qemu-e2k/hw/g364fb.c
Avi Kivity 1eed09cb4a Remove io_index argument from cpu_register_io_memory()
The parameter is always zero except when registering the three internal
io regions (ROM, unassigned, notdirty).  Remove the parameter to reduce
the API's power, thus facilitating future change.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-06-16 15:18:37 -05:00

616 lines
18 KiB
C

/*
* QEMU G364 framebuffer Emulator.
*
* Copyright (c) 2007-2009 Herve Poussineau
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "hw.h"
#include "mips.h"
#include "console.h"
#include "pixel_ops.h"
//#define DEBUG_G364
#ifdef DEBUG_G364
#define DPRINTF(fmt, ...) \
do { printf("g364: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while (0)
#endif
#define BADF(fmt, ...) \
do { fprintf(stderr, "g364 ERROR: " fmt , ## __VA_ARGS__);} while (0)
typedef struct G364State {
/* hardware */
uint8_t *vram;
ram_addr_t vram_offset;
int vram_size;
qemu_irq irq;
/* registers */
uint8_t color_palette[256][3];
uint8_t cursor_palette[3][3];
uint16_t cursor[512];
uint32_t cursor_position;
uint32_t ctla;
uint32_t top_of_screen;
uint32_t width, height; /* in pixels */
/* display refresh support */
DisplayState *ds;
int depth;
int blanked;
} G364State;
#define REG_ID 0x000000
#define REG_BOOT 0x080000
#define REG_DISPLAY 0x080118
#define REG_VDISPLAY 0x080150
#define REG_CTLA 0x080300
#define REG_TOP 0x080400
#define REG_CURS_PAL 0x080508
#define REG_CURS_POS 0x080638
#define REG_CLR_PAL 0x080800
#define REG_CURS_PAT 0x081000
#define REG_RESET 0x180000
#define CTLA_FORCE_BLANK 0x00000400
#define CTLA_NO_CURSOR 0x00800000
static inline int check_dirty(ram_addr_t page)
{
return cpu_physical_memory_get_dirty(page, VGA_DIRTY_FLAG);
}
static inline void reset_dirty(G364State *s,
ram_addr_t page_min, ram_addr_t page_max)
{
cpu_physical_memory_reset_dirty(page_min, page_max + TARGET_PAGE_SIZE - 1,
VGA_DIRTY_FLAG);
}
static void g364fb_draw_graphic8(G364State *s)
{
int i, w;
uint8_t *vram;
uint8_t *data_display, *dd;
ram_addr_t page, page_min, page_max;
int x, y;
int xmin, xmax;
int ymin, ymax;
int xcursor, ycursor;
unsigned int (*rgb_to_pixel)(unsigned int r, unsigned int g, unsigned int b);
switch (ds_get_bits_per_pixel(s->ds)) {
case 8:
rgb_to_pixel = rgb_to_pixel8;
w = 1;
break;
case 15:
rgb_to_pixel = rgb_to_pixel15;
w = 2;
break;
case 16:
rgb_to_pixel = rgb_to_pixel16;
w = 2;
break;
case 32:
rgb_to_pixel = rgb_to_pixel32;
w = 4;
break;
default:
BADF("unknown host depth %d\n", ds_get_bits_per_pixel(s->ds));
return;
}
page = s->vram_offset;
page_min = (ram_addr_t)-1;
page_max = 0;
x = y = 0;
xmin = s->width;
xmax = 0;
ymin = s->height;
ymax = 0;
if (!(s->ctla & CTLA_NO_CURSOR)) {
xcursor = s->cursor_position >> 12;
ycursor = s->cursor_position & 0xfff;
} else {
xcursor = ycursor = -65;
}
vram = s->vram + s->top_of_screen;
/* XXX: out of range in vram? */
data_display = dd = ds_get_data(s->ds);
while (y < s->height) {
if (check_dirty(page)) {
if (y < ymin)
ymin = ymax = y;
if (page_min == (ram_addr_t)-1)
page_min = page;
page_max = page;
if (x < xmin)
xmin = x;
for (i = 0; i < TARGET_PAGE_SIZE; i++) {
uint8_t index;
unsigned int color;
if (unlikely((y >= ycursor && y < ycursor + 64) &&
(x >= xcursor && x < xcursor + 64))) {
/* pointer area */
int xdiff = x - xcursor;
uint16_t curs = s->cursor[(y - ycursor) * 8 + xdiff / 8];
int op = (curs >> ((xdiff & 7) * 2)) & 3;
if (likely(op == 0)) {
/* transparent */
index = *vram;
color = (*rgb_to_pixel)(
s->color_palette[index][0],
s->color_palette[index][1],
s->color_palette[index][2]);
} else {
/* get cursor color */
index = op - 1;
color = (*rgb_to_pixel)(
s->cursor_palette[index][0],
s->cursor_palette[index][1],
s->cursor_palette[index][2]);
}
} else {
/* normal area */
index = *vram;
color = (*rgb_to_pixel)(
s->color_palette[index][0],
s->color_palette[index][1],
s->color_palette[index][2]);
}
memcpy(dd, &color, w);
dd += w;
x++;
vram++;
if (x == s->width) {
xmax = s->width - 1;
y++;
if (y == s->height) {
ymax = s->height - 1;
goto done;
}
data_display = dd = data_display + ds_get_linesize(s->ds);
xmin = 0;
x = 0;
}
}
if (x > xmax)
xmax = x;
if (y > ymax)
ymax = y;
} else {
int dy;
if (page_min != (ram_addr_t)-1) {
reset_dirty(s, page_min, page_max);
page_min = (ram_addr_t)-1;
page_max = 0;
dpy_update(s->ds, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
xmin = s->width;
xmax = 0;
ymin = s->height;
ymax = 0;
}
x += TARGET_PAGE_SIZE;
dy = x / s->width;
x = x % s->width;
y += dy;
vram += TARGET_PAGE_SIZE;
data_display += dy * ds_get_linesize(s->ds);
dd = data_display + x * w;
}
page += TARGET_PAGE_SIZE;
}
done:
if (page_min != (ram_addr_t)-1) {
dpy_update(s->ds, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
reset_dirty(s, page_min, page_max);
}
}
static void g364fb_draw_blank(G364State *s)
{
int i, w;
uint8_t *d;
if (s->blanked) {
/* Screen is already blank. No need to redraw it */
return;
}
w = s->width * ((ds_get_bits_per_pixel(s->ds) + 7) >> 3);
d = ds_get_data(s->ds);
for (i = 0; i < s->height; i++) {
memset(d, 0, w);
d += ds_get_linesize(s->ds);
}
dpy_update(s->ds, 0, 0, s->width, s->height);
s->blanked = 1;
}
static void g364fb_update_display(void *opaque)
{
G364State *s = opaque;
if (s->width == 0 || s->height == 0)
return;
if (s->width != ds_get_width(s->ds) || s->height != ds_get_height(s->ds)) {
qemu_console_resize(s->ds, s->width, s->height);
}
if (s->ctla & CTLA_FORCE_BLANK) {
g364fb_draw_blank(s);
} else if (s->depth == 8) {
g364fb_draw_graphic8(s);
} else {
BADF("unknown guest depth %d\n", s->depth);
}
qemu_irq_raise(s->irq);
}
static void inline g364fb_invalidate_display(void *opaque)
{
G364State *s = opaque;
int i;
s->blanked = 0;
for (i = 0; i < s->vram_size; i += TARGET_PAGE_SIZE) {
cpu_physical_memory_set_dirty(s->vram_offset + i);
}
}
static void g364fb_reset(void *opaque)
{
G364State *s = opaque;
qemu_irq_lower(s->irq);
memset(s->color_palette, 0, sizeof(s->color_palette));
memset(s->cursor_palette, 0, sizeof(s->cursor_palette));
memset(s->cursor, 0, sizeof(s->cursor));
s->cursor_position = 0;
s->ctla = 0;
s->top_of_screen = 0;
s->width = s->height = 0;
memset(s->vram, 0, s->vram_size);
g364fb_invalidate_display(opaque);
}
static void g364fb_screen_dump(void *opaque, const char *filename)
{
G364State *s = opaque;
int y, x;
uint8_t index;
uint8_t *data_buffer;
FILE *f;
if (s->depth != 8) {
BADF("unknown guest depth %d\n", s->depth);
return;
}
f = fopen(filename, "wb");
if (!f)
return;
if (s->ctla & CTLA_FORCE_BLANK) {
/* blank screen */
fprintf(f, "P4\n%d %d\n",
s->width, s->height);
for (y = 0; y < s->height; y++)
for (x = 0; x < s->width; x++)
fputc(0, f);
} else {
data_buffer = s->vram + s->top_of_screen;
fprintf(f, "P6\n%d %d\n%d\n",
s->width, s->height, 255);
for (y = 0; y < s->height; y++)
for (x = 0; x < s->width; x++, data_buffer++) {
index = *data_buffer;
fputc(s->color_palette[index][0], f);
fputc(s->color_palette[index][1], f);
fputc(s->color_palette[index][2], f);
}
}
fclose(f);
}
/* called for accesses to io ports */
static uint32_t g364fb_ctrl_readl(void *opaque, target_phys_addr_t addr)
{
G364State *s = opaque;
uint32_t val;
if (addr >= REG_CURS_PAT && addr < REG_CURS_PAT + 0x1000) {
/* cursor pattern */
int idx = (addr - REG_CURS_PAT) >> 3;
val = s->cursor[idx];
} else if (addr >= REG_CURS_PAL && addr < REG_CURS_PAL + 0x18) {
/* cursor palette */
int idx = (addr - REG_CURS_PAL) >> 3;
val = ((uint32_t)s->cursor_palette[idx][0] << 16);
val |= ((uint32_t)s->cursor_palette[idx][1] << 8);
val |= ((uint32_t)s->cursor_palette[idx][2] << 0);
} else {
switch (addr) {
case REG_ID:
val = 0x10; /* Mips G364 */
break;
case REG_DISPLAY:
val = s->width / 4;
break;
case REG_VDISPLAY:
val = s->height * 2;
break;
case REG_CTLA:
val = s->ctla;
break;
default:
{
BADF("invalid read at [" TARGET_FMT_plx "]\n", addr);
val = 0;
break;
}
}
}
DPRINTF("read 0x%08x at [" TARGET_FMT_plx "]\n", val, addr);
return val;
}
static uint32_t g364fb_ctrl_readw(void *opaque, target_phys_addr_t addr)
{
uint32_t v = g364fb_ctrl_readl(opaque, addr & ~0x3);
if (addr & 0x2)
return v >> 16;
else
return v & 0xffff;
}
static uint32_t g364fb_ctrl_readb(void *opaque, target_phys_addr_t addr)
{
uint32_t v = g364fb_ctrl_readl(opaque, addr & ~0x3);
return (v >> (8 * (addr & 0x3))) & 0xff;
}
static void g364fb_update_depth(G364State *s)
{
const static int depths[8] = { 1, 2, 4, 8, 15, 16, 0 };
s->depth = depths[(s->ctla & 0x00700000) >> 20];
}
static void g364_invalidate_cursor_position(G364State *s)
{
int ymin, ymax, start, end, i;
/* invalidate only near the cursor */
ymin = s->cursor_position & 0xfff;
ymax = MIN(s->height, ymin + 64);
start = ymin * ds_get_linesize(s->ds);
end = (ymax + 1) * ds_get_linesize(s->ds);
for (i = start; i < end; i += TARGET_PAGE_SIZE) {
cpu_physical_memory_set_dirty(s->vram_offset + i);
}
}
static void g364fb_ctrl_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
G364State *s = opaque;
DPRINTF("write 0x%08x at [" TARGET_FMT_plx "]\n", val, addr);
if (addr >= REG_CLR_PAL && addr < REG_CLR_PAL + 0x800) {
/* color palette */
int idx = (addr - REG_CLR_PAL) >> 3;
s->color_palette[idx][0] = (val >> 16) & 0xff;
s->color_palette[idx][1] = (val >> 8) & 0xff;
s->color_palette[idx][2] = val & 0xff;
g364fb_invalidate_display(s);
} else if (addr >= REG_CURS_PAT && addr < REG_CURS_PAT + 0x1000) {
/* cursor pattern */
int idx = (addr - REG_CURS_PAT) >> 3;
s->cursor[idx] = val;
g364fb_invalidate_display(s);
} else if (addr >= REG_CURS_PAL && addr < REG_CURS_PAL + 0x18) {
/* cursor palette */
int idx = (addr - REG_CURS_PAL) >> 3;
s->cursor_palette[idx][0] = (val >> 16) & 0xff;
s->cursor_palette[idx][1] = (val >> 8) & 0xff;
s->cursor_palette[idx][2] = val & 0xff;
g364fb_invalidate_display(s);
} else {
switch (addr) {
case REG_ID: /* Card identifier; read-only */
case REG_BOOT: /* Boot timing */
case 0x80108: /* Line timing: half sync */
case 0x80110: /* Line timing: back porch */
case 0x80120: /* Line timing: short display */
case 0x80128: /* Frame timing: broad pulse */
case 0x80130: /* Frame timing: v sync */
case 0x80138: /* Frame timing: v preequalise */
case 0x80140: /* Frame timing: v postequalise */
case 0x80148: /* Frame timing: v blank */
case 0x80158: /* Line timing: line time */
case 0x80160: /* Frame store: line start */
case 0x80168: /* vram cycle: mem init */
case 0x80170: /* vram cycle: transfer delay */
case 0x80200: /* vram cycle: mask register */
/* ignore */
break;
case REG_TOP:
s->top_of_screen = val;
g364fb_invalidate_display(s);
break;
case REG_DISPLAY:
s->width = val * 4;
break;
case REG_VDISPLAY:
s->height = val / 2;
break;
case REG_CTLA:
s->ctla = val;
g364fb_update_depth(s);
g364fb_invalidate_display(s);
break;
case REG_CURS_POS:
g364_invalidate_cursor_position(s);
s->cursor_position = val;
g364_invalidate_cursor_position(s);
break;
case REG_RESET:
g364fb_reset(s);
break;
default:
BADF("invalid write of 0x%08x at [" TARGET_FMT_plx "]\n", val, addr);
break;
}
}
qemu_irq_lower(s->irq);
}
static void g364fb_ctrl_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
uint32_t old_val = g364fb_ctrl_readl(opaque, addr & ~0x3);
if (addr & 0x2)
val = (val << 16) | (old_val & 0x0000ffff);
else
val = val | (old_val & 0xffff0000);
g364fb_ctrl_writel(opaque, addr & ~0x3, val);
}
static void g364fb_ctrl_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
uint32_t old_val = g364fb_ctrl_readl(opaque, addr & ~0x3);
switch (addr & 3) {
case 0:
val = val | (old_val & 0xffffff00);
break;
case 1:
val = (val << 8) | (old_val & 0xffff00ff);
break;
case 2:
val = (val << 16) | (old_val & 0xff00ffff);
break;
case 3:
val = (val << 24) | (old_val & 0x00ffffff);
break;
}
g364fb_ctrl_writel(opaque, addr & ~0x3, val);
}
static CPUReadMemoryFunc *g364fb_ctrl_read[3] = {
g364fb_ctrl_readb,
g364fb_ctrl_readw,
g364fb_ctrl_readl,
};
static CPUWriteMemoryFunc *g364fb_ctrl_write[3] = {
g364fb_ctrl_writeb,
g364fb_ctrl_writew,
g364fb_ctrl_writel,
};
static int g364fb_load(QEMUFile *f, void *opaque, int version_id)
{
G364State *s = opaque;
unsigned int i, vram_size;
if (version_id != 1)
return -EINVAL;
vram_size = qemu_get_be32(f);
if (vram_size < s->vram_size)
return -EINVAL;
qemu_get_buffer(f, s->vram, s->vram_size);
for (i = 0; i < 256; i++)
qemu_get_buffer(f, s->color_palette[i], 3);
for (i = 0; i < 3; i++)
qemu_get_buffer(f, s->cursor_palette[i], 3);
qemu_get_buffer(f, (uint8_t *)s->cursor, sizeof(s->cursor));
s->cursor_position = qemu_get_be32(f);
s->ctla = qemu_get_be32(f);
s->top_of_screen = qemu_get_be32(f);
s->width = qemu_get_be32(f);
s->height = qemu_get_be32(f);
/* force refresh */
g364fb_update_depth(s);
g364fb_invalidate_display(s);
return 0;
}
static void g364fb_save(QEMUFile *f, void *opaque)
{
G364State *s = opaque;
int i;
qemu_put_be32(f, s->vram_size);
qemu_put_buffer(f, s->vram, s->vram_size);
for (i = 0; i < 256; i++)
qemu_put_buffer(f, s->color_palette[i], 3);
for (i = 0; i < 3; i++)
qemu_put_buffer(f, s->cursor_palette[i], 3);
qemu_put_buffer(f, (uint8_t *)s->cursor, sizeof(s->cursor));
qemu_put_be32(f, s->cursor_position);
qemu_put_be32(f, s->ctla);
qemu_put_be32(f, s->top_of_screen);
qemu_put_be32(f, s->width);
qemu_put_be32(f, s->height);
}
int g364fb_mm_init(target_phys_addr_t vram_base,
target_phys_addr_t ctrl_base, int it_shift,
qemu_irq irq)
{
G364State *s;
int io_ctrl;
s = qemu_mallocz(sizeof(G364State));
s->vram_size = 8 * 1024 * 1024;
s->vram_offset = qemu_ram_alloc(s->vram_size);
s->vram = qemu_get_ram_ptr(s->vram_offset);
s->irq = irq;
qemu_register_reset(g364fb_reset, 0, s);
register_savevm("g364fb", 0, 1, g364fb_save, g364fb_load, s);
g364fb_reset(s);
s->ds = graphic_console_init(g364fb_update_display,
g364fb_invalidate_display,
g364fb_screen_dump, NULL, s);
cpu_register_physical_memory(vram_base, s->vram_size, s->vram_offset);
io_ctrl = cpu_register_io_memory(g364fb_ctrl_read, g364fb_ctrl_write, s);
cpu_register_physical_memory(ctrl_base, 0x200000, io_ctrl);
return 0;
}