qemu-e2k/target-ppc/arch_dump.c
Laurent Vivier 760d88d1d0 ppc64: fix compressed dump with pseries kernel
If we don't provide the page size in target-ppc:cpu_get_dump_info(),
the default one (TARGET_PAGE_SIZE, 4KB) is used to create
the compressed dump. It works fine with Macintosh, but not with
pseries as the kernel default page size is 64KB.

Without this patch, if we generate a compressed dump in the QEMU monitor:

    (qemu) dump-guest-memory -z qemu.dump

This dump cannot be read by crash:

    # crash vmlinux qemu.dump
    ...
    WARNING: cannot translate vmemmap kernel virtual addresses:
             commands requiring page structure contents will fail
    ...

Page_size is used to determine the dumpfile's block size. The
block size needs to be at least the page size, but a multiple of page
size works fine too. For PPC64, linux supports either 4KB or 64KB software
page size. So we define the page_size to 64KB.

Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-08-10 13:05:05 +10:00

287 lines
7.7 KiB
C

/*
* writing ELF notes for ppc64 arch
*
*
* Copyright IBM, Corp. 2013
*
* Authors:
* Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "elf.h"
#include "exec/cpu-all.h"
#include "sysemu/dump.h"
#include "sysemu/kvm.h"
struct PPC64UserRegStruct {
uint64_t gpr[32];
uint64_t nip;
uint64_t msr;
uint64_t orig_gpr3;
uint64_t ctr;
uint64_t link;
uint64_t xer;
uint64_t ccr;
uint64_t softe;
uint64_t trap;
uint64_t dar;
uint64_t dsisr;
uint64_t result;
} QEMU_PACKED;
struct PPC64ElfPrstatus {
char pad1[112];
struct PPC64UserRegStruct pr_reg;
uint64_t pad2[4];
} QEMU_PACKED;
struct PPC64ElfFpregset {
uint64_t fpr[32];
uint64_t fpscr;
} QEMU_PACKED;
struct PPC64ElfVmxregset {
ppc_avr_t avr[32];
ppc_avr_t vscr;
union {
ppc_avr_t unused;
uint32_t value;
} vrsave;
} QEMU_PACKED;
struct PPC64ElfVsxregset {
uint64_t vsr[32];
} QEMU_PACKED;
struct PPC64ElfSperegset {
uint32_t evr[32];
uint64_t spe_acc;
uint32_t spe_fscr;
} QEMU_PACKED;
typedef struct noteStruct {
Elf64_Nhdr hdr;
char name[5];
char pad3[3];
union {
struct PPC64ElfPrstatus prstatus;
struct PPC64ElfFpregset fpregset;
struct PPC64ElfVmxregset vmxregset;
struct PPC64ElfVsxregset vsxregset;
struct PPC64ElfSperegset speregset;
} contents;
} QEMU_PACKED Note;
typedef struct NoteFuncArg {
Note note;
DumpState *state;
} NoteFuncArg;
static void ppc64_write_elf64_prstatus(NoteFuncArg *arg, PowerPCCPU *cpu)
{
int i;
uint64_t cr;
struct PPC64ElfPrstatus *prstatus;
struct PPC64UserRegStruct *reg;
Note *note = &arg->note;
DumpState *s = arg->state;
note->hdr.n_type = cpu_to_dump32(s, NT_PRSTATUS);
prstatus = &note->contents.prstatus;
memset(prstatus, 0, sizeof(*prstatus));
reg = &prstatus->pr_reg;
for (i = 0; i < 32; i++) {
reg->gpr[i] = cpu_to_dump64(s, cpu->env.gpr[i]);
}
reg->nip = cpu_to_dump64(s, cpu->env.nip);
reg->msr = cpu_to_dump64(s, cpu->env.msr);
reg->ctr = cpu_to_dump64(s, cpu->env.ctr);
reg->link = cpu_to_dump64(s, cpu->env.lr);
reg->xer = cpu_to_dump64(s, cpu_read_xer(&cpu->env));
cr = 0;
for (i = 0; i < 8; i++) {
cr |= (cpu->env.crf[i] & 15) << (4 * (7 - i));
}
reg->ccr = cpu_to_dump64(s, cr);
}
static void ppc64_write_elf64_fpregset(NoteFuncArg *arg, PowerPCCPU *cpu)
{
int i;
struct PPC64ElfFpregset *fpregset;
Note *note = &arg->note;
DumpState *s = arg->state;
note->hdr.n_type = cpu_to_dump32(s, NT_PRFPREG);
fpregset = &note->contents.fpregset;
memset(fpregset, 0, sizeof(*fpregset));
for (i = 0; i < 32; i++) {
fpregset->fpr[i] = cpu_to_dump64(s, cpu->env.fpr[i]);
}
fpregset->fpscr = cpu_to_dump64(s, cpu->env.fpscr);
}
static void ppc64_write_elf64_vmxregset(NoteFuncArg *arg, PowerPCCPU *cpu)
{
int i;
struct PPC64ElfVmxregset *vmxregset;
Note *note = &arg->note;
DumpState *s = arg->state;
note->hdr.n_type = cpu_to_dump32(s, NT_PPC_VMX);
vmxregset = &note->contents.vmxregset;
memset(vmxregset, 0, sizeof(*vmxregset));
for (i = 0; i < 32; i++) {
bool needs_byteswap;
#ifdef HOST_WORDS_BIGENDIAN
needs_byteswap = s->dump_info.d_endian == ELFDATA2LSB;
#else
needs_byteswap = s->dump_info.d_endian == ELFDATA2MSB;
#endif
if (needs_byteswap) {
vmxregset->avr[i].u64[0] = bswap64(cpu->env.avr[i].u64[1]);
vmxregset->avr[i].u64[1] = bswap64(cpu->env.avr[i].u64[0]);
} else {
vmxregset->avr[i].u64[0] = cpu->env.avr[i].u64[0];
vmxregset->avr[i].u64[1] = cpu->env.avr[i].u64[1];
}
}
vmxregset->vscr.u32[3] = cpu_to_dump32(s, cpu->env.vscr);
}
static void ppc64_write_elf64_vsxregset(NoteFuncArg *arg, PowerPCCPU *cpu)
{
int i;
struct PPC64ElfVsxregset *vsxregset;
Note *note = &arg->note;
DumpState *s = arg->state;
note->hdr.n_type = cpu_to_dump32(s, NT_PPC_VSX);
vsxregset = &note->contents.vsxregset;
memset(vsxregset, 0, sizeof(*vsxregset));
for (i = 0; i < 32; i++) {
vsxregset->vsr[i] = cpu_to_dump64(s, cpu->env.vsr[i]);
}
}
static void ppc64_write_elf64_speregset(NoteFuncArg *arg, PowerPCCPU *cpu)
{
struct PPC64ElfSperegset *speregset;
Note *note = &arg->note;
DumpState *s = arg->state;
note->hdr.n_type = cpu_to_dump32(s, NT_PPC_SPE);
speregset = &note->contents.speregset;
memset(speregset, 0, sizeof(*speregset));
speregset->spe_acc = cpu_to_dump64(s, cpu->env.spe_acc);
speregset->spe_fscr = cpu_to_dump32(s, cpu->env.spe_fscr);
}
static const struct NoteFuncDescStruct {
int contents_size;
void (*note_contents_func)(NoteFuncArg *arg, PowerPCCPU *cpu);
} note_func[] = {
{sizeof(((Note *)0)->contents.prstatus), ppc64_write_elf64_prstatus},
{sizeof(((Note *)0)->contents.fpregset), ppc64_write_elf64_fpregset},
{sizeof(((Note *)0)->contents.vmxregset), ppc64_write_elf64_vmxregset},
{sizeof(((Note *)0)->contents.vsxregset), ppc64_write_elf64_vsxregset},
{sizeof(((Note *)0)->contents.speregset), ppc64_write_elf64_speregset},
{ 0, NULL}
};
typedef struct NoteFuncDescStruct NoteFuncDesc;
int cpu_get_dump_info(ArchDumpInfo *info,
const struct GuestPhysBlockList *guest_phys_blocks)
{
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
info->d_machine = EM_PPC64;
info->d_class = ELFCLASS64;
if ((*pcc->interrupts_big_endian)(cpu)) {
info->d_endian = ELFDATA2MSB;
} else {
info->d_endian = ELFDATA2LSB;
}
/* 64KB is the max page size for pseries kernel */
if (strncmp(object_get_typename(qdev_get_machine()),
"pseries-", 8) == 0) {
info->page_size = (1U << 16);
}
return 0;
}
ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
{
int name_size = 8; /* "CORE" or "QEMU" rounded */
size_t elf_note_size = 0;
int note_head_size;
const NoteFuncDesc *nf;
if (class != ELFCLASS64) {
return -1;
}
assert(machine == EM_PPC64);
note_head_size = sizeof(Elf64_Nhdr);
for (nf = note_func; nf->note_contents_func; nf++) {
elf_note_size = elf_note_size + note_head_size + name_size +
nf->contents_size;
}
return (elf_note_size) * nr_cpus;
}
static int ppc64_write_all_elf64_notes(const char *note_name,
WriteCoreDumpFunction f,
PowerPCCPU *cpu, int id,
void *opaque)
{
NoteFuncArg arg = { .state = opaque };
int ret = -1;
int note_size;
const NoteFuncDesc *nf;
for (nf = note_func; nf->note_contents_func; nf++) {
arg.note.hdr.n_namesz = cpu_to_dump32(opaque, sizeof(arg.note.name));
arg.note.hdr.n_descsz = cpu_to_dump32(opaque, nf->contents_size);
strncpy(arg.note.name, note_name, sizeof(arg.note.name));
(*nf->note_contents_func)(&arg, cpu);
note_size =
sizeof(arg.note) - sizeof(arg.note.contents) + nf->contents_size;
ret = f(&arg.note, note_size, opaque);
if (ret < 0) {
return -1;
}
}
return 0;
}
int ppc64_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
return ppc64_write_all_elf64_notes("CORE", f, cpu, cpuid, opaque);
}