qemu-e2k/target/arm/kvm.c

2427 lines
70 KiB
C

/*
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
* Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <linux/kvm.h>
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qom/object.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
#include "sysemu/runstate.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "trace.h"
#include "internals.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "exec/gdbstub.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qapi/visitor.h"
#include "qemu/log.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/ghes.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static bool cap_has_mp_state;
static bool cap_has_inject_serror_esr;
static bool cap_has_inject_ext_dabt;
/**
* ARMHostCPUFeatures: information about the host CPU (identified
* by asking the host kernel)
*/
typedef struct ARMHostCPUFeatures {
ARMISARegisters isar;
uint64_t features;
uint32_t target;
const char *dtb_compatible;
} ARMHostCPUFeatures;
static ARMHostCPUFeatures arm_host_cpu_features;
/**
* kvm_arm_vcpu_init:
* @cpu: ARMCPU
*
* Initialize (or reinitialize) the VCPU by invoking the
* KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
* bitmask specified in the CPUState.
*
* Returns: 0 if success else < 0 error code
*/
static int kvm_arm_vcpu_init(ARMCPU *cpu)
{
struct kvm_vcpu_init init;
init.target = cpu->kvm_target;
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
}
/**
* kvm_arm_vcpu_finalize:
* @cpu: ARMCPU
* @feature: feature to finalize
*
* Finalizes the configuration of the specified VCPU feature by
* invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
* this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
* KVM's API documentation.
*
* Returns: 0 if success else < 0 error code
*/
static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
{
return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
}
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
int *fdarray,
struct kvm_vcpu_init *init)
{
int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
int max_vm_pa_size;
kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
if (kvmfd < 0) {
goto err;
}
max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
if (max_vm_pa_size < 0) {
max_vm_pa_size = 0;
}
do {
vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
} while (vmfd == -1 && errno == EINTR);
if (vmfd < 0) {
goto err;
}
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
if (cpufd < 0) {
goto err;
}
if (!init) {
/* Caller doesn't want the VCPU to be initialized, so skip it */
goto finish;
}
if (init->target == -1) {
struct kvm_vcpu_init preferred;
ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
if (!ret) {
init->target = preferred.target;
}
}
if (ret >= 0) {
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
if (ret < 0) {
goto err;
}
} else if (cpus_to_try) {
/* Old kernel which doesn't know about the
* PREFERRED_TARGET ioctl: we know it will only support
* creating one kind of guest CPU which is its preferred
* CPU type.
*/
struct kvm_vcpu_init try;
while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
try.target = *cpus_to_try++;
memcpy(try.features, init->features, sizeof(init->features));
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
if (ret >= 0) {
break;
}
}
if (ret < 0) {
goto err;
}
init->target = try.target;
} else {
/* Treat a NULL cpus_to_try argument the same as an empty
* list, which means we will fail the call since this must
* be an old kernel which doesn't support PREFERRED_TARGET.
*/
goto err;
}
finish:
fdarray[0] = kvmfd;
fdarray[1] = vmfd;
fdarray[2] = cpufd;
return true;
err:
if (cpufd >= 0) {
close(cpufd);
}
if (vmfd >= 0) {
close(vmfd);
}
if (kvmfd >= 0) {
close(kvmfd);
}
return false;
}
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
{
int i;
for (i = 2; i >= 0; i--) {
close(fdarray[i]);
}
}
static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
{
uint64_t ret;
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
int err;
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
if (err < 0) {
return -1;
}
*pret = ret;
return 0;
}
static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
{
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
return ioctl(fd, KVM_GET_ONE_REG, &idreg);
}
static bool kvm_arm_pauth_supported(void)
{
return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
}
static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
/* Identify the feature bits corresponding to the host CPU, and
* fill out the ARMHostCPUClass fields accordingly. To do this
* we have to create a scratch VM, create a single CPU inside it,
* and then query that CPU for the relevant ID registers.
*/
int fdarray[3];
bool sve_supported;
bool pmu_supported = false;
uint64_t features = 0;
int err;
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
* we know these will only support creating one kind of guest CPU,
* which is its preferred CPU type. Fortunately these old kernels
* support only a very limited number of CPUs.
*/
static const uint32_t cpus_to_try[] = {
KVM_ARM_TARGET_AEM_V8,
KVM_ARM_TARGET_FOUNDATION_V8,
KVM_ARM_TARGET_CORTEX_A57,
QEMU_KVM_ARM_TARGET_NONE
};
/*
* target = -1 informs kvm_arm_create_scratch_host_vcpu()
* to use the preferred target
*/
struct kvm_vcpu_init init = { .target = -1, };
/*
* Ask for SVE if supported, so that we can query ID_AA64ZFR0,
* which is otherwise RAZ.
*/
sve_supported = kvm_arm_sve_supported();
if (sve_supported) {
init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
/*
* Ask for Pointer Authentication if supported, so that we get
* the unsanitized field values for AA64ISAR1_EL1.
*/
if (kvm_arm_pauth_supported()) {
init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
}
if (kvm_arm_pmu_supported()) {
init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
pmu_supported = true;
}
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
return false;
}
ahcf->target = init.target;
ahcf->dtb_compatible = "arm,arm-v8";
err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
ARM64_SYS_REG(3, 0, 0, 4, 0));
if (unlikely(err < 0)) {
/*
* Before v4.15, the kernel only exposed a limited number of system
* registers, not including any of the interesting AArch64 ID regs.
* For the most part we could leave these fields as zero with minimal
* effect, since this does not affect the values seen by the guest.
*
* However, it could cause problems down the line for QEMU,
* so provide a minimal v8.0 default.
*
* ??? Could read MIDR and use knowledge from cpu64.c.
* ??? Could map a page of memory into our temp guest and
* run the tiniest of hand-crafted kernels to extract
* the values seen by the guest.
* ??? Either of these sounds like too much effort just
* to work around running a modern host kernel.
*/
ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
err = 0;
} else {
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
ARM64_SYS_REG(3, 0, 0, 4, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
ARM64_SYS_REG(3, 0, 0, 4, 5));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
ARM64_SYS_REG(3, 0, 0, 5, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
ARM64_SYS_REG(3, 0, 0, 5, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
ARM64_SYS_REG(3, 0, 0, 6, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
ARM64_SYS_REG(3, 0, 0, 6, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
ARM64_SYS_REG(3, 0, 0, 6, 2));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
ARM64_SYS_REG(3, 0, 0, 7, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
ARM64_SYS_REG(3, 0, 0, 7, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
ARM64_SYS_REG(3, 0, 0, 7, 2));
/*
* Note that if AArch32 support is not present in the host,
* the AArch32 sysregs are present to be read, but will
* return UNKNOWN values. This is neither better nor worse
* than skipping the reads and leaving 0, as we must avoid
* considering the values in every case.
*/
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
ARM64_SYS_REG(3, 0, 0, 1, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
ARM64_SYS_REG(3, 0, 0, 1, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
ARM64_SYS_REG(3, 0, 0, 1, 2));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
ARM64_SYS_REG(3, 0, 0, 1, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
ARM64_SYS_REG(3, 0, 0, 1, 5));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
ARM64_SYS_REG(3, 0, 0, 1, 6));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
ARM64_SYS_REG(3, 0, 0, 1, 7));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
ARM64_SYS_REG(3, 0, 0, 2, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
ARM64_SYS_REG(3, 0, 0, 2, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
ARM64_SYS_REG(3, 0, 0, 2, 2));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
ARM64_SYS_REG(3, 0, 0, 2, 3));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
ARM64_SYS_REG(3, 0, 0, 2, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
ARM64_SYS_REG(3, 0, 0, 2, 5));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
ARM64_SYS_REG(3, 0, 0, 2, 6));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
ARM64_SYS_REG(3, 0, 0, 2, 7));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
ARM64_SYS_REG(3, 0, 0, 3, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
ARM64_SYS_REG(3, 0, 0, 3, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
ARM64_SYS_REG(3, 0, 0, 3, 2));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
ARM64_SYS_REG(3, 0, 0, 3, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
ARM64_SYS_REG(3, 0, 0, 3, 5));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
ARM64_SYS_REG(3, 0, 0, 3, 6));
/*
* DBGDIDR is a bit complicated because the kernel doesn't
* provide an accessor for it in 64-bit mode, which is what this
* scratch VM is in, and there's no architected "64-bit sysreg
* which reads the same as the 32-bit register" the way there is
* for other ID registers. Instead we synthesize a value from the
* AArch64 ID_AA64DFR0, the same way the kernel code in
* arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
* We only do this if the CPU supports AArch32 at EL1.
*/
if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
int ctx_cmps =
FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
int version = 6; /* ARMv8 debug architecture */
bool has_el3 =
!!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
uint32_t dbgdidr = 0;
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
dbgdidr |= (1 << 15); /* RES1 bit */
ahcf->isar.dbgdidr = dbgdidr;
}
if (pmu_supported) {
/* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
ARM64_SYS_REG(3, 3, 9, 12, 0));
}
if (sve_supported) {
/*
* There is a range of kernels between kernel commit 73433762fcae
* and f81cb2c3ad41 which have a bug where the kernel doesn't
* expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
* enabled SVE support, which resulted in an error rather than RAZ.
* So only read the register if we set KVM_ARM_VCPU_SVE above.
*/
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
ARM64_SYS_REG(3, 0, 0, 4, 4));
}
}
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (err < 0) {
return false;
}
/*
* We can assume any KVM supporting CPU is at least a v8
* with VFPv4+Neon; this in turn implies most of the other
* feature bits.
*/
features |= 1ULL << ARM_FEATURE_V8;
features |= 1ULL << ARM_FEATURE_NEON;
features |= 1ULL << ARM_FEATURE_AARCH64;
features |= 1ULL << ARM_FEATURE_PMU;
features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
ahcf->features = features;
return true;
}
void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
if (!arm_host_cpu_features.dtb_compatible) {
if (!kvm_enabled() ||
!kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
/* We can't report this error yet, so flag that we need to
* in arm_cpu_realizefn().
*/
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
cpu->host_cpu_probe_failed = true;
return;
}
}
cpu->kvm_target = arm_host_cpu_features.target;
cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
cpu->isar = arm_host_cpu_features.isar;
env->features = arm_host_cpu_features.features;
}
static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
{
return !ARM_CPU(obj)->kvm_adjvtime;
}
static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
{
ARM_CPU(obj)->kvm_adjvtime = !value;
}
static bool kvm_steal_time_get(Object *obj, Error **errp)
{
return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
}
static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
{
ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
}
/* KVM VCPU properties should be prefixed with "kvm-". */
void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
Object *obj = OBJECT(cpu);
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
cpu->kvm_adjvtime = true;
object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
kvm_no_adjvtime_set);
object_property_set_description(obj, "kvm-no-adjvtime",
"Set on to disable the adjustment of "
"the virtual counter. VM stopped time "
"will be counted.");
}
cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
kvm_steal_time_set);
object_property_set_description(obj, "kvm-steal-time",
"Set off to disable KVM steal time.");
}
bool kvm_arm_pmu_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
}
int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
{
KVMState *s = KVM_STATE(ms->accelerator);
int ret;
ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
*fixed_ipa = ret <= 0;
return ret > 0 ? ret : 40;
}
int kvm_arch_get_default_type(MachineState *ms)
{
bool fixed_ipa;
int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
return fixed_ipa ? 0 : size;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
int ret = 0;
/* For ARM interrupt delivery is always asynchronous,
* whether we are using an in-kernel VGIC or not.
*/
kvm_async_interrupts_allowed = true;
/*
* PSCI wakes up secondary cores, so we always need to
* have vCPUs waiting in kernel space
*/
kvm_halt_in_kernel_allowed = true;
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
/* Check whether user space can specify guest syndrome value */
cap_has_inject_serror_esr =
kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
if (ms->smp.cpus > 256 &&
!kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
error_report("Using more than 256 vcpus requires a host kernel "
"with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
ret = -EINVAL;
}
if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
} else {
/* Set status for supporting the external dabt injection */
cap_has_inject_ext_dabt = kvm_check_extension(s,
KVM_CAP_ARM_INJECT_EXT_DABT);
}
}
if (s->kvm_eager_split_size) {
uint32_t sizes;
sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
if (!sizes) {
s->kvm_eager_split_size = 0;
warn_report("Eager Page Split support not available");
} else if (!(s->kvm_eager_split_size & sizes)) {
error_report("Eager Page Split requested chunk size not valid");
ret = -EINVAL;
} else {
ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
s->kvm_eager_split_size);
if (ret < 0) {
error_report("Enabling of Eager Page Split failed: %s",
strerror(-ret));
}
}
}
max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
hw_watchpoints = g_array_sized_new(true, true,
sizeof(HWWatchpoint), max_hw_wps);
max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
hw_breakpoints = g_array_sized_new(true, true,
sizeof(HWBreakpoint), max_hw_bps);
return ret;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
/* We track all the KVM devices which need their memory addresses
* passing to the kernel in a list of these structures.
* When board init is complete we run through the list and
* tell the kernel the base addresses of the memory regions.
* We use a MemoryListener to track mapping and unmapping of
* the regions during board creation, so the board models don't
* need to do anything special for the KVM case.
*
* Sometimes the address must be OR'ed with some other fields
* (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
* @kda_addr_ormask aims at storing the value of those fields.
*/
typedef struct KVMDevice {
struct kvm_arm_device_addr kda;
struct kvm_device_attr kdattr;
uint64_t kda_addr_ormask;
MemoryRegion *mr;
QSLIST_ENTRY(KVMDevice) entries;
int dev_fd;
} KVMDevice;
static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
static void kvm_arm_devlistener_add(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = section->offset_within_address_space;
}
}
}
static void kvm_arm_devlistener_del(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = -1;
}
}
}
static MemoryListener devlistener = {
.name = "kvm-arm",
.region_add = kvm_arm_devlistener_add,
.region_del = kvm_arm_devlistener_del,
.priority = MEMORY_LISTENER_PRIORITY_MIN,
};
static void kvm_arm_set_device_addr(KVMDevice *kd)
{
struct kvm_device_attr *attr = &kd->kdattr;
int ret;
/* If the device control API is available and we have a device fd on the
* KVMDevice struct, let's use the newer API
*/
if (kd->dev_fd >= 0) {
uint64_t addr = kd->kda.addr;
addr |= kd->kda_addr_ormask;
attr->addr = (uintptr_t)&addr;
ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
} else {
ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
}
if (ret < 0) {
fprintf(stderr, "Failed to set device address: %s\n",
strerror(-ret));
abort();
}
}
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
KVMDevice *kd, *tkd;
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
if (kd->kda.addr != -1) {
kvm_arm_set_device_addr(kd);
}
memory_region_unref(kd->mr);
QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
g_free(kd);
}
memory_listener_unregister(&devlistener);
}
static Notifier notify = {
.notify = kvm_arm_machine_init_done,
};
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
uint64_t attr, int dev_fd, uint64_t addr_ormask)
{
KVMDevice *kd;
if (!kvm_irqchip_in_kernel()) {
return;
}
if (QSLIST_EMPTY(&kvm_devices_head)) {
memory_listener_register(&devlistener, &address_space_memory);
qemu_add_machine_init_done_notifier(&notify);
}
kd = g_new0(KVMDevice, 1);
kd->mr = mr;
kd->kda.id = devid;
kd->kda.addr = -1;
kd->kdattr.flags = 0;
kd->kdattr.group = group;
kd->kdattr.attr = attr;
kd->dev_fd = dev_fd;
kd->kda_addr_ormask = addr_ormask;
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
memory_region_ref(kd->mr);
}
static int compare_u64(const void *a, const void *b)
{
if (*(uint64_t *)a > *(uint64_t *)b) {
return 1;
}
if (*(uint64_t *)a < *(uint64_t *)b) {
return -1;
}
return 0;
}
/*
* cpreg_values are sorted in ascending order by KVM register ID
* (see kvm_arm_init_cpreg_list). This allows us to cheaply find
* the storage for a KVM register by ID with a binary search.
*/
static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
{
uint64_t *res;
res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
sizeof(uint64_t), compare_u64);
assert(res);
return &cpu->cpreg_values[res - cpu->cpreg_indexes];
}
/**
* kvm_arm_reg_syncs_via_cpreg_list:
* @regidx: KVM register index
*
* Return true if this KVM register should be synchronized via the
* cpreg list of arbitrary system registers, false if it is synchronized
* by hand using code in kvm_arch_get/put_registers().
*/
static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE:
case KVM_REG_ARM64_SVE:
return false;
default:
return true;
}
}
/**
* kvm_arm_init_cpreg_list:
* @cpu: ARMCPU
*
* Initialize the ARMCPU cpreg list according to the kernel's
* definition of what CPU registers it knows about (and throw away
* the previous TCG-created cpreg list).
*
* Returns: 0 if success, else < 0 error code
*/
static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
struct kvm_reg_list rl;
struct kvm_reg_list *rlp;
int i, ret, arraylen;
CPUState *cs = CPU(cpu);
rl.n = 0;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
if (ret != -E2BIG) {
return ret;
}
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
rlp->n = rl.n;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
if (ret) {
goto out;
}
/* Sort the list we get back from the kernel, since cpreg_tuples
* must be in strictly ascending order.
*/
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
for (i = 0, arraylen = 0; i < rlp->n; i++) {
if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
continue;
}
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
case KVM_REG_SIZE_U64:
break;
default:
fprintf(stderr, "Can't handle size of register in kernel list\n");
ret = -EINVAL;
goto out;
}
arraylen++;
}
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
arraylen);
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
arraylen);
cpu->cpreg_array_len = arraylen;
cpu->cpreg_vmstate_array_len = arraylen;
for (i = 0, arraylen = 0; i < rlp->n; i++) {
uint64_t regidx = rlp->reg[i];
if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
continue;
}
cpu->cpreg_indexes[arraylen] = regidx;
arraylen++;
}
assert(cpu->cpreg_array_len == arraylen);
if (!write_kvmstate_to_list(cpu)) {
/* Shouldn't happen unless kernel is inconsistent about
* what registers exist.
*/
fprintf(stderr, "Initial read of kernel register state failed\n");
ret = -EINVAL;
goto out;
}
out:
g_free(rlp);
return ret;
}
/**
* kvm_arm_cpreg_level:
* @regidx: KVM register index
*
* Return the level of this coprocessor/system register. Return value is
* either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
*/
static int kvm_arm_cpreg_level(uint64_t regidx)
{
/*
* All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
* If a register should be written less often, you must add it here
* with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
*/
switch (regidx) {
case KVM_REG_ARM_TIMER_CNT:
case KVM_REG_ARM_PTIMER_CNT:
return KVM_PUT_FULL_STATE;
}
return KVM_PUT_RUNTIME_STATE;
}
bool write_kvmstate_to_list(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
ret = kvm_get_one_reg(cs, regidx, &v32);
if (!ret) {
cpu->cpreg_values[i] = v32;
}
break;
case KVM_REG_SIZE_U64:
ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
break;
default:
g_assert_not_reached();
}
if (ret) {
ok = false;
}
}
return ok;
}
bool write_list_to_kvmstate(ARMCPU *cpu, int level)
{
CPUState *cs = CPU(cpu);
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
if (kvm_arm_cpreg_level(regidx) > level) {
continue;
}
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
v32 = cpu->cpreg_values[i];
ret = kvm_set_one_reg(cs, regidx, &v32);
break;
case KVM_REG_SIZE_U64:
ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
break;
default:
g_assert_not_reached();
}
if (ret) {
/* We might fail for "unknown register" and also for
* "you tried to set a register which is constant with
* a different value from what it actually contains".
*/
ok = false;
}
}
return ok;
}
void kvm_arm_cpu_pre_save(ARMCPU *cpu)
{
/* KVM virtual time adjustment */
if (cpu->kvm_vtime_dirty) {
*kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
}
}
void kvm_arm_cpu_post_load(ARMCPU *cpu)
{
/* KVM virtual time adjustment */
if (cpu->kvm_adjvtime) {
cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
cpu->kvm_vtime_dirty = true;
}
}
void kvm_arm_reset_vcpu(ARMCPU *cpu)
{
int ret;
/* Re-init VCPU so that all registers are set to
* their respective reset values.
*/
ret = kvm_arm_vcpu_init(cpu);
if (ret < 0) {
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
abort();
}
if (!write_kvmstate_to_list(cpu)) {
fprintf(stderr, "write_kvmstate_to_list failed\n");
abort();
}
/*
* Sync the reset values also into the CPUState. This is necessary
* because the next thing we do will be a kvm_arch_put_registers()
* which will update the list values from the CPUState before copying
* the list values back to KVM. It's OK to ignore failure returns here
* for the same reason we do so in kvm_arch_get_registers().
*/
write_list_to_cpustate(cpu);
}
/*
* Update KVM's MP_STATE based on what QEMU thinks it is
*/
static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state = (cpu->power_state == PSCI_OFF) ?
KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
};
return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
}
return 0;
}
/*
* Sync the KVM MP_STATE into QEMU
*/
static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state;
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
if (ret) {
return ret;
}
cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
PSCI_OFF : PSCI_ON;
}
return 0;
}
/**
* kvm_arm_get_virtual_time:
* @cpu: ARMCPU
*
* Gets the VCPU's virtual counter and stores it in the KVM CPU state.
*/
static void kvm_arm_get_virtual_time(ARMCPU *cpu)
{
int ret;
if (cpu->kvm_vtime_dirty) {
return;
}
ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
if (ret) {
error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
abort();
}
cpu->kvm_vtime_dirty = true;
}
/**
* kvm_arm_put_virtual_time:
* @cpu: ARMCPU
*
* Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
*/
static void kvm_arm_put_virtual_time(ARMCPU *cpu)
{
int ret;
if (!cpu->kvm_vtime_dirty) {
return;
}
ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
if (ret) {
error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
abort();
}
cpu->kvm_vtime_dirty = false;
}
/**
* kvm_put_vcpu_events:
* @cpu: ARMCPU
*
* Put VCPU related state to kvm.
*
* Returns: 0 if success else < 0 error code
*/
static int kvm_put_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
int ret;
if (!kvm_has_vcpu_events()) {
return 0;
}
memset(&events, 0, sizeof(events));
events.exception.serror_pending = env->serror.pending;
/* Inject SError to guest with specified syndrome if host kernel
* supports it, otherwise inject SError without syndrome.
*/
if (cap_has_inject_serror_esr) {
events.exception.serror_has_esr = env->serror.has_esr;
events.exception.serror_esr = env->serror.esr;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
if (ret) {
error_report("failed to put vcpu events");
}
return ret;
}
/**
* kvm_get_vcpu_events:
* @cpu: ARMCPU
*
* Get VCPU related state from kvm.
*
* Returns: 0 if success else < 0 error code
*/
static int kvm_get_vcpu_events(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
struct kvm_vcpu_events events;
int ret;
if (!kvm_has_vcpu_events()) {
return 0;
}
memset(&events, 0, sizeof(events));
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
if (ret) {
error_report("failed to get vcpu events");
return ret;
}
env->serror.pending = events.exception.serror_pending;
env->serror.has_esr = events.exception.serror_has_esr;
env->serror.esr = events.exception.serror_esr;
return 0;
}
#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
/*
* ESR_EL1
* ISS encoding
* AARCH64: DFSC, bits [5:0]
* AARCH32:
* TTBCR.EAE == 0
* FS[4] - DFSR[10]
* FS[3:0] - DFSR[3:0]
* TTBCR.EAE == 1
* FS, bits [5:0]
*/
#define ESR_DFSC(aarch64, lpae, v) \
((aarch64 || (lpae)) ? ((v) & 0x3F) \
: (((v) >> 6) | ((v) & 0x1F)))
#define ESR_DFSC_EXTABT(aarch64, lpae) \
((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
/**
* kvm_arm_verify_ext_dabt_pending:
* @cpu: ARMCPU
*
* Verify the fault status code wrt the Ext DABT injection
*
* Returns: true if the fault status code is as expected, false otherwise
*/
static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
uint64_t dfsr_val;
if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
CPUARMState *env = &cpu->env;
int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
int lpae = 0;
if (!aarch64_mode) {
uint64_t ttbcr;
if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
lpae = arm_feature(env, ARM_FEATURE_LPAE)
&& (ttbcr & TTBCR_EAE);
}
}
/*
* The verification here is based on the DFSC bits
* of the ESR_EL1 reg only
*/
return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
ESR_DFSC_EXTABT(aarch64_mode, lpae));
}
return false;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (unlikely(env->ext_dabt_raised)) {
/*
* Verifying that the ext DABT has been properly injected,
* otherwise risking indefinitely re-running the faulting instruction
* Covering a very narrow case for kernels 5.5..5.5.4
* when injected abort was misconfigured to be
* an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
*/
if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
error_report("Data abort exception with no valid ISS generated by "
"guest memory access. KVM unable to emulate faulting "
"instruction. Failed to inject an external data abort "
"into the guest.");
abort();
}
/* Clear the status */
env->ext_dabt_raised = 0;
}
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu;
uint32_t switched_level;
if (kvm_irqchip_in_kernel()) {
/*
* We only need to sync timer states with user-space interrupt
* controllers, so return early and save cycles if we don't.
*/
return MEMTXATTRS_UNSPECIFIED;
}
cpu = ARM_CPU(cs);
/* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
if (run->s.regs.device_irq_level != cpu->device_irq_level) {
switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
bql_lock();
if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
!!(run->s.regs.device_irq_level &
KVM_ARM_DEV_EL1_VTIMER));
switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
}
if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
!!(run->s.regs.device_irq_level &
KVM_ARM_DEV_EL1_PTIMER));
switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
}
if (switched_level & KVM_ARM_DEV_PMU) {
qemu_set_irq(cpu->pmu_interrupt,
!!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
switched_level &= ~KVM_ARM_DEV_PMU;
}
if (switched_level) {
qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
__func__, switched_level);
}
/* We also mark unknown levels as processed to not waste cycles */
cpu->device_irq_level = run->s.regs.device_irq_level;
bql_unlock();
}
return MEMTXATTRS_UNSPECIFIED;
}
static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
{
ARMCPU *cpu = opaque;
if (running) {
if (cpu->kvm_adjvtime) {
kvm_arm_put_virtual_time(cpu);
}
} else {
if (cpu->kvm_adjvtime) {
kvm_arm_get_virtual_time(cpu);
}
}
}
/**
* kvm_arm_handle_dabt_nisv:
* @cpu: ARMCPU
* @esr_iss: ISS encoding (limited) for the exception from Data Abort
* ISV bit set to '0b0' -> no valid instruction syndrome
* @fault_ipa: faulting address for the synchronous data abort
*
* Returns: 0 if the exception has been handled, < 0 otherwise
*/
static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
uint64_t fault_ipa)
{
CPUARMState *env = &cpu->env;
/*
* Request KVM to inject the external data abort into the guest
*/
if (cap_has_inject_ext_dabt) {
struct kvm_vcpu_events events = { };
/*
* The external data abort event will be handled immediately by KVM
* using the address fault that triggered the exit on given VCPU.
* Requesting injection of the external data abort does not rely
* on any other VCPU state. Therefore, in this particular case, the VCPU
* synchronization can be exceptionally skipped.
*/
events.exception.ext_dabt_pending = 1;
/* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
env->ext_dabt_raised = 1;
return 0;
}
} else {
error_report("Data abort exception triggered by guest memory access "
"at physical address: 0x" TARGET_FMT_lx,
(target_ulong)fault_ipa);
error_printf("KVM unable to emulate faulting instruction.\n");
}
return -1;
}
/**
* kvm_arm_handle_debug:
* @cpu: ARMCPU
* @debug_exit: debug part of the KVM exit structure
*
* Returns: TRUE if the debug exception was handled.
*
* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
*
* To minimise translating between kernel and user-space the kernel
* ABI just provides user-space with the full exception syndrome
* register value to be decoded in QEMU.
*/
static bool kvm_arm_handle_debug(ARMCPU *cpu,
struct kvm_debug_exit_arch *debug_exit)
{
int hsr_ec = syn_get_ec(debug_exit->hsr);
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
/* Ensure PC is synchronised */
kvm_cpu_synchronize_state(cs);
switch (hsr_ec) {
case EC_SOFTWARESTEP:
if (cs->singlestep_enabled) {
return true;
} else {
/*
* The kernel should have suppressed the guest's ability to
* single step at this point so something has gone wrong.
*/
error_report("%s: guest single-step while debugging unsupported"
" (%"PRIx64", %"PRIx32")",
__func__, env->pc, debug_exit->hsr);
return false;
}
break;
case EC_AA64_BKPT:
if (kvm_find_sw_breakpoint(cs, env->pc)) {
return true;
}
break;
case EC_BREAKPOINT:
if (find_hw_breakpoint(cs, env->pc)) {
return true;
}
break;
case EC_WATCHPOINT:
{
CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
if (wp) {
cs->watchpoint_hit = wp;
return true;
}
break;
}
default:
error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
__func__, debug_exit->hsr, env->pc);
}
/* If we are not handling the debug exception it must belong to
* the guest. Let's re-use the existing TCG interrupt code to set
* everything up properly.
*/
cs->exception_index = EXCP_BKPT;
env->exception.syndrome = debug_exit->hsr;
env->exception.vaddress = debug_exit->far;
env->exception.target_el = 1;
bql_lock();
arm_cpu_do_interrupt(cs);
bql_unlock();
return false;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
ARMCPU *cpu = ARM_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_DEBUG:
if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
ret = EXCP_DEBUG;
} /* otherwise return to guest */
break;
case KVM_EXIT_ARM_NISV:
/* External DABT with no valid iss to decode */
ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
run->arm_nisv.fault_ipa);
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
__func__, run->exit_reason);
break;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return 0;
}
/**
* kvm_arm_hw_debug_active:
* @cpu: ARMCPU
*
* Return: TRUE if any hardware breakpoints in use.
*/
static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
{
return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}
/**
* kvm_arm_copy_hw_debug_data:
* @ptr: kvm_guest_debug_arch structure
*
* Copy the architecture specific debug registers into the
* kvm_guest_debug ioctl structure.
*/
static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
int i;
memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
for (i = 0; i < max_hw_wps; i++) {
HWWatchpoint *wp = get_hw_wp(i);
ptr->dbg_wcr[i] = wp->wcr;
ptr->dbg_wvr[i] = wp->wvr;
}
for (i = 0; i < max_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i);
ptr->dbg_bcr[i] = bp->bcr;
ptr->dbg_bvr[i] = bp->bvr;
}
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
if (kvm_sw_breakpoints_active(cs)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
kvm_arm_copy_hw_debug_data(&dbg->arch);
}
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_arch_irqchip_create(KVMState *s)
{
if (kvm_kernel_irqchip_split()) {
error_report("-machine kernel_irqchip=split is not supported on ARM.");
exit(1);
}
/* If we can create the VGIC using the newer device control API, we
* let the device do this when it initializes itself, otherwise we
* fall back to the old API */
return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}
int kvm_arm_vgic_probe(void)
{
int val = 0;
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
val |= KVM_ARM_VGIC_V3;
}
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
val |= KVM_ARM_VGIC_V2;
}
return val;
}
int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
{
int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
int cpu_idx1 = cpu % 256;
int cpu_idx2 = cpu / 256;
kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
(cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
return kvm_set_irq(kvm_state, kvm_irq, !!level);
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
AddressSpace *as = pci_device_iommu_address_space(dev);
hwaddr xlat, len, doorbell_gpa;
MemoryRegionSection mrs;
MemoryRegion *mr;
if (as == &address_space_memory) {
return 0;
}
/* MSI doorbell address is translated by an IOMMU */
RCU_READ_LOCK_GUARD();
mr = address_space_translate(as, address, &xlat, &len, true,
MEMTXATTRS_UNSPECIFIED);
if (!mr) {
return 1;
}
mrs = memory_region_find(mr, xlat, 1);
if (!mrs.mr) {
return 1;
}
doorbell_gpa = mrs.offset_within_address_space;
memory_region_unref(mrs.mr);
route->u.msi.address_lo = doorbell_gpa;
route->u.msi.address_hi = doorbell_gpa >> 32;
trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
return 0;
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
return (data - 32) & 0xffff;
}
bool kvm_arch_cpu_check_are_resettable(void)
{
return true;
}
static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
uint64_t value = s->kvm_eager_split_size;
visit_type_size(v, name, &value, errp);
}
static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
KVMState *s = KVM_STATE(obj);
uint64_t value;
if (s->fd != -1) {
error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
return;
}
if (!visit_type_size(v, name, &value, errp)) {
return;
}
if (value && !is_power_of_2(value)) {
error_setg(errp, "early-split-size must be a power of two");
return;
}
s->kvm_eager_split_size = value;
}
void kvm_arch_accel_class_init(ObjectClass *oc)
{
object_class_property_add(oc, "eager-split-size", "size",
kvm_arch_get_eager_split_size,
kvm_arch_set_eager_split_size, NULL, NULL);
object_class_property_set_description(oc, "eager-split-size",
"Eager Page Split chunk size for hugepages. (default: 0, disabled)");
}
int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return insert_hw_breakpoint(addr);
break;
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return insert_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return delete_hw_breakpoint(addr);
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return delete_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
if (cur_hw_wps > 0) {
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
}
if (cur_hw_bps > 0) {
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
}
}
static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
const char *name)
{
int err;
err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
if (err != 0) {
error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
return false;
}
return true;
}
void kvm_arm_pmu_init(ARMCPU *cpu)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
if (!cpu->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
error_report("failed to init PMU");
abort();
}
}
void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.addr = (intptr_t)&irq,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
};
if (!cpu->has_pmu) {
return;
}
if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
error_report("failed to set irq for PMU");
abort();
}
}
void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PVTIME_CTRL,
.attr = KVM_ARM_VCPU_PVTIME_IPA,
.addr = (uint64_t)&ipa,
};
if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
return;
}
if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
error_report("failed to init PVTIME IPA");
abort();
}
}
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
{
bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
} else {
cpu->kvm_steal_time = ON_OFF_AUTO_ON;
}
} else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
if (!has_steal_time) {
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"on this host");
return;
} else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
/*
* DEN0057A chapter 2 says "This specification only covers
* systems in which the Execution state of the hypervisor
* as well as EL1 of virtual machines is AArch64.". And,
* to ensure that, the smc/hvc calls are only specified as
* smc64/hvc64.
*/
error_setg(errp, "'kvm-steal-time' cannot be enabled "
"for AArch32 guests");
return;
}
}
}
bool kvm_arm_aarch32_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
}
bool kvm_arm_sve_supported(void)
{
return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
}
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
{
/* Only call this function if kvm_arm_sve_supported() returns true. */
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
static bool probed;
uint32_t vq = 0;
int i;
/*
* KVM ensures all host CPUs support the same set of vector lengths.
* So we only need to create the scratch VCPUs once and then cache
* the results.
*/
if (!probed) {
struct kvm_vcpu_init init = {
.target = -1,
.features[0] = (1 << KVM_ARM_VCPU_SVE),
};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
int fdarray[3], ret;
probed = true;
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
error_report("failed to create scratch VCPU with SVE enabled");
abort();
}
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (ret) {
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
strerror(errno));
abort();
}
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
if (vls[i]) {
vq = 64 - clz64(vls[i]) + i * 64;
break;
}
}
if (vq > ARM_MAX_VQ) {
warn_report("KVM supports vector lengths larger than "
"QEMU can enable");
vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
}
}
return vls[0];
}
static int kvm_arm_sve_set_vls(ARMCPU *cpu)
{
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
}
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret;
uint64_t mpidr;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t psciver;
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
error_report("KVM is not supported for this guest CPU type");
return -EINVAL;
}
qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
/* Determine init features for this CPU */
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
if (cs->start_powered_off) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
}
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
cpu->psci_version = QEMU_PSCI_VERSION_0_2;
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
}
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
}
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
cpu->has_pmu = false;
}
if (cpu->has_pmu) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
} else {
env->features &= ~(1ULL << ARM_FEATURE_PMU);
}
if (cpu_isar_feature(aa64_sve, cpu)) {
assert(kvm_arm_sve_supported());
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
if (cpu_isar_feature(aa64_pauth, cpu)) {
cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
}
/* Do KVM_ARM_VCPU_INIT ioctl */
ret = kvm_arm_vcpu_init(cpu);
if (ret) {
return ret;
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arm_sve_set_vls(cpu);
if (ret) {
return ret;
}
ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
if (ret) {
return ret;
}
}
/*
* KVM reports the exact PSCI version it is implementing via a
* special sysreg. If it is present, use its contents to determine
* what to report to the guest in the dtb (it is the PSCI version,
* in the same 15-bits major 16-bits minor format that PSCI_VERSION
* returns).
*/
if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
cpu->psci_version = psciver;
}
/*
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
* Currently KVM has its own idea about MPIDR assignment, so we
* override our defaults with what we get from KVM.
*/
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
if (ret) {
return ret;
}
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
return kvm_arm_init_cpreg_list(cpu);
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
/* Callers must hold the iothread mutex lock */
static void kvm_inject_arm_sea(CPUState *c)
{
ARMCPU *cpu = ARM_CPU(c);
CPUARMState *env = &cpu->env;
uint32_t esr;
bool same_el;
c->exception_index = EXCP_DATA_ABORT;
env->exception.target_el = 1;
/*
* Set the DFSC to synchronous external abort and set FnV to not valid,
* this will tell guest the FAR_ELx is UNKNOWN for this abort.
*/
same_el = arm_current_el(env) == env->exception.target_el;
esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
env->exception.syndrome = esr;
arm_cpu_do_interrupt(c);
}
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
static int kvm_arch_put_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
#if HOST_BIG_ENDIAN
uint64_t fp_val[2] = { q[1], q[0] };
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
fp_val);
#else
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
#endif
if (ret) {
return ret;
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_put_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp[ARM_MAX_VQ * 2];
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
if (ret) {
return ret;
}
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
if (ret) {
return ret;
}
}
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
if (ret) {
return ret;
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
uint64_t val;
uint32_t fpr;
int i, ret;
unsigned int el;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
* AArch64 registers before pushing them out to 64-bit KVM.
*/
if (!is_a64(env)) {
aarch64_sync_32_to_64(env);
}
for (i = 0; i < 31; i++) {
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
&env->xregs[i]);
if (ret) {
return ret;
}
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_save_sp(env, 1);
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
if (ret) {
return ret;
}
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
if (ret) {
return ret;
}
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
if (ret) {
return ret;
}
/* Saved Program State Registers
*
* Before we restore from the banked_spsr[] array we need to
* ensure that any modifications to env->spsr are correctly
* reflected in the banks.
*/
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->banked_spsr[i] = env->spsr;
}
/* KVM 0-4 map to QEMU banks 1-5 */
for (i = 0; i < KVM_NR_SPSR; i++) {
ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
&env->banked_spsr[i + 1]);
if (ret) {
return ret;
}
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_put_sve(cs);
} else {
ret = kvm_arch_put_fpsimd(cs);
}
if (ret) {
return ret;
}
fpr = vfp_get_fpsr(env);
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
if (ret) {
return ret;
}
fpr = vfp_get_fpcr(env);
ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return -EINVAL;
}
/*
* Setting VCPU events should be triggered after syncing the registers
* to avoid overwriting potential changes made by KVM upon calling
* KVM_SET_VCPU_EVENTS ioctl
*/
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
return kvm_arm_sync_mpstate_to_kvm(cpu);
}
static int kvm_arch_get_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
if (ret) {
return ret;
} else {
#if HOST_BIG_ENDIAN
uint64_t t;
t = q[0], q[0] = q[1], q[1] = t;
#endif
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_get_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = &env->vfp.zregs[n].d[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, cpu->sve_max_vq * 2);
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = &env->vfp.pregs[n].p[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
}
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
uint64_t val;
unsigned int el;
uint32_t fpr;
int i, ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
&env->xregs[i]);
if (ret) {
return ret;
}
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
if (ret) {
return ret;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
} else {
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_restore_sp(env, 1);
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
if (ret) {
return ret;
}
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
* incoming AArch64 regs received from 64-bit KVM.
* We must perform this after all of the registers have been acquired from
* the kernel.
*/
if (!is_a64(env)) {
aarch64_sync_64_to_32(env);
}
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
if (ret) {
return ret;
}
/* Fetch the SPSR registers
*
* KVM SPSRs 0-4 map to QEMU banks 1-5
*/
for (i = 0; i < KVM_NR_SPSR; i++) {
ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
&env->banked_spsr[i + 1]);
if (ret) {
return ret;
}
}
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->spsr = env->banked_spsr[i];
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_get_sve(cs);
} else {
ret = kvm_arch_get_fpsimd(cs);
}
if (ret) {
return ret;
}
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
if (ret) {
return ret;
}
vfp_set_fpsr(env, fpr);
ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
if (ret) {
return ret;
}
vfp_set_fpcr(env, fpr);
ret = kvm_get_vcpu_events(cpu);
if (ret) {
return ret;
}
if (!write_kvmstate_to_list(cpu)) {
return -EINVAL;
}
/* Note that it's OK to have registers which aren't in CPUState,
* so we can ignore a failure return here.
*/
write_list_to_cpustate(cpu);
ret = kvm_arm_sync_mpstate_to_qemu(cpu);
/* TODO: other registers */
return ret;
}
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
{
ram_addr_t ram_addr;
hwaddr paddr;
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
if (acpi_ghes_present() && addr) {
ram_addr = qemu_ram_addr_from_host(addr);
if (ram_addr != RAM_ADDR_INVALID &&
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
kvm_hwpoison_page_add(ram_addr);
/*
* If this is a BUS_MCEERR_AR, we know we have been called
* synchronously from the vCPU thread, so we can easily
* synchronize the state and inject an error.
*
* TODO: we currently don't tell the guest at all about
* BUS_MCEERR_AO. In that case we might either be being
* called synchronously from the vCPU thread, or a bit
* later from the main thread, so doing the injection of
* the error would be more complicated.
*/
if (code == BUS_MCEERR_AR) {
kvm_cpu_synchronize_state(c);
if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
kvm_inject_arm_sea(c);
} else {
error_report("failed to record the error");
abort();
}
}
return;
}
if (code == BUS_MCEERR_AO) {
error_report("Hardware memory error at addr %p for memory used by "
"QEMU itself instead of guest system!", addr);
}
}
if (code == BUS_MCEERR_AR) {
error_report("Hardware memory error!");
exit(1);
}
}
/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static uint32_t brk;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
return 0;
}