18fdb1c5c6
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4892 c046a42c-6fe2-441c-8c8c-71466251a162
1017 lines
32 KiB
C
1017 lines
32 KiB
C
/*
|
|
* QEMU e1000 emulation
|
|
*
|
|
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
|
|
* Copyright (c) 2008 Qumranet
|
|
* Based on work done by:
|
|
* Copyright (c) 2007 Dan Aloni
|
|
* Copyright (c) 2004 Antony T Curtis
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
|
|
#include "hw.h"
|
|
#include "pci.h"
|
|
#include "net.h"
|
|
|
|
#include "e1000_hw.h"
|
|
|
|
#define DEBUG
|
|
|
|
#ifdef DEBUG
|
|
enum {
|
|
DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
|
|
DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
|
|
DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
|
|
DEBUG_RXFILTER, DEBUG_NOTYET,
|
|
};
|
|
#define DBGBIT(x) (1<<DEBUG_##x)
|
|
static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
|
|
|
|
#define DBGOUT(what, fmt, params...) do { \
|
|
if (debugflags & DBGBIT(what)) \
|
|
fprintf(stderr, "e1000: " fmt, ##params); \
|
|
} while (0)
|
|
#else
|
|
#define DBGOUT(what, fmt, params...) do {} while (0)
|
|
#endif
|
|
|
|
#define IOPORT_SIZE 0x40
|
|
#define PNPMMIO_SIZE 0x20000
|
|
|
|
/*
|
|
* HW models:
|
|
* E1000_DEV_ID_82540EM works with Windows and Linux
|
|
* E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
|
|
* appears to perform better than 82540EM, but breaks with Linux 2.6.18
|
|
* E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
|
|
* Others never tested
|
|
*/
|
|
enum { E1000_DEVID = E1000_DEV_ID_82540EM };
|
|
|
|
/*
|
|
* May need to specify additional MAC-to-PHY entries --
|
|
* Intel's Windows driver refuses to initialize unless they match
|
|
*/
|
|
enum {
|
|
PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
|
|
E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
|
|
/* default to E1000_DEV_ID_82540EM */ 0xc20
|
|
};
|
|
|
|
typedef struct E1000State_st {
|
|
PCIDevice dev;
|
|
VLANClientState *vc;
|
|
NICInfo *nd;
|
|
uint32_t mmio_base;
|
|
int mmio_index;
|
|
|
|
uint32_t mac_reg[0x8000];
|
|
uint16_t phy_reg[0x20];
|
|
uint16_t eeprom_data[64];
|
|
|
|
uint32_t rxbuf_size;
|
|
uint32_t rxbuf_min_shift;
|
|
int check_rxov;
|
|
struct e1000_tx {
|
|
unsigned char header[256];
|
|
unsigned char data[0x10000];
|
|
uint16_t size;
|
|
unsigned char sum_needed;
|
|
uint8_t ipcss;
|
|
uint8_t ipcso;
|
|
uint16_t ipcse;
|
|
uint8_t tucss;
|
|
uint8_t tucso;
|
|
uint16_t tucse;
|
|
uint8_t hdr_len;
|
|
uint16_t mss;
|
|
uint32_t paylen;
|
|
uint16_t tso_frames;
|
|
char tse;
|
|
char ip;
|
|
char tcp;
|
|
char cptse; // current packet tse bit
|
|
} tx;
|
|
|
|
struct {
|
|
uint32_t val_in; // shifted in from guest driver
|
|
uint16_t bitnum_in;
|
|
uint16_t bitnum_out;
|
|
uint16_t reading;
|
|
uint32_t old_eecd;
|
|
} eecd_state;
|
|
} E1000State;
|
|
|
|
#define defreg(x) x = (E1000_##x>>2)
|
|
enum {
|
|
defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
|
|
defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
|
|
defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
|
|
defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
|
|
defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
|
|
defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
|
|
defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
|
|
defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
|
|
defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
|
|
defreg(RA), defreg(MTA), defreg(CRCERRS),
|
|
};
|
|
|
|
enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
|
|
static char phy_regcap[0x20] = {
|
|
[PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
|
|
[PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
|
|
[PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
|
|
[PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
|
|
[PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
|
|
[PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
|
|
};
|
|
|
|
static void
|
|
ioport_map(PCIDevice *pci_dev, int region_num, uint32_t addr,
|
|
uint32_t size, int type)
|
|
{
|
|
DBGOUT(IO, "e1000_ioport_map addr=0x%04x size=0x%08x\n", addr, size);
|
|
}
|
|
|
|
static void
|
|
set_interrupt_cause(E1000State *s, int index, uint32_t val)
|
|
{
|
|
if (val)
|
|
val |= E1000_ICR_INT_ASSERTED;
|
|
s->mac_reg[ICR] = val;
|
|
qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
|
|
}
|
|
|
|
static void
|
|
set_ics(E1000State *s, int index, uint32_t val)
|
|
{
|
|
DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
|
|
s->mac_reg[IMS]);
|
|
set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
|
|
}
|
|
|
|
static int
|
|
rxbufsize(uint32_t v)
|
|
{
|
|
v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
|
|
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
|
|
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
|
|
switch (v) {
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
|
|
return 16384;
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
|
|
return 8192;
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
|
|
return 4096;
|
|
case E1000_RCTL_SZ_1024:
|
|
return 1024;
|
|
case E1000_RCTL_SZ_512:
|
|
return 512;
|
|
case E1000_RCTL_SZ_256:
|
|
return 256;
|
|
}
|
|
return 2048;
|
|
}
|
|
|
|
static void
|
|
set_rx_control(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[RCTL] = val;
|
|
s->rxbuf_size = rxbufsize(val);
|
|
s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
|
|
DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
|
|
s->mac_reg[RCTL]);
|
|
}
|
|
|
|
static void
|
|
set_mdic(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t data = val & E1000_MDIC_DATA_MASK;
|
|
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
|
|
|
|
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
|
|
val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
|
|
else if (val & E1000_MDIC_OP_READ) {
|
|
DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
|
|
if (!(phy_regcap[addr] & PHY_R)) {
|
|
DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
|
|
val |= E1000_MDIC_ERROR;
|
|
} else
|
|
val = (val ^ data) | s->phy_reg[addr];
|
|
} else if (val & E1000_MDIC_OP_WRITE) {
|
|
DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
|
|
if (!(phy_regcap[addr] & PHY_W)) {
|
|
DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
|
|
val |= E1000_MDIC_ERROR;
|
|
} else
|
|
s->phy_reg[addr] = data;
|
|
}
|
|
s->mac_reg[MDIC] = val | E1000_MDIC_READY;
|
|
set_ics(s, 0, E1000_ICR_MDAC);
|
|
}
|
|
|
|
static uint32_t
|
|
get_eecd(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
|
|
|
|
DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
|
|
s->eecd_state.bitnum_out, s->eecd_state.reading);
|
|
if (!s->eecd_state.reading ||
|
|
((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
|
|
((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
|
|
ret |= E1000_EECD_DO;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
set_eecd(E1000State *s, int index, uint32_t val)
|
|
{
|
|
uint32_t oldval = s->eecd_state.old_eecd;
|
|
|
|
s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
|
|
E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
|
|
if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
|
|
return;
|
|
if (!(E1000_EECD_SK & val)) { // falling edge
|
|
s->eecd_state.bitnum_out++;
|
|
return;
|
|
}
|
|
if (!(val & E1000_EECD_CS)) { // rising, no CS (EEPROM reset)
|
|
memset(&s->eecd_state, 0, sizeof s->eecd_state);
|
|
return;
|
|
}
|
|
s->eecd_state.val_in <<= 1;
|
|
if (val & E1000_EECD_DI)
|
|
s->eecd_state.val_in |= 1;
|
|
if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
|
|
s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
|
|
s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
|
|
EEPROM_READ_OPCODE_MICROWIRE);
|
|
}
|
|
DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
|
|
s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
|
|
s->eecd_state.reading);
|
|
}
|
|
|
|
static uint32_t
|
|
flash_eerd_read(E1000State *s, int x)
|
|
{
|
|
unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
|
|
|
|
if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
|
|
return 0;
|
|
return (s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
|
|
E1000_EEPROM_RW_REG_DONE | r;
|
|
}
|
|
|
|
static unsigned int
|
|
do_cksum(uint8_t *dp, uint8_t *de)
|
|
{
|
|
unsigned int bsum[2] = {0, 0}, i, sum;
|
|
|
|
for (i = 1; dp < de; bsum[i^=1] += *dp++)
|
|
;
|
|
sum = (bsum[0] << 8) + bsum[1];
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
return ~(sum + (sum >> 16));
|
|
}
|
|
|
|
static void
|
|
putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
|
|
{
|
|
if (cse && cse < n)
|
|
n = cse + 1;
|
|
if (sloc < n-1)
|
|
cpu_to_be16wu((uint16_t *)(data + sloc),
|
|
do_cksum(data + css, data + n));
|
|
}
|
|
|
|
static void
|
|
xmit_seg(E1000State *s)
|
|
{
|
|
uint16_t len, *sp;
|
|
unsigned int frames = s->tx.tso_frames, css, sofar, n;
|
|
struct e1000_tx *tp = &s->tx;
|
|
|
|
if (tp->tse && tp->cptse) {
|
|
css = tp->ipcss;
|
|
DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
|
|
frames, tp->size, css);
|
|
if (tp->ip) { // IPv4
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+2),
|
|
tp->size - css);
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+4),
|
|
be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
|
|
} else // IPv6
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+4),
|
|
tp->size - css);
|
|
css = tp->tucss;
|
|
len = tp->size - css;
|
|
DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
|
|
if (tp->tcp) {
|
|
sofar = frames * tp->mss;
|
|
cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
|
|
be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
|
|
if (tp->paylen - sofar > tp->mss)
|
|
tp->data[css + 13] &= ~9; // PSH, FIN
|
|
} else // UDP
|
|
cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
|
|
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
|
|
// add pseudo-header length before checksum calculation
|
|
sp = (uint16_t *)(tp->data + tp->tucso);
|
|
cpu_to_be16wu(sp, be16_to_cpup(sp) + len);
|
|
}
|
|
tp->tso_frames++;
|
|
}
|
|
|
|
if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
|
|
putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
|
|
if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
|
|
putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
|
|
qemu_send_packet(s->vc, tp->data, tp->size);
|
|
s->mac_reg[TPT]++;
|
|
s->mac_reg[GPTC]++;
|
|
n = s->mac_reg[TOTL];
|
|
if ((s->mac_reg[TOTL] += s->tx.size) < n)
|
|
s->mac_reg[TOTH]++;
|
|
}
|
|
|
|
static void
|
|
process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
|
|
{
|
|
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
|
|
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
|
|
unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
|
|
unsigned int msh = 0xfffff, hdr = 0;
|
|
uint64_t addr;
|
|
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
|
|
struct e1000_tx *tp = &s->tx;
|
|
|
|
if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
|
|
op = le32_to_cpu(xp->cmd_and_length);
|
|
tp->ipcss = xp->lower_setup.ip_fields.ipcss;
|
|
tp->ipcso = xp->lower_setup.ip_fields.ipcso;
|
|
tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
|
|
tp->tucss = xp->upper_setup.tcp_fields.tucss;
|
|
tp->tucso = xp->upper_setup.tcp_fields.tucso;
|
|
tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
|
|
tp->paylen = op & 0xfffff;
|
|
tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
|
|
tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
|
|
tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
|
|
tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
|
|
tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
|
|
tp->tso_frames = 0;
|
|
if (tp->tucso == 0) { // this is probably wrong
|
|
DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
|
|
tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
|
|
}
|
|
return;
|
|
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
|
|
// data descriptor
|
|
tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
|
|
tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
|
|
} else
|
|
// legacy descriptor
|
|
tp->cptse = 0;
|
|
|
|
addr = le64_to_cpu(dp->buffer_addr);
|
|
if (tp->tse && tp->cptse) {
|
|
hdr = tp->hdr_len;
|
|
msh = hdr + tp->mss;
|
|
do {
|
|
bytes = split_size;
|
|
if (tp->size + bytes > msh)
|
|
bytes = msh - tp->size;
|
|
cpu_physical_memory_read(addr, tp->data + tp->size, bytes);
|
|
if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
|
|
memmove(tp->header, tp->data, hdr);
|
|
tp->size = sz;
|
|
addr += bytes;
|
|
if (sz == msh) {
|
|
xmit_seg(s);
|
|
memmove(tp->data, tp->header, hdr);
|
|
tp->size = hdr;
|
|
}
|
|
} while (split_size -= bytes);
|
|
} else if (!tp->tse && tp->cptse) {
|
|
// context descriptor TSE is not set, while data descriptor TSE is set
|
|
DBGOUT(TXERR, "TCP segmentaion Error\n");
|
|
} else {
|
|
cpu_physical_memory_read(addr, tp->data + tp->size, split_size);
|
|
tp->size += split_size;
|
|
}
|
|
|
|
if (!(txd_lower & E1000_TXD_CMD_EOP))
|
|
return;
|
|
if (!(tp->tse && tp->cptse && tp->size < hdr))
|
|
xmit_seg(s);
|
|
tp->tso_frames = 0;
|
|
tp->sum_needed = 0;
|
|
tp->size = 0;
|
|
tp->cptse = 0;
|
|
}
|
|
|
|
static uint32_t
|
|
txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp)
|
|
{
|
|
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
|
|
|
|
if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
|
|
return 0;
|
|
txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
|
|
~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
|
|
dp->upper.data = cpu_to_le32(txd_upper);
|
|
cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp),
|
|
(void *)&dp->upper, sizeof(dp->upper));
|
|
return E1000_ICR_TXDW;
|
|
}
|
|
|
|
static void
|
|
start_xmit(E1000State *s)
|
|
{
|
|
target_phys_addr_t base;
|
|
struct e1000_tx_desc desc;
|
|
uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
|
|
|
|
if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
|
|
DBGOUT(TX, "tx disabled\n");
|
|
return;
|
|
}
|
|
|
|
while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
|
|
base = ((uint64_t)s->mac_reg[TDBAH] << 32) + s->mac_reg[TDBAL] +
|
|
sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
|
|
cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
|
|
|
|
DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
|
|
(void *)(intptr_t)desc.buffer_addr, desc.lower.data,
|
|
desc.upper.data);
|
|
|
|
process_tx_desc(s, &desc);
|
|
cause |= txdesc_writeback(base, &desc);
|
|
|
|
if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
|
|
s->mac_reg[TDH] = 0;
|
|
/*
|
|
* the following could happen only if guest sw assigns
|
|
* bogus values to TDT/TDLEN.
|
|
* there's nothing too intelligent we could do about this.
|
|
*/
|
|
if (s->mac_reg[TDH] == tdh_start) {
|
|
DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
|
|
tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
|
|
break;
|
|
}
|
|
}
|
|
set_ics(s, 0, cause);
|
|
}
|
|
|
|
static int
|
|
receive_filter(E1000State *s, const uint8_t *buf, int size)
|
|
{
|
|
static uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
|
|
static int mta_shift[] = {4, 3, 2, 0};
|
|
uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
|
|
|
|
if (rctl & E1000_RCTL_UPE) // promiscuous
|
|
return 1;
|
|
|
|
if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
|
|
return 1;
|
|
|
|
if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
|
|
return 1;
|
|
|
|
for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
|
|
if (!(rp[1] & E1000_RAH_AV))
|
|
continue;
|
|
ra[0] = cpu_to_le32(rp[0]);
|
|
ra[1] = cpu_to_le32(rp[1]);
|
|
if (!memcmp(buf, (uint8_t *)ra, 6)) {
|
|
DBGOUT(RXFILTER,
|
|
"unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
(int)(rp - s->mac_reg - RA)/2,
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
|
|
return 1;
|
|
}
|
|
}
|
|
DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
|
|
|
|
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
|
|
f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
|
|
if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
|
|
return 1;
|
|
DBGOUT(RXFILTER,
|
|
"dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
|
|
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
|
|
(rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
|
|
s->mac_reg[MTA + (f >> 5)]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_can_receive(void *opaque)
|
|
{
|
|
E1000State *s = opaque;
|
|
|
|
return (!(s->mac_reg[RCTL] & E1000_RCTL_EN) ||
|
|
s->mac_reg[RDH] != s->mac_reg[RDT]);
|
|
}
|
|
|
|
static void
|
|
e1000_receive(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
E1000State *s = opaque;
|
|
struct e1000_rx_desc desc;
|
|
target_phys_addr_t base;
|
|
unsigned int n, rdt;
|
|
uint32_t rdh_start;
|
|
|
|
if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
|
|
return;
|
|
|
|
if (size > s->rxbuf_size) {
|
|
DBGOUT(RX, "packet too large for buffers (%d > %d)\n", size,
|
|
s->rxbuf_size);
|
|
return;
|
|
}
|
|
|
|
if (!receive_filter(s, buf, size))
|
|
return;
|
|
|
|
rdh_start = s->mac_reg[RDH];
|
|
size += 4; // for the header
|
|
do {
|
|
if (s->mac_reg[RDH] == s->mac_reg[RDT] && s->check_rxov) {
|
|
set_ics(s, 0, E1000_ICS_RXO);
|
|
return;
|
|
}
|
|
base = ((uint64_t)s->mac_reg[RDBAH] << 32) + s->mac_reg[RDBAL] +
|
|
sizeof(desc) * s->mac_reg[RDH];
|
|
cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
|
|
desc.status |= E1000_RXD_STAT_DD;
|
|
if (desc.buffer_addr) {
|
|
cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr),
|
|
(void *)buf, size);
|
|
desc.length = cpu_to_le16(size);
|
|
desc.status |= E1000_RXD_STAT_EOP|E1000_RXD_STAT_IXSM;
|
|
} else // as per intel docs; skip descriptors with null buf addr
|
|
DBGOUT(RX, "Null RX descriptor!!\n");
|
|
cpu_physical_memory_write(base, (void *)&desc, sizeof(desc));
|
|
|
|
if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
|
|
s->mac_reg[RDH] = 0;
|
|
s->check_rxov = 1;
|
|
/* see comment in start_xmit; same here */
|
|
if (s->mac_reg[RDH] == rdh_start) {
|
|
DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
|
|
rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
|
|
set_ics(s, 0, E1000_ICS_RXO);
|
|
return;
|
|
}
|
|
} while (desc.buffer_addr == 0);
|
|
|
|
s->mac_reg[GPRC]++;
|
|
s->mac_reg[TPR]++;
|
|
n = s->mac_reg[TORL];
|
|
if ((s->mac_reg[TORL] += size) < n)
|
|
s->mac_reg[TORH]++;
|
|
|
|
n = E1000_ICS_RXT0;
|
|
if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
|
|
rdt += s->mac_reg[RDLEN] / sizeof(desc);
|
|
if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) << s->rxbuf_min_shift >=
|
|
s->mac_reg[RDLEN])
|
|
n |= E1000_ICS_RXDMT0;
|
|
|
|
set_ics(s, 0, n);
|
|
}
|
|
|
|
static uint32_t
|
|
mac_readreg(E1000State *s, int index)
|
|
{
|
|
return s->mac_reg[index];
|
|
}
|
|
|
|
static uint32_t
|
|
mac_icr_read(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[ICR];
|
|
|
|
DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
|
|
set_interrupt_cause(s, 0, 0);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_read_clr4(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[index];
|
|
|
|
s->mac_reg[index] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
mac_read_clr8(E1000State *s, int index)
|
|
{
|
|
uint32_t ret = s->mac_reg[index];
|
|
|
|
s->mac_reg[index] = 0;
|
|
s->mac_reg[index-1] = 0;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
mac_writereg(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val;
|
|
}
|
|
|
|
static void
|
|
set_rdt(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->check_rxov = 0;
|
|
s->mac_reg[index] = val & 0xffff;
|
|
}
|
|
|
|
static void
|
|
set_16bit(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xffff;
|
|
}
|
|
|
|
static void
|
|
set_dlen(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val & 0xfff80;
|
|
}
|
|
|
|
static void
|
|
set_tctl(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[index] = val;
|
|
s->mac_reg[TDT] &= 0xffff;
|
|
start_xmit(s);
|
|
}
|
|
|
|
static void
|
|
set_icr(E1000State *s, int index, uint32_t val)
|
|
{
|
|
DBGOUT(INTERRUPT, "set_icr %x\n", val);
|
|
set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
|
|
}
|
|
|
|
static void
|
|
set_imc(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[IMS] &= ~val;
|
|
set_ics(s, 0, 0);
|
|
}
|
|
|
|
static void
|
|
set_ims(E1000State *s, int index, uint32_t val)
|
|
{
|
|
s->mac_reg[IMS] |= val;
|
|
set_ics(s, 0, 0);
|
|
}
|
|
|
|
#define getreg(x) [x] = mac_readreg
|
|
static uint32_t (*macreg_readops[])(E1000State *, int) = {
|
|
getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
|
|
getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
|
|
getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
|
|
getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
|
|
getreg(RDH), getreg(RDT),
|
|
|
|
[TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
|
|
[GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
|
|
[ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
|
|
[CRCERRS ... MPC] = &mac_readreg,
|
|
[RA ... RA+31] = &mac_readreg,
|
|
[MTA ... MTA+127] = &mac_readreg,
|
|
};
|
|
enum { NREADOPS = sizeof(macreg_readops) / sizeof(*macreg_readops) };
|
|
|
|
#define putreg(x) [x] = mac_writereg
|
|
static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
|
|
putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
|
|
putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
|
|
putreg(RDBAL), putreg(LEDCTL),
|
|
[TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
|
|
[TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
|
|
[TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
|
|
[IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
|
|
[EECD] = set_eecd, [RCTL] = set_rx_control,
|
|
[RA ... RA+31] = &mac_writereg,
|
|
[MTA ... MTA+127] = &mac_writereg,
|
|
};
|
|
enum { NWRITEOPS = sizeof(macreg_writeops) / sizeof(*macreg_writeops) };
|
|
|
|
static void
|
|
e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
E1000State *s = opaque;
|
|
unsigned int index = ((addr - s->mmio_base) & 0x1ffff) >> 2;
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
val = bswap32(val);
|
|
#endif
|
|
if (index < NWRITEOPS && macreg_writeops[index])
|
|
macreg_writeops[index](s, index, val);
|
|
else if (index < NREADOPS && macreg_readops[index])
|
|
DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val);
|
|
else
|
|
DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
|
|
index<<2, val);
|
|
}
|
|
|
|
static void
|
|
e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
// emulate hw without byte enables: no RMW
|
|
e1000_mmio_writel(opaque, addr & ~3,
|
|
(val & 0xffff) << (8*(addr & 3)));
|
|
}
|
|
|
|
static void
|
|
e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
// emulate hw without byte enables: no RMW
|
|
e1000_mmio_writel(opaque, addr & ~3,
|
|
(val & 0xff) << (8*(addr & 3)));
|
|
}
|
|
|
|
static uint32_t
|
|
e1000_mmio_readl(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
E1000State *s = opaque;
|
|
unsigned int index = ((addr - s->mmio_base) & 0x1ffff) >> 2;
|
|
|
|
if (index < NREADOPS && macreg_readops[index])
|
|
{
|
|
uint32_t val = macreg_readops[index](s, index);
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
val = bswap32(val);
|
|
#endif
|
|
return val;
|
|
}
|
|
DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
e1000_mmio_readb(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
return ((e1000_mmio_readl(opaque, addr & ~3)) >>
|
|
(8 * (addr & 3))) & 0xff;
|
|
}
|
|
|
|
static uint32_t
|
|
e1000_mmio_readw(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
return ((e1000_mmio_readl(opaque, addr & ~3)) >>
|
|
(8 * (addr & 3))) & 0xffff;
|
|
}
|
|
|
|
int mac_regtosave[] = {
|
|
CTRL, EECD, EERD, GPRC, GPTC, ICR, ICS, IMC, IMS,
|
|
LEDCTL, MANC, MDIC, MPC, PBA, RCTL, RDBAH, RDBAL, RDH,
|
|
RDLEN, RDT, STATUS, SWSM, TCTL, TDBAH, TDBAL, TDH, TDLEN,
|
|
TDT, TORH, TORL, TOTH, TOTL, TPR, TPT, TXDCTL, WUFC,
|
|
};
|
|
enum { MAC_NSAVE = sizeof mac_regtosave/sizeof *mac_regtosave };
|
|
|
|
struct {
|
|
int size;
|
|
int array0;
|
|
} mac_regarraystosave[] = { {32, RA}, {128, MTA} };
|
|
enum { MAC_NARRAYS = sizeof mac_regarraystosave/sizeof *mac_regarraystosave };
|
|
|
|
static void
|
|
nic_save(QEMUFile *f, void *opaque)
|
|
{
|
|
E1000State *s = (E1000State *)opaque;
|
|
int i, j;
|
|
|
|
pci_device_save(&s->dev, f);
|
|
qemu_put_be32s(f, &s->mmio_base);
|
|
qemu_put_be32s(f, &s->rxbuf_size);
|
|
qemu_put_be32s(f, &s->rxbuf_min_shift);
|
|
qemu_put_be32s(f, &s->eecd_state.val_in);
|
|
qemu_put_be16s(f, &s->eecd_state.bitnum_in);
|
|
qemu_put_be16s(f, &s->eecd_state.bitnum_out);
|
|
qemu_put_be16s(f, &s->eecd_state.reading);
|
|
qemu_put_be32s(f, &s->eecd_state.old_eecd);
|
|
qemu_put_8s(f, &s->tx.ipcss);
|
|
qemu_put_8s(f, &s->tx.ipcso);
|
|
qemu_put_be16s(f, &s->tx.ipcse);
|
|
qemu_put_8s(f, &s->tx.tucss);
|
|
qemu_put_8s(f, &s->tx.tucso);
|
|
qemu_put_be16s(f, &s->tx.tucse);
|
|
qemu_put_be32s(f, &s->tx.paylen);
|
|
qemu_put_8s(f, &s->tx.hdr_len);
|
|
qemu_put_be16s(f, &s->tx.mss);
|
|
qemu_put_be16s(f, &s->tx.size);
|
|
qemu_put_be16s(f, &s->tx.tso_frames);
|
|
qemu_put_8s(f, &s->tx.sum_needed);
|
|
qemu_put_8s(f, &s->tx.ip);
|
|
qemu_put_8s(f, &s->tx.tcp);
|
|
qemu_put_buffer(f, s->tx.header, sizeof s->tx.header);
|
|
qemu_put_buffer(f, s->tx.data, sizeof s->tx.data);
|
|
for (i = 0; i < 64; i++)
|
|
qemu_put_be16s(f, s->eeprom_data + i);
|
|
for (i = 0; i < 0x20; i++)
|
|
qemu_put_be16s(f, s->phy_reg + i);
|
|
for (i = 0; i < MAC_NSAVE; i++)
|
|
qemu_put_be32s(f, s->mac_reg + mac_regtosave[i]);
|
|
for (i = 0; i < MAC_NARRAYS; i++)
|
|
for (j = 0; j < mac_regarraystosave[i].size; j++)
|
|
qemu_put_be32s(f,
|
|
s->mac_reg + mac_regarraystosave[i].array0 + j);
|
|
}
|
|
|
|
static int
|
|
nic_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
E1000State *s = (E1000State *)opaque;
|
|
int i, j, ret;
|
|
|
|
if ((ret = pci_device_load(&s->dev, f)) < 0)
|
|
return ret;
|
|
if (version_id == 1)
|
|
qemu_get_be32s(f, &i); /* once some unused instance id */
|
|
qemu_get_be32s(f, &s->mmio_base);
|
|
qemu_get_be32s(f, &s->rxbuf_size);
|
|
qemu_get_be32s(f, &s->rxbuf_min_shift);
|
|
qemu_get_be32s(f, &s->eecd_state.val_in);
|
|
qemu_get_be16s(f, &s->eecd_state.bitnum_in);
|
|
qemu_get_be16s(f, &s->eecd_state.bitnum_out);
|
|
qemu_get_be16s(f, &s->eecd_state.reading);
|
|
qemu_get_be32s(f, &s->eecd_state.old_eecd);
|
|
qemu_get_8s(f, &s->tx.ipcss);
|
|
qemu_get_8s(f, &s->tx.ipcso);
|
|
qemu_get_be16s(f, &s->tx.ipcse);
|
|
qemu_get_8s(f, &s->tx.tucss);
|
|
qemu_get_8s(f, &s->tx.tucso);
|
|
qemu_get_be16s(f, &s->tx.tucse);
|
|
qemu_get_be32s(f, &s->tx.paylen);
|
|
qemu_get_8s(f, &s->tx.hdr_len);
|
|
qemu_get_be16s(f, &s->tx.mss);
|
|
qemu_get_be16s(f, &s->tx.size);
|
|
qemu_get_be16s(f, &s->tx.tso_frames);
|
|
qemu_get_8s(f, &s->tx.sum_needed);
|
|
qemu_get_8s(f, &s->tx.ip);
|
|
qemu_get_8s(f, &s->tx.tcp);
|
|
qemu_get_buffer(f, s->tx.header, sizeof s->tx.header);
|
|
qemu_get_buffer(f, s->tx.data, sizeof s->tx.data);
|
|
for (i = 0; i < 64; i++)
|
|
qemu_get_be16s(f, s->eeprom_data + i);
|
|
for (i = 0; i < 0x20; i++)
|
|
qemu_get_be16s(f, s->phy_reg + i);
|
|
for (i = 0; i < MAC_NSAVE; i++)
|
|
qemu_get_be32s(f, s->mac_reg + mac_regtosave[i]);
|
|
for (i = 0; i < MAC_NARRAYS; i++)
|
|
for (j = 0; j < mac_regarraystosave[i].size; j++)
|
|
qemu_get_be32s(f,
|
|
s->mac_reg + mac_regarraystosave[i].array0 + j);
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t e1000_eeprom_template[64] = {
|
|
0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
|
|
0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
|
|
0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
|
|
0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
|
|
0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
|
|
};
|
|
|
|
static uint16_t phy_reg_init[] = {
|
|
[PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
|
|
[PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
|
|
[PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
|
|
[M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
|
|
[PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
|
|
[M88E1000_PHY_SPEC_STATUS] = 0xac00,
|
|
};
|
|
|
|
static uint32_t mac_reg_init[] = {
|
|
[PBA] = 0x00100030,
|
|
[LEDCTL] = 0x602,
|
|
[CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
|
|
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
|
|
[STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
|
|
E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
|
|
E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
|
|
E1000_STATUS_LU,
|
|
[MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
|
|
E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
|
|
E1000_MANC_RMCP_EN,
|
|
};
|
|
|
|
/* PCI interface */
|
|
|
|
static CPUWriteMemoryFunc *e1000_mmio_write[] = {
|
|
e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel
|
|
};
|
|
|
|
static CPUReadMemoryFunc *e1000_mmio_read[] = {
|
|
e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl
|
|
};
|
|
|
|
static void
|
|
e1000_mmio_map(PCIDevice *pci_dev, int region_num,
|
|
uint32_t addr, uint32_t size, int type)
|
|
{
|
|
E1000State *d = (E1000State *)pci_dev;
|
|
|
|
DBGOUT(MMIO, "e1000_mmio_map addr=0x%08x 0x%08x\n", addr, size);
|
|
|
|
d->mmio_base = addr;
|
|
cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index);
|
|
}
|
|
|
|
void
|
|
pci_e1000_init(PCIBus *bus, NICInfo *nd, int devfn)
|
|
{
|
|
E1000State *d;
|
|
uint8_t *pci_conf;
|
|
uint16_t checksum = 0;
|
|
char *info_str = "e1000";
|
|
int i;
|
|
|
|
d = (E1000State *)pci_register_device(bus, "e1000",
|
|
sizeof(E1000State), devfn, NULL, NULL);
|
|
|
|
pci_conf = d->dev.config;
|
|
memset(pci_conf, 0, 256);
|
|
|
|
*(uint16_t *)(pci_conf+0x00) = cpu_to_le16(0x8086);
|
|
*(uint16_t *)(pci_conf+0x02) = cpu_to_le16(E1000_DEVID);
|
|
*(uint16_t *)(pci_conf+0x04) = cpu_to_le16(0x0407);
|
|
*(uint16_t *)(pci_conf+0x06) = cpu_to_le16(0x0010);
|
|
pci_conf[0x08] = 0x03;
|
|
pci_conf[0x0a] = 0x00; // ethernet network controller
|
|
pci_conf[0x0b] = 0x02;
|
|
pci_conf[0x0c] = 0x10;
|
|
|
|
pci_conf[0x3d] = 1; // interrupt pin 0
|
|
|
|
d->mmio_index = cpu_register_io_memory(0, e1000_mmio_read,
|
|
e1000_mmio_write, d);
|
|
|
|
pci_register_io_region((PCIDevice *)d, 0, PNPMMIO_SIZE,
|
|
PCI_ADDRESS_SPACE_MEM, e1000_mmio_map);
|
|
|
|
pci_register_io_region((PCIDevice *)d, 1, IOPORT_SIZE,
|
|
PCI_ADDRESS_SPACE_IO, ioport_map);
|
|
|
|
d->nd = nd;
|
|
memmove(d->eeprom_data, e1000_eeprom_template,
|
|
sizeof e1000_eeprom_template);
|
|
for (i = 0; i < 3; i++)
|
|
d->eeprom_data[i] = (nd->macaddr[2*i+1]<<8) | nd->macaddr[2*i];
|
|
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
|
|
checksum += d->eeprom_data[i];
|
|
checksum = (uint16_t) EEPROM_SUM - checksum;
|
|
d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
|
|
|
|
memset(d->phy_reg, 0, sizeof d->phy_reg);
|
|
memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
|
|
memset(d->mac_reg, 0, sizeof d->mac_reg);
|
|
memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
|
|
d->rxbuf_min_shift = 1;
|
|
memset(&d->tx, 0, sizeof d->tx);
|
|
|
|
d->vc = qemu_new_vlan_client(nd->vlan, e1000_receive,
|
|
e1000_can_receive, d);
|
|
|
|
snprintf(d->vc->info_str, sizeof(d->vc->info_str),
|
|
"%s macaddr=%02x:%02x:%02x:%02x:%02x:%02x", info_str,
|
|
d->nd->macaddr[0], d->nd->macaddr[1], d->nd->macaddr[2],
|
|
d->nd->macaddr[3], d->nd->macaddr[4], d->nd->macaddr[5]);
|
|
|
|
register_savevm(info_str, -1, 2, nic_save, nic_load, d);
|
|
}
|