084140bd49
In cpu_physical_memory_sync_dirty_bitmap(rb, start, ...), the 2nd argument 'start' is relative to the start of the ramblock 'rb'. When it's used to access the dirty memory bitmap of ram_list (i.e. ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]->blocks[]), an offset to the start of all RAM (i.e. rb->offset) should be added to it, which has however been missed since c/s 6b6712efcc. For a ramblock of host memory backend whose offset is not zero, cpu_physical_memory_sync_dirty_bitmap() synchronizes the incorrect part of the dirty memory bitmap of ram_list to the per ramblock dirty bitmap. As a result, a guest with host memory backend may crash after migration. Fix it by adding the offset of ramblock when accessing the dirty memory bitmap of ram_list in cpu_physical_memory_sync_dirty_bitmap(). Reported-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com> Message-Id: <20170628083704.24997-1-haozhong.zhang@intel.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Tested-by: Juan Quintela <quintela@redhat.com> Tested-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
438 lines
14 KiB
C
438 lines
14 KiB
C
/*
|
|
* Declarations for cpu physical memory functions
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or
|
|
* later. See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* This header is for use by exec.c and memory.c ONLY. Do not include it.
|
|
* The functions declared here will be removed soon.
|
|
*/
|
|
|
|
#ifndef RAM_ADDR_H
|
|
#define RAM_ADDR_H
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
#include "hw/xen/xen.h"
|
|
#include "exec/ramlist.h"
|
|
|
|
struct RAMBlock {
|
|
struct rcu_head rcu;
|
|
struct MemoryRegion *mr;
|
|
uint8_t *host;
|
|
ram_addr_t offset;
|
|
ram_addr_t used_length;
|
|
ram_addr_t max_length;
|
|
void (*resized)(const char*, uint64_t length, void *host);
|
|
uint32_t flags;
|
|
/* Protected by iothread lock. */
|
|
char idstr[256];
|
|
/* RCU-enabled, writes protected by the ramlist lock */
|
|
QLIST_ENTRY(RAMBlock) next;
|
|
QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
|
|
int fd;
|
|
size_t page_size;
|
|
/* dirty bitmap used during migration */
|
|
unsigned long *bmap;
|
|
/* bitmap of pages that haven't been sent even once
|
|
* only maintained and used in postcopy at the moment
|
|
* where it's used to send the dirtymap at the start
|
|
* of the postcopy phase
|
|
*/
|
|
unsigned long *unsentmap;
|
|
};
|
|
|
|
static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
|
|
{
|
|
return (b && b->host && offset < b->used_length) ? true : false;
|
|
}
|
|
|
|
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
assert(offset_in_ramblock(block, offset));
|
|
return (char *)block->host + offset;
|
|
}
|
|
|
|
long qemu_getrampagesize(void);
|
|
unsigned long last_ram_page(void);
|
|
RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
|
|
bool share, const char *mem_path,
|
|
Error **errp);
|
|
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
|
|
bool share, int fd,
|
|
Error **errp);
|
|
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr, Error **errp);
|
|
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
|
|
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
MemoryRegion *mr, Error **errp);
|
|
void qemu_ram_free(RAMBlock *block);
|
|
|
|
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
|
|
|
|
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
|
|
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
|
|
|
|
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
DirtyMemoryBlocks *blocks;
|
|
unsigned long end, page;
|
|
unsigned long idx, offset, base;
|
|
bool dirty = false;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
rcu_read_lock();
|
|
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
base = page - offset;
|
|
while (page < end) {
|
|
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
|
|
unsigned long num = next - base;
|
|
unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
|
|
if (found < num) {
|
|
dirty = true;
|
|
break;
|
|
}
|
|
|
|
page = next;
|
|
idx++;
|
|
offset = 0;
|
|
base += DIRTY_MEMORY_BLOCK_SIZE;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
DirtyMemoryBlocks *blocks;
|
|
unsigned long end, page;
|
|
unsigned long idx, offset, base;
|
|
bool dirty = true;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
rcu_read_lock();
|
|
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
base = page - offset;
|
|
while (page < end) {
|
|
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
|
|
unsigned long num = next - base;
|
|
unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
|
|
if (found < num) {
|
|
dirty = false;
|
|
break;
|
|
}
|
|
|
|
page = next;
|
|
idx++;
|
|
offset = 0;
|
|
base += DIRTY_MEMORY_BLOCK_SIZE;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return dirty;
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
|
|
unsigned client)
|
|
{
|
|
return cpu_physical_memory_get_dirty(addr, 1, client);
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
|
|
{
|
|
bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
|
|
bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
|
|
bool migration =
|
|
cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
|
|
return !(vga && code && migration);
|
|
}
|
|
|
|
static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint8_t mask)
|
|
{
|
|
uint8_t ret = 0;
|
|
|
|
if (mask & (1 << DIRTY_MEMORY_VGA) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
|
|
ret |= (1 << DIRTY_MEMORY_VGA);
|
|
}
|
|
if (mask & (1 << DIRTY_MEMORY_CODE) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
|
|
ret |= (1 << DIRTY_MEMORY_CODE);
|
|
}
|
|
if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
|
|
ret |= (1 << DIRTY_MEMORY_MIGRATION);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
|
|
unsigned client)
|
|
{
|
|
unsigned long page, idx, offset;
|
|
DirtyMemoryBlocks *blocks;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
page = addr >> TARGET_PAGE_BITS;
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
|
|
rcu_read_lock();
|
|
|
|
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
|
|
|
set_bit_atomic(offset, blocks->blocks[idx]);
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint8_t mask)
|
|
{
|
|
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
|
|
unsigned long end, page;
|
|
unsigned long idx, offset, base;
|
|
int i;
|
|
|
|
if (!mask && !xen_enabled()) {
|
|
return;
|
|
}
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
|
|
rcu_read_lock();
|
|
|
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
|
|
}
|
|
|
|
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
|
base = page - offset;
|
|
while (page < end) {
|
|
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
|
|
|
|
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
|
|
offset, next - page);
|
|
}
|
|
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
|
|
offset, next - page);
|
|
}
|
|
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
|
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
|
|
offset, next - page);
|
|
}
|
|
|
|
page = next;
|
|
idx++;
|
|
offset = 0;
|
|
base += DIRTY_MEMORY_BLOCK_SIZE;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
xen_hvm_modified_memory(start, length);
|
|
}
|
|
|
|
#if !defined(_WIN32)
|
|
static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
|
|
ram_addr_t start,
|
|
ram_addr_t pages)
|
|
{
|
|
unsigned long i, j;
|
|
unsigned long page_number, c;
|
|
hwaddr addr;
|
|
ram_addr_t ram_addr;
|
|
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
|
|
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
|
|
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
|
|
|
|
/* start address is aligned at the start of a word? */
|
|
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
|
(hpratio == 1)) {
|
|
unsigned long **blocks[DIRTY_MEMORY_NUM];
|
|
unsigned long idx;
|
|
unsigned long offset;
|
|
long k;
|
|
long nr = BITS_TO_LONGS(pages);
|
|
|
|
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
|
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
|
|
DIRTY_MEMORY_BLOCK_SIZE);
|
|
|
|
rcu_read_lock();
|
|
|
|
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
|
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
|
|
}
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
if (bitmap[k]) {
|
|
unsigned long temp = leul_to_cpu(bitmap[k]);
|
|
|
|
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
|
|
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
|
|
if (tcg_enabled()) {
|
|
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
|
|
}
|
|
}
|
|
|
|
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
|
offset = 0;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
|
|
} else {
|
|
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
|
/*
|
|
* bitmap-traveling is faster than memory-traveling (for addr...)
|
|
* especially when most of the memory is not dirty.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
if (bitmap[i] != 0) {
|
|
c = leul_to_cpu(bitmap[i]);
|
|
do {
|
|
j = ctzl(c);
|
|
c &= ~(1ul << j);
|
|
page_number = (i * HOST_LONG_BITS + j) * hpratio;
|
|
addr = page_number * TARGET_PAGE_SIZE;
|
|
ram_addr = start + addr;
|
|
cpu_physical_memory_set_dirty_range(ram_addr,
|
|
TARGET_PAGE_SIZE * hpratio, clients);
|
|
} while (c != 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* not _WIN32 */
|
|
|
|
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client);
|
|
|
|
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
|
|
(ram_addr_t start, ram_addr_t length, unsigned client);
|
|
|
|
bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
|
|
ram_addr_t start,
|
|
ram_addr_t length);
|
|
|
|
static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
|
|
ram_addr_t length)
|
|
{
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
|
|
static inline
|
|
uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
|
|
ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint64_t *real_dirty_pages)
|
|
{
|
|
ram_addr_t addr;
|
|
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
|
|
uint64_t num_dirty = 0;
|
|
unsigned long *dest = rb->bmap;
|
|
|
|
/* start address is aligned at the start of a word? */
|
|
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
|
|
int k;
|
|
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
|
|
unsigned long * const *src;
|
|
unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
|
|
unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
|
|
unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
|
|
DIRTY_MEMORY_BLOCK_SIZE);
|
|
|
|
rcu_read_lock();
|
|
|
|
src = atomic_rcu_read(
|
|
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
|
|
|
|
for (k = page; k < page + nr; k++) {
|
|
if (src[idx][offset]) {
|
|
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
|
|
unsigned long new_dirty;
|
|
*real_dirty_pages += ctpopl(bits);
|
|
new_dirty = ~dest[k];
|
|
dest[k] |= bits;
|
|
new_dirty &= bits;
|
|
num_dirty += ctpopl(new_dirty);
|
|
}
|
|
|
|
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
|
offset = 0;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
} else {
|
|
ram_addr_t offset = rb->offset;
|
|
|
|
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
|
|
if (cpu_physical_memory_test_and_clear_dirty(
|
|
start + addr + offset,
|
|
TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_MIGRATION)) {
|
|
*real_dirty_pages += 1;
|
|
long k = (start + addr) >> TARGET_PAGE_BITS;
|
|
if (!test_and_set_bit(k, dest)) {
|
|
num_dirty++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return num_dirty;
|
|
}
|
|
#endif
|
|
#endif
|