return data;
}
static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOConfigMirrorQuirk *mirror = opaque;
VFIOPCIDevice *vdev = mirror->vdev;
vfio_pci_write_config(&vdev->pdev, addr, data, size);
trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
memory_region_name(mirror->mem),
addr, data);
}
static const MemoryRegionOps vfio_generic_mirror_quirk = {
.read = vfio_generic_quirk_mirror_read,
.write = vfio_generic_quirk_mirror_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/* Is range1 fully contained within range2? */
static bool vfio_range_contained(uint64_t first1, uint64_t len1,
uint64_t first2, uint64_t len2) {
return (first1 >= first2 && first1 + len1 <= first2 + len2);
}
#define PCI_VENDOR_ID_ATI 0x1002
/*
* Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
* through VGA register 0x3c3. On newer cards, the I/O port BAR is always
* BAR4 (older cards like the X550 used BAR1, but we don't care to support
* those). Note that on bare metal, a read of 0x3c3 doesn't always return the
* I/O port BAR address. Originally this was coded to return the virtual BAR
* address only if the physical register read returns the actual BAR address,
* but users have reported greater success if we return the virtual address
* unconditionally.
*/
static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOPCIDevice *vdev = opaque;
uint64_t data = vfio_pci_read_config(&vdev->pdev,
PCI_BASE_ADDRESS_4 + 1, size);
trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
return data;
}
static const MemoryRegionOps vfio_ati_3c3_quirk = {
.read = vfio_ati_3c3_quirk_read,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
{
VFIOQuirk *quirk;
/*
* As long as the BAR is >= 256 bytes it will be aligned such that the
* lower byte is always zero. Filter out anything else, if it exists.
*/
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_new0(MemoryRegion, 1);
quirk->nr_mem = 1;
memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
"vfio-ati-3c3-quirk", 1);
memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
quirk, next);
trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
}
/*
* Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
* config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
* the MMIO space directly, but a window to this space is provided through
* I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
* data register. When the address is programmed to a range of 0x4000-0x4fff
* PCI configuration space is available. Experimentation seems to indicate
* that read-only may be provided by hardware.
*/
static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIOConfigWindowQuirk *window;
/* This windows doesn't seem to be used except by legacy VGA code */
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
!vdev->has_vga || nr != 4) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_new0(MemoryRegion, 2);
quirk->nr_mem = 2;
window = quirk->data = g_malloc0(sizeof(*window) +
sizeof(VFIOConfigWindowMatch));
window->vdev = vdev;
window->address_offset = 0;
window->data_offset = 4;
window->nr_matches = 1;
window->matches[0].match = 0x4000;
window->matches[0].mask = vdev->config_size - 1;
window->bar = nr;
window->addr_mem = &quirk->mem[0];
window->data_mem = &quirk->mem[1];
memory_region_init_io(window->addr_mem, OBJECT(vdev),
&vfio_generic_window_address_quirk, window,
"vfio-ati-bar4-window-address-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
window->address_offset,
window->addr_mem, 1);
memory_region_init_io(window->data_mem, OBJECT(vdev),
&vfio_generic_window_data_quirk, window,
"vfio-ati-bar4-window-data-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
window->data_offset,
window->data_mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
}
/*
* Trap the BAR2 MMIO mirror to config space as well.
*/
static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIOConfigMirrorQuirk *mirror;
/* Only enable on newer devices where BAR2 is 64bit */
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
mirror = quirk->data = g_malloc0(sizeof(*mirror));
mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
quirk->nr_mem = 1;
mirror->vdev = vdev;
mirror->offset = 0x4000;
mirror->bar = nr;
memory_region_init_io(mirror->mem, OBJECT(vdev),
&vfio_generic_mirror_quirk, mirror,
"vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
mirror->offset, mirror->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
}
/*
* Older ATI/AMD cards like the X550 have a similar window to that above.
* I/O port BAR1 provides a window to a mirror of PCI config space located
* in BAR2 at offset 0xf00. We don't care to support such older cards, but
* note it for future reference.
*/
#define PCI_VENDOR_ID_NVIDIA 0x10de
/*
* Nvidia has several different methods to get to config space, the
* nouveu project has several of these documented here:
* https://github.com/pathscale/envytools/tree/master/hwdocs
*
* The first quirk is actually not documented in envytools and is found
* on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
* NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
* the mirror of PCI config space found at BAR0 offset 0x1800. The access
* sequence first writes 0x338 to I/O port 0x3d4. The target offset is
* then written to 0x3d0. Finally 0x538 is written for a read and 0x738
* is written for a write to 0x3d4. The BAR0 offset is then accessible
* through 0x3d0. This quirk doesn't seem to be necessary on newer cards
* that use the I/O port BAR5 window but it doesn't hurt to leave it.
*/
typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
static const char *nv3d0_states[] = { "NONE", "SELECT",
"WINDOW", "READ", "WRITE" };
typedef struct VFIONvidia3d0Quirk {
VFIOPCIDevice *vdev;
VFIONvidia3d0State state;
uint32_t offset;
} VFIONvidia3d0Quirk;
static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
quirk->state = NONE;
return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
addr + 0x14, size);
}
static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
VFIONvidia3d0State old_state = quirk->state;
quirk->state = NONE;
switch (data) {
case 0x338:
if (old_state == NONE) {
quirk->state = SELECT;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
}
break;
case 0x538:
if (old_state == WINDOW) {
quirk->state = READ;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
}
break;
case 0x738:
if (old_state == WINDOW) {
quirk->state = WRITE;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
}
break;
}
vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
addr + 0x14, data, size);
}
static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
.read = vfio_nvidia_3d4_quirk_read,
.write = vfio_nvidia_3d4_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
VFIONvidia3d0State old_state = quirk->state;
uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
addr + 0x10, size);
quirk->state = NONE;
if (old_state == READ &&
(quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
data = vfio_pci_read_config(&vdev->pdev, offset, size);
trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
offset, size, data);
}
return data;
}
static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
VFIONvidia3d0State old_state = quirk->state;
quirk->state = NONE;
if (old_state == SELECT) {
quirk->offset = (uint32_t)data;
quirk->state = WINDOW;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
} else if (old_state == WRITE) {
if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
vfio_pci_write_config(&vdev->pdev, offset, data, size);
trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
offset, data, size);
return;
}
}
vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
addr + 0x10, data, size);
}
static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
.read = vfio_nvidia_3d0_quirk_read,
.write = vfio_nvidia_3d0_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
{
VFIOQuirk *quirk;
VFIONvidia3d0Quirk *data;
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
!vdev->bars[1].region.size) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->data = data = g_malloc0(sizeof(*data));
quirk->mem = g_new0(MemoryRegion, 2);
quirk->nr_mem = 2;
data->vdev = vdev;
memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
data, "vfio-nvidia-3d4-quirk", 2);
memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
data, "vfio-nvidia-3d0-quirk", 2);
memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
quirk, next);
trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
}
/*
* The second quirk is documented in envytools. The I/O port BAR5 is just
* a set of address/data ports to the MMIO BARs. The BAR we care about is
* again BAR0. This backdoor is apparently a bit newer than the one above
* so we need to not only trap 256 bytes @0x1800, but all of PCI config
* space, including extended space is available at the 4k @0x88000.
*/
typedef struct VFIONvidiaBAR5Quirk {
uint32_t master;
uint32_t enable;
MemoryRegion *addr_mem;
MemoryRegion *data_mem;
bool enabled;
VFIOConfigWindowQuirk window; /* last for match data */
} VFIONvidiaBAR5Quirk;
static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
{
VFIOPCIDevice *vdev = bar5->window.vdev;
if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
return;
}
bar5->enabled = !bar5->enabled;
trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
bar5->enabled ? "Enable" : "Disable");
memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
memory_region_set_enabled(bar5->data_mem, bar5->enabled);
}
static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIONvidiaBAR5Quirk *bar5 = opaque;
VFIOPCIDevice *vdev = bar5->window.vdev;
return vfio_region_read(&vdev->bars[5].region, addr, size);
}
static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIONvidiaBAR5Quirk *bar5 = opaque;
VFIOPCIDevice *vdev = bar5->window.vdev;
vfio_region_write(&vdev->bars[5].region, addr, data, size);
bar5->master = data;
vfio_nvidia_bar5_enable(bar5);
}
static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
.read = vfio_nvidia_bar5_quirk_master_read,
.write = vfio_nvidia_bar5_quirk_master_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIONvidiaBAR5Quirk *bar5 = opaque;
VFIOPCIDevice *vdev = bar5->window.vdev;
return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
}
static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIONvidiaBAR5Quirk *bar5 = opaque;
VFIOPCIDevice *vdev = bar5->window.vdev;
vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
bar5->enable = data;
vfio_nvidia_bar5_enable(bar5);
}
static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
.read = vfio_nvidia_bar5_quirk_enable_read,
.write = vfio_nvidia_bar5_quirk_enable_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIONvidiaBAR5Quirk *bar5;
VFIOConfigWindowQuirk *window;
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
!vdev->has_vga || nr != 5) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_new0(MemoryRegion, 4);
quirk->nr_mem = 4;
bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
(sizeof(VFIOConfigWindowMatch) * 2));
window = &bar5->window;
window->vdev = vdev;
window->address_offset = 0x8;
window->data_offset = 0xc;
window->nr_matches = 2;
window->matches[0].match = 0x1800;
window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
window->matches[1].match = 0x88000;
window->matches[1].mask = vdev->config_size - 1;
window->bar = nr;
window->addr_mem = bar5->addr_mem = &quirk->mem[0];
window->data_mem = bar5->data_mem = &quirk->mem[1];
memory_region_init_io(window->addr_mem, OBJECT(vdev),
&vfio_generic_window_address_quirk, window,
"vfio-nvidia-bar5-window-address-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
window->address_offset,
window->addr_mem, 1);
memory_region_set_enabled(window->addr_mem, false);
memory_region_init_io(window->data_mem, OBJECT(vdev),
&vfio_generic_window_data_quirk, window,
"vfio-nvidia-bar5-window-data-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
window->data_offset,
window->data_mem, 1);
memory_region_set_enabled(window->data_mem, false);
memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
&vfio_nvidia_bar5_quirk_master, bar5,
"vfio-nvidia-bar5-master-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
0, &quirk->mem[2], 1);
memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
&vfio_nvidia_bar5_quirk_enable, bar5,
"vfio-nvidia-bar5-enable-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
4, &quirk->mem[3], 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
}
/*
* Finally, BAR0 itself. We want to redirect any accesses to either
* 0x1800 or 0x88000 through the PCI config space access functions.
*/
static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOConfigMirrorQuirk *mirror = opaque;
VFIOPCIDevice *vdev = mirror->vdev;
PCIDevice *pdev = &vdev->pdev;
vfio_generic_quirk_mirror_write(opaque, addr, data, size);
/*
* Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
* MSI capability ID register. Both the ID and next register are
* read-only, so we allow writes covering either of those to real hw.
*/
if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
vfio_region_write(&vdev->bars[mirror->bar].region,
addr + mirror->offset, data, size);
trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
}
}
static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
.read = vfio_generic_quirk_mirror_read,
.write = vfio_nvidia_quirk_mirror_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIOConfigMirrorQuirk *mirror;
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
!vfio_is_vga(vdev) || nr != 0) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
mirror = quirk->data = g_malloc0(sizeof(*mirror));
mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
quirk->nr_mem = 1;
mirror->vdev = vdev;
mirror->offset = 0x88000;
mirror->bar = nr;
memory_region_init_io(mirror->mem, OBJECT(vdev),
&vfio_nvidia_mirror_quirk, mirror,
"vfio-nvidia-bar0-88000-mirror-quirk",
vdev->config_size);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
mirror->offset, mirror->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
/* The 0x1800 offset mirror only seems to get used by legacy VGA */
if (vdev->has_vga) {
quirk = g_malloc0(sizeof(*quirk));
mirror = quirk->data = g_malloc0(sizeof(*mirror));
mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
quirk->nr_mem = 1;
mirror->vdev = vdev;
mirror->offset = 0x1800;
mirror->bar = nr;
memory_region_init_io(mirror->mem, OBJECT(vdev),
&vfio_nvidia_mirror_quirk, mirror,
"vfio-nvidia-bar0-1800-mirror-quirk",
PCI_CONFIG_SPACE_SIZE);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
mirror->offset, mirror->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
}
trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
}
/*
* TODO - Some Nvidia devices provide config access to their companion HDA
* device and even to their parent bridge via these config space mirrors.
* Add quirks for those regions.
*/
#define PCI_VENDOR_ID_REALTEK 0x10ec
/*
* RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
* offset 0x70 there is a dword data register, offset 0x74 is a dword address
* register. According to the Linux r8169 driver, the MSI-X table is addressed
* when the "type" portion of the address register is set to 0x1. This appears
* to be bits 16:30. Bit 31 is both a write indicator and some sort of
* "address latched" indicator. Bits 12:15 are a mask field, which we can
* ignore because the MSI-X table should always be accessed as a dword (full
* mask). Bits 0:11 is offset within the type.
*
* Example trace:
*
* Read from MSI-X table offset 0
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
*
* Write 0xfee00000 to MSI-X table offset 0
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
*/
typedef struct VFIOrtl8168Quirk {
VFIOPCIDevice *vdev;
uint32_t addr;
uint32_t data;
bool enabled;
} VFIOrtl8168Quirk;
static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
if (rtl->enabled) {
data = rtl->addr ^ 0x80000000U; /* latch/complete */
trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
}
return data;
}
static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
rtl->enabled = false;
if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
rtl->enabled = true;
rtl->addr = (uint32_t)data;
if (data & 0x80000000U) { /* Do write */
if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
hwaddr offset = data & 0xfff;
uint64_t val = rtl->data;
trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
(uint16_t)offset, val);
/* Write to the proper guest MSI-X table instead */
memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
offset, val, size,
MEMTXATTRS_UNSPECIFIED);
}
return; /* Do not write guest MSI-X data to hardware */
}
}
vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
}
static const MemoryRegionOps vfio_rtl_address_quirk = {
.read = vfio_rtl8168_quirk_address_read,
.write = vfio_rtl8168_quirk_address_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
hwaddr offset = rtl->addr & 0xfff;
memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
&data, size, MEMTXATTRS_UNSPECIFIED);
trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
}
return data;
}
static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
rtl->data = (uint32_t)data;
vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
}
static const MemoryRegionOps vfio_rtl_data_quirk = {
.read = vfio_rtl8168_quirk_data_read,
.write = vfio_rtl8168_quirk_data_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIOrtl8168Quirk *rtl;
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_new0(MemoryRegion, 2);
quirk->nr_mem = 2;
quirk->data = rtl = g_malloc0(sizeof(*rtl));
rtl->vdev = vdev;
memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
&vfio_rtl_address_quirk, rtl,
"vfio-rtl8168-window-address-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
0x74, &quirk->mem[0], 1);
memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
&vfio_rtl_data_quirk, rtl,
"vfio-rtl8168-window-data-quirk", 4);
memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
0x70, &quirk->mem[1], 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
}
/*
* Common quirk probe entry points.
*/
void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
{
vfio_vga_probe_ati_3c3_quirk(vdev);
vfio_vga_probe_nvidia_3d0_quirk(vdev);
}
void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
{
VFIOQuirk *quirk;
int i, j;
for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
for (j = 0; j < quirk->nr_mem; j++) {
memory_region_del_subregion(&vdev->vga->region[i].mem,
&quirk->mem[j]);
}
}
}
}
void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
{
int i, j;
for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
QLIST_REMOVE(quirk, next);
for (j = 0; j < quirk->nr_mem; j++) {
object_unparent(OBJECT(&quirk->mem[j]));
}
g_free(quirk->mem);
g_free(quirk->data);
g_free(quirk);
}
}
}
void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
{
vfio_probe_ati_bar4_quirk(vdev, nr);
vfio_probe_ati_bar2_quirk(vdev, nr);
vfio_probe_nvidia_bar5_quirk(vdev, nr);
vfio_probe_nvidia_bar0_quirk(vdev, nr);
vfio_probe_rtl8168_bar2_quirk(vdev, nr);
}
void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
VFIOQuirk *quirk;
int i;
QLIST_FOREACH(quirk, &bar->quirks, next) {
for (i = 0; i < quirk->nr_mem; i++) {
memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
}
}
}
void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
int i;
while (!QLIST_EMPTY(&bar->quirks)) {
VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
QLIST_REMOVE(quirk, next);
for (i = 0; i < quirk->nr_mem; i++) {
object_unparent(OBJECT(&quirk->mem[i]));
}
g_free(quirk->mem);
g_free(quirk->data);
g_free(quirk);
}
}
/*
* Reset quirks
*/
/*
* AMD Radeon PCI config reset, based on Linux:
* drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
* drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
* drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
* drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
* IDs: include/drm/drm_pciids.h
* Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
*
* Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
* hardware that should be fixed on future ASICs. The symptom of this is that
* once the accerlated driver loads, Windows guests will bsod on subsequent
* attmpts to load the driver, such as after VM reset or shutdown/restart. To
* work around this, we do an AMD specific PCI config reset, followed by an SMC
* reset. The PCI config reset only works if SMC firmware is running, so we
* have a dependency on the state of the device as to whether this reset will
* be effective. There are still cases where we won't be able to kick the
* device into working, but this greatly improves the usability overall. The
* config reset magic is relatively common on AMD GPUs, but the setup and SMC
* poking is largely ASIC specific.
*/
static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
{
uint32_t clk, pc_c;
/*
* Registers 200h and 204h are index and data registers for accessing
* indirect configuration registers within the device.
*/
vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
return (!(clk & 1) && (0x20100 <= pc_c));
}
/*
* The scope of a config reset is controlled by a mode bit in the misc register
* and a fuse, exposed as a bit in another register. The fuse is the default
* (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
* scope = !(misc ^ fuse), where the resulting scope is defined the same as
* the fuse. A truth table therefore tells us that if misc == fuse, we need
* to flip the value of the bit in the misc register.
*/
static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
{
uint32_t misc, fuse;
bool a, b;
vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
b = fuse & 64;
vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
a = misc & 2;
if (a == b) {
vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
}
}
static int vfio_radeon_reset(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
int i, ret = 0;
uint32_t data;
/* Defer to a kernel implemented reset */
if (vdev->vbasedev.reset_works) {
trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
return -ENODEV;
}
/* Enable only memory BAR access */
vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
/* Reset only works if SMC firmware is loaded and running */
if (!vfio_radeon_smc_is_running(vdev)) {
ret = -EINVAL;
trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
goto out;
}
/* Make sure only the GFX function is reset */
vfio_radeon_set_gfx_only_reset(vdev);
/* AMD PCI config reset */
vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
usleep(100);
/* Read back the memory size to make sure we're out of reset */
for (i = 0; i < 100000; i++) {
if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
goto reset_smc;
}
usleep(1);
}
trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
reset_smc:
/* Reset SMC */
vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
data |= 1;
vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
/* Disable SMC clock */
vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
data |= 1;
vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
out:
/* Restore PCI command register */
vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
return ret;
}
void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
{
switch (vdev->vendor_id) {
case 0x1002:
switch (vdev->device_id) {
/* Bonaire */
case 0x6649: /* Bonaire [FirePro W5100] */
case 0x6650:
case 0x6651:
case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
case 0x665d: /* Bonaire [Radeon R7 200 Series] */
/* Hawaii */
case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
case 0x67A2:
case 0x67A8:
case 0x67A9:
case 0x67AA:
case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
case 0x67B8:
case 0x67B9:
case 0x67BA:
case 0x67BE:
vdev->resetfn = vfio_radeon_reset;
trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
break;
}
break;
}
}