qemu-e2k/target/microblaze/translate.c
Philippe Mathieu-Daudé da9536433f target/microblaze: Prefer fast cpu_env() over slower CPU QOM cast macro
Mechanical patch produced running the command documented
in scripts/coccinelle/cpu_env.cocci_template header.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240129164514.73104-18-philmd@linaro.org>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2024-03-12 12:04:24 +01:00

1889 lines
52 KiB
C

/*
* Xilinx MicroBlaze emulation for qemu: main translation routines.
*
* Copyright (c) 2009 Edgar E. Iglesias.
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg-op.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "exec/translator.h"
#include "qemu/qemu-print.h"
#include "exec/log.h"
#define HELPER_H "helper.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
#define DISAS_EXIT DISAS_TARGET_1 /* all cpu state modified dynamically */
/* cpu state besides pc was modified dynamically; update pc to next */
#define DISAS_EXIT_NEXT DISAS_TARGET_2
/* cpu state besides pc was modified dynamically; update pc to btarget */
#define DISAS_EXIT_JUMP DISAS_TARGET_3
static TCGv_i32 cpu_R[32];
static TCGv_i32 cpu_pc;
static TCGv_i32 cpu_msr;
static TCGv_i32 cpu_msr_c;
static TCGv_i32 cpu_imm;
static TCGv_i32 cpu_bvalue;
static TCGv_i32 cpu_btarget;
static TCGv_i32 cpu_iflags;
static TCGv cpu_res_addr;
static TCGv_i32 cpu_res_val;
/* This is the state at translation time. */
typedef struct DisasContext {
DisasContextBase base;
const MicroBlazeCPUConfig *cfg;
/* TCG op of the current insn_start. */
TCGOp *insn_start;
TCGv_i32 r0;
bool r0_set;
/* Decoder. */
uint32_t ext_imm;
unsigned int tb_flags;
unsigned int tb_flags_to_set;
int mem_index;
/* Condition under which to jump, including NEVER and ALWAYS. */
TCGCond jmp_cond;
/* Immediate branch-taken destination, or -1 for indirect. */
uint32_t jmp_dest;
} DisasContext;
static int typeb_imm(DisasContext *dc, int x)
{
if (dc->tb_flags & IMM_FLAG) {
return deposit32(dc->ext_imm, 0, 16, x);
}
return x;
}
/* Include the auto-generated decoder. */
#include "decode-insns.c.inc"
static void t_sync_flags(DisasContext *dc)
{
/* Synch the tb dependent flags between translator and runtime. */
if ((dc->tb_flags ^ dc->base.tb->flags) & IFLAGS_TB_MASK) {
tcg_gen_movi_i32(cpu_iflags, dc->tb_flags & IFLAGS_TB_MASK);
}
}
static void gen_raise_exception(DisasContext *dc, uint32_t index)
{
gen_helper_raise_exception(tcg_env, tcg_constant_i32(index));
dc->base.is_jmp = DISAS_NORETURN;
}
static void gen_raise_exception_sync(DisasContext *dc, uint32_t index)
{
t_sync_flags(dc);
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next);
gen_raise_exception(dc, index);
}
static void gen_raise_hw_excp(DisasContext *dc, uint32_t esr_ec)
{
TCGv_i32 tmp = tcg_constant_i32(esr_ec);
tcg_gen_st_i32(tmp, tcg_env, offsetof(CPUMBState, esr));
gen_raise_exception_sync(dc, EXCP_HW_EXCP);
}
static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest)
{
if (translator_use_goto_tb(&dc->base, dest)) {
tcg_gen_goto_tb(n);
tcg_gen_movi_i32(cpu_pc, dest);
tcg_gen_exit_tb(dc->base.tb, n);
} else {
tcg_gen_movi_i32(cpu_pc, dest);
tcg_gen_lookup_and_goto_ptr();
}
dc->base.is_jmp = DISAS_NORETURN;
}
/*
* Returns true if the insn an illegal operation.
* If exceptions are enabled, an exception is raised.
*/
static bool trap_illegal(DisasContext *dc, bool cond)
{
if (cond && (dc->tb_flags & MSR_EE)
&& dc->cfg->illegal_opcode_exception) {
gen_raise_hw_excp(dc, ESR_EC_ILLEGAL_OP);
}
return cond;
}
/*
* Returns true if the insn is illegal in userspace.
* If exceptions are enabled, an exception is raised.
*/
static bool trap_userspace(DisasContext *dc, bool cond)
{
bool cond_user = cond && dc->mem_index == MMU_USER_IDX;
if (cond_user && (dc->tb_flags & MSR_EE)) {
gen_raise_hw_excp(dc, ESR_EC_PRIVINSN);
}
return cond_user;
}
/*
* Return true, and log an error, if the current insn is
* within a delay slot.
*/
static bool invalid_delay_slot(DisasContext *dc, const char *insn_type)
{
if (dc->tb_flags & D_FLAG) {
qemu_log_mask(LOG_GUEST_ERROR,
"Invalid insn in delay slot: %s at %08x\n",
insn_type, (uint32_t)dc->base.pc_next);
return true;
}
return false;
}
static TCGv_i32 reg_for_read(DisasContext *dc, int reg)
{
if (likely(reg != 0)) {
return cpu_R[reg];
}
if (!dc->r0_set) {
if (dc->r0 == NULL) {
dc->r0 = tcg_temp_new_i32();
}
tcg_gen_movi_i32(dc->r0, 0);
dc->r0_set = true;
}
return dc->r0;
}
static TCGv_i32 reg_for_write(DisasContext *dc, int reg)
{
if (likely(reg != 0)) {
return cpu_R[reg];
}
if (dc->r0 == NULL) {
dc->r0 = tcg_temp_new_i32();
}
return dc->r0;
}
static bool do_typea(DisasContext *dc, arg_typea *arg, bool side_effects,
void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 rd, ra, rb;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
rb = reg_for_read(dc, arg->rb);
fn(rd, ra, rb);
return true;
}
static bool do_typea0(DisasContext *dc, arg_typea0 *arg, bool side_effects,
void (*fn)(TCGv_i32, TCGv_i32))
{
TCGv_i32 rd, ra;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
fn(rd, ra);
return true;
}
static bool do_typeb_imm(DisasContext *dc, arg_typeb *arg, bool side_effects,
void (*fni)(TCGv_i32, TCGv_i32, int32_t))
{
TCGv_i32 rd, ra;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
fni(rd, ra, arg->imm);
return true;
}
static bool do_typeb_val(DisasContext *dc, arg_typeb *arg, bool side_effects,
void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 rd, ra, imm;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
imm = tcg_constant_i32(arg->imm);
fn(rd, ra, imm);
return true;
}
#define DO_TYPEA(NAME, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea *a) \
{ return do_typea(dc, a, SE, FN); }
#define DO_TYPEA_CFG(NAME, CFG, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea *a) \
{ return dc->cfg->CFG && do_typea(dc, a, SE, FN); }
#define DO_TYPEA0(NAME, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea0 *a) \
{ return do_typea0(dc, a, SE, FN); }
#define DO_TYPEA0_CFG(NAME, CFG, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea0 *a) \
{ return dc->cfg->CFG && do_typea0(dc, a, SE, FN); }
#define DO_TYPEBI(NAME, SE, FNI) \
static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \
{ return do_typeb_imm(dc, a, SE, FNI); }
#define DO_TYPEBI_CFG(NAME, CFG, SE, FNI) \
static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \
{ return dc->cfg->CFG && do_typeb_imm(dc, a, SE, FNI); }
#define DO_TYPEBV(NAME, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \
{ return do_typeb_val(dc, a, SE, FN); }
#define ENV_WRAPPER2(NAME, HELPER) \
static void NAME(TCGv_i32 out, TCGv_i32 ina) \
{ HELPER(out, tcg_env, ina); }
#define ENV_WRAPPER3(NAME, HELPER) \
static void NAME(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) \
{ HELPER(out, tcg_env, ina, inb); }
/* No input carry, but output carry. */
static void gen_add(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 zero = tcg_constant_i32(0);
tcg_gen_add2_i32(out, cpu_msr_c, ina, zero, inb, zero);
}
/* Input and output carry. */
static void gen_addc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 zero = tcg_constant_i32(0);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_add2_i32(tmp, cpu_msr_c, ina, zero, cpu_msr_c, zero);
tcg_gen_add2_i32(out, cpu_msr_c, tmp, cpu_msr_c, inb, zero);
}
/* Input carry, but no output carry. */
static void gen_addkc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_add_i32(out, ina, inb);
tcg_gen_add_i32(out, out, cpu_msr_c);
}
DO_TYPEA(add, true, gen_add)
DO_TYPEA(addc, true, gen_addc)
DO_TYPEA(addk, false, tcg_gen_add_i32)
DO_TYPEA(addkc, true, gen_addkc)
DO_TYPEBV(addi, true, gen_add)
DO_TYPEBV(addic, true, gen_addc)
DO_TYPEBI(addik, false, tcg_gen_addi_i32)
DO_TYPEBV(addikc, true, gen_addkc)
static void gen_andni(TCGv_i32 out, TCGv_i32 ina, int32_t imm)
{
tcg_gen_andi_i32(out, ina, ~imm);
}
DO_TYPEA(and, false, tcg_gen_and_i32)
DO_TYPEBI(andi, false, tcg_gen_andi_i32)
DO_TYPEA(andn, false, tcg_gen_andc_i32)
DO_TYPEBI(andni, false, gen_andni)
static void gen_bsra(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, inb, 31);
tcg_gen_sar_i32(out, ina, tmp);
}
static void gen_bsrl(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, inb, 31);
tcg_gen_shr_i32(out, ina, tmp);
}
static void gen_bsll(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, inb, 31);
tcg_gen_shl_i32(out, ina, tmp);
}
static void gen_bsefi(TCGv_i32 out, TCGv_i32 ina, int32_t imm)
{
/* Note that decodetree has extracted and reassembled imm_w/imm_s. */
int imm_w = extract32(imm, 5, 5);
int imm_s = extract32(imm, 0, 5);
if (imm_w + imm_s > 32 || imm_w == 0) {
/* These inputs have an undefined behavior. */
qemu_log_mask(LOG_GUEST_ERROR, "bsefi: Bad input w=%d s=%d\n",
imm_w, imm_s);
} else {
tcg_gen_extract_i32(out, ina, imm_s, imm_w);
}
}
static void gen_bsifi(TCGv_i32 out, TCGv_i32 ina, int32_t imm)
{
/* Note that decodetree has extracted and reassembled imm_w/imm_s. */
int imm_w = extract32(imm, 5, 5);
int imm_s = extract32(imm, 0, 5);
int width = imm_w - imm_s + 1;
if (imm_w < imm_s) {
/* These inputs have an undefined behavior. */
qemu_log_mask(LOG_GUEST_ERROR, "bsifi: Bad input w=%d s=%d\n",
imm_w, imm_s);
} else {
tcg_gen_deposit_i32(out, out, ina, imm_s, width);
}
}
DO_TYPEA_CFG(bsra, use_barrel, false, gen_bsra)
DO_TYPEA_CFG(bsrl, use_barrel, false, gen_bsrl)
DO_TYPEA_CFG(bsll, use_barrel, false, gen_bsll)
DO_TYPEBI_CFG(bsrai, use_barrel, false, tcg_gen_sari_i32)
DO_TYPEBI_CFG(bsrli, use_barrel, false, tcg_gen_shri_i32)
DO_TYPEBI_CFG(bslli, use_barrel, false, tcg_gen_shli_i32)
DO_TYPEBI_CFG(bsefi, use_barrel, false, gen_bsefi)
DO_TYPEBI_CFG(bsifi, use_barrel, false, gen_bsifi)
static void gen_clz(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_clzi_i32(out, ina, 32);
}
DO_TYPEA0_CFG(clz, use_pcmp_instr, false, gen_clz)
static void gen_cmp(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 lt = tcg_temp_new_i32();
tcg_gen_setcond_i32(TCG_COND_LT, lt, inb, ina);
tcg_gen_sub_i32(out, inb, ina);
tcg_gen_deposit_i32(out, out, lt, 31, 1);
}
static void gen_cmpu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 lt = tcg_temp_new_i32();
tcg_gen_setcond_i32(TCG_COND_LTU, lt, inb, ina);
tcg_gen_sub_i32(out, inb, ina);
tcg_gen_deposit_i32(out, out, lt, 31, 1);
}
DO_TYPEA(cmp, false, gen_cmp)
DO_TYPEA(cmpu, false, gen_cmpu)
ENV_WRAPPER3(gen_fadd, gen_helper_fadd)
ENV_WRAPPER3(gen_frsub, gen_helper_frsub)
ENV_WRAPPER3(gen_fmul, gen_helper_fmul)
ENV_WRAPPER3(gen_fdiv, gen_helper_fdiv)
ENV_WRAPPER3(gen_fcmp_un, gen_helper_fcmp_un)
ENV_WRAPPER3(gen_fcmp_lt, gen_helper_fcmp_lt)
ENV_WRAPPER3(gen_fcmp_eq, gen_helper_fcmp_eq)
ENV_WRAPPER3(gen_fcmp_le, gen_helper_fcmp_le)
ENV_WRAPPER3(gen_fcmp_gt, gen_helper_fcmp_gt)
ENV_WRAPPER3(gen_fcmp_ne, gen_helper_fcmp_ne)
ENV_WRAPPER3(gen_fcmp_ge, gen_helper_fcmp_ge)
DO_TYPEA_CFG(fadd, use_fpu, true, gen_fadd)
DO_TYPEA_CFG(frsub, use_fpu, true, gen_frsub)
DO_TYPEA_CFG(fmul, use_fpu, true, gen_fmul)
DO_TYPEA_CFG(fdiv, use_fpu, true, gen_fdiv)
DO_TYPEA_CFG(fcmp_un, use_fpu, true, gen_fcmp_un)
DO_TYPEA_CFG(fcmp_lt, use_fpu, true, gen_fcmp_lt)
DO_TYPEA_CFG(fcmp_eq, use_fpu, true, gen_fcmp_eq)
DO_TYPEA_CFG(fcmp_le, use_fpu, true, gen_fcmp_le)
DO_TYPEA_CFG(fcmp_gt, use_fpu, true, gen_fcmp_gt)
DO_TYPEA_CFG(fcmp_ne, use_fpu, true, gen_fcmp_ne)
DO_TYPEA_CFG(fcmp_ge, use_fpu, true, gen_fcmp_ge)
ENV_WRAPPER2(gen_flt, gen_helper_flt)
ENV_WRAPPER2(gen_fint, gen_helper_fint)
ENV_WRAPPER2(gen_fsqrt, gen_helper_fsqrt)
DO_TYPEA0_CFG(flt, use_fpu >= 2, true, gen_flt)
DO_TYPEA0_CFG(fint, use_fpu >= 2, true, gen_fint)
DO_TYPEA0_CFG(fsqrt, use_fpu >= 2, true, gen_fsqrt)
/* Does not use ENV_WRAPPER3, because arguments are swapped as well. */
static void gen_idiv(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
gen_helper_divs(out, tcg_env, inb, ina);
}
static void gen_idivu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
gen_helper_divu(out, tcg_env, inb, ina);
}
DO_TYPEA_CFG(idiv, use_div, true, gen_idiv)
DO_TYPEA_CFG(idivu, use_div, true, gen_idivu)
static bool trans_imm(DisasContext *dc, arg_imm *arg)
{
if (invalid_delay_slot(dc, "imm")) {
return true;
}
dc->ext_imm = arg->imm << 16;
tcg_gen_movi_i32(cpu_imm, dc->ext_imm);
dc->tb_flags_to_set = IMM_FLAG;
return true;
}
static void gen_mulh(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_muls2_i32(tmp, out, ina, inb);
}
static void gen_mulhu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mulu2_i32(tmp, out, ina, inb);
}
static void gen_mulhsu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mulsu2_i32(tmp, out, ina, inb);
}
DO_TYPEA_CFG(mul, use_hw_mul, false, tcg_gen_mul_i32)
DO_TYPEA_CFG(mulh, use_hw_mul >= 2, false, gen_mulh)
DO_TYPEA_CFG(mulhu, use_hw_mul >= 2, false, gen_mulhu)
DO_TYPEA_CFG(mulhsu, use_hw_mul >= 2, false, gen_mulhsu)
DO_TYPEBI_CFG(muli, use_hw_mul, false, tcg_gen_muli_i32)
DO_TYPEA(or, false, tcg_gen_or_i32)
DO_TYPEBI(ori, false, tcg_gen_ori_i32)
static void gen_pcmpeq(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_setcond_i32(TCG_COND_EQ, out, ina, inb);
}
static void gen_pcmpne(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_setcond_i32(TCG_COND_NE, out, ina, inb);
}
DO_TYPEA_CFG(pcmpbf, use_pcmp_instr, false, gen_helper_pcmpbf)
DO_TYPEA_CFG(pcmpeq, use_pcmp_instr, false, gen_pcmpeq)
DO_TYPEA_CFG(pcmpne, use_pcmp_instr, false, gen_pcmpne)
/* No input carry, but output carry. */
static void gen_rsub(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_msr_c, inb, ina);
tcg_gen_sub_i32(out, inb, ina);
}
/* Input and output carry. */
static void gen_rsubc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 zero = tcg_constant_i32(0);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_not_i32(tmp, ina);
tcg_gen_add2_i32(tmp, cpu_msr_c, tmp, zero, cpu_msr_c, zero);
tcg_gen_add2_i32(out, cpu_msr_c, tmp, cpu_msr_c, inb, zero);
}
/* No input or output carry. */
static void gen_rsubk(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_sub_i32(out, inb, ina);
}
/* Input carry, no output carry. */
static void gen_rsubkc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 nota = tcg_temp_new_i32();
tcg_gen_not_i32(nota, ina);
tcg_gen_add_i32(out, inb, nota);
tcg_gen_add_i32(out, out, cpu_msr_c);
}
DO_TYPEA(rsub, true, gen_rsub)
DO_TYPEA(rsubc, true, gen_rsubc)
DO_TYPEA(rsubk, false, gen_rsubk)
DO_TYPEA(rsubkc, true, gen_rsubkc)
DO_TYPEBV(rsubi, true, gen_rsub)
DO_TYPEBV(rsubic, true, gen_rsubc)
DO_TYPEBV(rsubik, false, gen_rsubk)
DO_TYPEBV(rsubikc, true, gen_rsubkc)
DO_TYPEA0(sext8, false, tcg_gen_ext8s_i32)
DO_TYPEA0(sext16, false, tcg_gen_ext16s_i32)
static void gen_sra(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_andi_i32(cpu_msr_c, ina, 1);
tcg_gen_sari_i32(out, ina, 1);
}
static void gen_src(TCGv_i32 out, TCGv_i32 ina)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp, cpu_msr_c);
tcg_gen_andi_i32(cpu_msr_c, ina, 1);
tcg_gen_extract2_i32(out, ina, tmp, 1);
}
static void gen_srl(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_andi_i32(cpu_msr_c, ina, 1);
tcg_gen_shri_i32(out, ina, 1);
}
DO_TYPEA0(sra, false, gen_sra)
DO_TYPEA0(src, false, gen_src)
DO_TYPEA0(srl, false, gen_srl)
static void gen_swaph(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_rotri_i32(out, ina, 16);
}
DO_TYPEA0(swapb, false, tcg_gen_bswap32_i32)
DO_TYPEA0(swaph, false, gen_swaph)
static bool trans_wdic(DisasContext *dc, arg_wdic *a)
{
/* Cache operations are nops: only check for supervisor mode. */
trap_userspace(dc, true);
return true;
}
DO_TYPEA(xor, false, tcg_gen_xor_i32)
DO_TYPEBI(xori, false, tcg_gen_xori_i32)
static TCGv compute_ldst_addr_typea(DisasContext *dc, int ra, int rb)
{
TCGv ret = tcg_temp_new();
/* If any of the regs is r0, set t to the value of the other reg. */
if (ra && rb) {
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_add_i32(tmp, cpu_R[ra], cpu_R[rb]);
tcg_gen_extu_i32_tl(ret, tmp);
} else if (ra) {
tcg_gen_extu_i32_tl(ret, cpu_R[ra]);
} else if (rb) {
tcg_gen_extu_i32_tl(ret, cpu_R[rb]);
} else {
tcg_gen_movi_tl(ret, 0);
}
if ((ra == 1 || rb == 1) && dc->cfg->stackprot) {
gen_helper_stackprot(tcg_env, ret);
}
return ret;
}
static TCGv compute_ldst_addr_typeb(DisasContext *dc, int ra, int imm)
{
TCGv ret = tcg_temp_new();
/* If any of the regs is r0, set t to the value of the other reg. */
if (ra) {
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_addi_i32(tmp, cpu_R[ra], imm);
tcg_gen_extu_i32_tl(ret, tmp);
} else {
tcg_gen_movi_tl(ret, (uint32_t)imm);
}
if (ra == 1 && dc->cfg->stackprot) {
gen_helper_stackprot(tcg_env, ret);
}
return ret;
}
#ifndef CONFIG_USER_ONLY
static TCGv compute_ldst_addr_ea(DisasContext *dc, int ra, int rb)
{
int addr_size = dc->cfg->addr_size;
TCGv ret = tcg_temp_new();
if (addr_size == 32 || ra == 0) {
if (rb) {
tcg_gen_extu_i32_tl(ret, cpu_R[rb]);
} else {
tcg_gen_movi_tl(ret, 0);
}
} else {
if (rb) {
tcg_gen_concat_i32_i64(ret, cpu_R[rb], cpu_R[ra]);
} else {
tcg_gen_extu_i32_tl(ret, cpu_R[ra]);
tcg_gen_shli_tl(ret, ret, 32);
}
if (addr_size < 64) {
/* Mask off out of range bits. */
tcg_gen_andi_i64(ret, ret, MAKE_64BIT_MASK(0, addr_size));
}
}
return ret;
}
#endif
#ifndef CONFIG_USER_ONLY
static void record_unaligned_ess(DisasContext *dc, int rd,
MemOp size, bool store)
{
uint32_t iflags = tcg_get_insn_start_param(dc->insn_start, 1);
iflags |= ESR_ESS_FLAG;
iflags |= rd << 5;
iflags |= store * ESR_S;
iflags |= (size == MO_32) * ESR_W;
tcg_set_insn_start_param(dc->insn_start, 1, iflags);
}
#endif
static bool do_load(DisasContext *dc, int rd, TCGv addr, MemOp mop,
int mem_index, bool rev)
{
MemOp size = mop & MO_SIZE;
/*
* When doing reverse accesses we need to do two things.
*
* 1. Reverse the address wrt endianness.
* 2. Byteswap the data lanes on the way back into the CPU core.
*/
if (rev) {
if (size > MO_8) {
mop ^= MO_BSWAP;
}
if (size < MO_32) {
tcg_gen_xori_tl(addr, addr, 3 - size);
}
}
/*
* For system mode, enforce alignment if the cpu configuration
* requires it. For user-mode, the Linux kernel will have fixed up
* any unaligned access, so emulate that by *not* setting MO_ALIGN.
*/
#ifndef CONFIG_USER_ONLY
if (size > MO_8 &&
(dc->tb_flags & MSR_EE) &&
dc->cfg->unaligned_exceptions) {
record_unaligned_ess(dc, rd, size, false);
mop |= MO_ALIGN;
}
#endif
tcg_gen_qemu_ld_i32(reg_for_write(dc, rd), addr, mem_index, mop);
return true;
}
static bool trans_lbu(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_UB, dc->mem_index, false);
}
static bool trans_lbur(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_UB, dc->mem_index, true);
}
static bool trans_lbuea(DisasContext *dc, arg_typea *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
return true;
#else
TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_UB, MMU_NOMMU_IDX, false);
#endif
}
static bool trans_lbui(DisasContext *dc, arg_typeb *arg)
{
TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm);
return do_load(dc, arg->rd, addr, MO_UB, dc->mem_index, false);
}
static bool trans_lhu(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false);
}
static bool trans_lhur(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_TEUW, dc->mem_index, true);
}
static bool trans_lhuea(DisasContext *dc, arg_typea *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
return true;
#else
TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_TEUW, MMU_NOMMU_IDX, false);
#endif
}
static bool trans_lhui(DisasContext *dc, arg_typeb *arg)
{
TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm);
return do_load(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false);
}
static bool trans_lw(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false);
}
static bool trans_lwr(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_TEUL, dc->mem_index, true);
}
static bool trans_lwea(DisasContext *dc, arg_typea *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
return true;
#else
TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb);
return do_load(dc, arg->rd, addr, MO_TEUL, MMU_NOMMU_IDX, false);
#endif
}
static bool trans_lwi(DisasContext *dc, arg_typeb *arg)
{
TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm);
return do_load(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false);
}
static bool trans_lwx(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
/* lwx does not throw unaligned access errors, so force alignment */
tcg_gen_andi_tl(addr, addr, ~3);
tcg_gen_qemu_ld_i32(cpu_res_val, addr, dc->mem_index, MO_TEUL);
tcg_gen_mov_tl(cpu_res_addr, addr);
if (arg->rd) {
tcg_gen_mov_i32(cpu_R[arg->rd], cpu_res_val);
}
/* No support for AXI exclusive so always clear C */
tcg_gen_movi_i32(cpu_msr_c, 0);
return true;
}
static bool do_store(DisasContext *dc, int rd, TCGv addr, MemOp mop,
int mem_index, bool rev)
{
MemOp size = mop & MO_SIZE;
/*
* When doing reverse accesses we need to do two things.
*
* 1. Reverse the address wrt endianness.
* 2. Byteswap the data lanes on the way back into the CPU core.
*/
if (rev) {
if (size > MO_8) {
mop ^= MO_BSWAP;
}
if (size < MO_32) {
tcg_gen_xori_tl(addr, addr, 3 - size);
}
}
/*
* For system mode, enforce alignment if the cpu configuration
* requires it. For user-mode, the Linux kernel will have fixed up
* any unaligned access, so emulate that by *not* setting MO_ALIGN.
*/
#ifndef CONFIG_USER_ONLY
if (size > MO_8 &&
(dc->tb_flags & MSR_EE) &&
dc->cfg->unaligned_exceptions) {
record_unaligned_ess(dc, rd, size, true);
mop |= MO_ALIGN;
}
#endif
tcg_gen_qemu_st_i32(reg_for_read(dc, rd), addr, mem_index, mop);
return true;
}
static bool trans_sb(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_UB, dc->mem_index, false);
}
static bool trans_sbr(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_UB, dc->mem_index, true);
}
static bool trans_sbea(DisasContext *dc, arg_typea *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
return true;
#else
TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_UB, MMU_NOMMU_IDX, false);
#endif
}
static bool trans_sbi(DisasContext *dc, arg_typeb *arg)
{
TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm);
return do_store(dc, arg->rd, addr, MO_UB, dc->mem_index, false);
}
static bool trans_sh(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false);
}
static bool trans_shr(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_TEUW, dc->mem_index, true);
}
static bool trans_shea(DisasContext *dc, arg_typea *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
return true;
#else
TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_TEUW, MMU_NOMMU_IDX, false);
#endif
}
static bool trans_shi(DisasContext *dc, arg_typeb *arg)
{
TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm);
return do_store(dc, arg->rd, addr, MO_TEUW, dc->mem_index, false);
}
static bool trans_sw(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false);
}
static bool trans_swr(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_TEUL, dc->mem_index, true);
}
static bool trans_swea(DisasContext *dc, arg_typea *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
return true;
#else
TCGv addr = compute_ldst_addr_ea(dc, arg->ra, arg->rb);
return do_store(dc, arg->rd, addr, MO_TEUL, MMU_NOMMU_IDX, false);
#endif
}
static bool trans_swi(DisasContext *dc, arg_typeb *arg)
{
TCGv addr = compute_ldst_addr_typeb(dc, arg->ra, arg->imm);
return do_store(dc, arg->rd, addr, MO_TEUL, dc->mem_index, false);
}
static bool trans_swx(DisasContext *dc, arg_typea *arg)
{
TCGv addr = compute_ldst_addr_typea(dc, arg->ra, arg->rb);
TCGLabel *swx_done = gen_new_label();
TCGLabel *swx_fail = gen_new_label();
TCGv_i32 tval;
/* swx does not throw unaligned access errors, so force alignment */
tcg_gen_andi_tl(addr, addr, ~3);
/*
* Compare the address vs the one we used during lwx.
* On mismatch, the operation fails. On match, addr dies at the
* branch, but we know we can use the equal version in the global.
* In either case, addr is no longer needed.
*/
tcg_gen_brcond_tl(TCG_COND_NE, cpu_res_addr, addr, swx_fail);
/*
* Compare the value loaded during lwx with current contents of
* the reserved location.
*/
tval = tcg_temp_new_i32();
tcg_gen_atomic_cmpxchg_i32(tval, cpu_res_addr, cpu_res_val,
reg_for_write(dc, arg->rd),
dc->mem_index, MO_TEUL);
tcg_gen_brcond_i32(TCG_COND_NE, cpu_res_val, tval, swx_fail);
/* Success */
tcg_gen_movi_i32(cpu_msr_c, 0);
tcg_gen_br(swx_done);
/* Failure */
gen_set_label(swx_fail);
tcg_gen_movi_i32(cpu_msr_c, 1);
gen_set_label(swx_done);
/*
* Prevent the saved address from working again without another ldx.
* Akin to the pseudocode setting reservation = 0.
*/
tcg_gen_movi_tl(cpu_res_addr, -1);
return true;
}
static void setup_dslot(DisasContext *dc, bool type_b)
{
dc->tb_flags_to_set |= D_FLAG;
if (type_b && (dc->tb_flags & IMM_FLAG)) {
dc->tb_flags_to_set |= BIMM_FLAG;
}
}
static bool do_branch(DisasContext *dc, int dest_rb, int dest_imm,
bool delay, bool abs, int link)
{
uint32_t add_pc;
if (invalid_delay_slot(dc, "branch")) {
return true;
}
if (delay) {
setup_dslot(dc, dest_rb < 0);
}
if (link) {
tcg_gen_movi_i32(cpu_R[link], dc->base.pc_next);
}
/* Store the branch taken destination into btarget. */
add_pc = abs ? 0 : dc->base.pc_next;
if (dest_rb > 0) {
dc->jmp_dest = -1;
tcg_gen_addi_i32(cpu_btarget, cpu_R[dest_rb], add_pc);
} else {
dc->jmp_dest = add_pc + dest_imm;
tcg_gen_movi_i32(cpu_btarget, dc->jmp_dest);
}
dc->jmp_cond = TCG_COND_ALWAYS;
return true;
}
#define DO_BR(NAME, NAMEI, DELAY, ABS, LINK) \
static bool trans_##NAME(DisasContext *dc, arg_typea_br *arg) \
{ return do_branch(dc, arg->rb, 0, DELAY, ABS, LINK ? arg->rd : 0); } \
static bool trans_##NAMEI(DisasContext *dc, arg_typeb_br *arg) \
{ return do_branch(dc, -1, arg->imm, DELAY, ABS, LINK ? arg->rd : 0); }
DO_BR(br, bri, false, false, false)
DO_BR(bra, brai, false, true, false)
DO_BR(brd, brid, true, false, false)
DO_BR(brad, braid, true, true, false)
DO_BR(brld, brlid, true, false, true)
DO_BR(brald, bralid, true, true, true)
static bool do_bcc(DisasContext *dc, int dest_rb, int dest_imm,
TCGCond cond, int ra, bool delay)
{
TCGv_i32 zero, next;
if (invalid_delay_slot(dc, "bcc")) {
return true;
}
if (delay) {
setup_dslot(dc, dest_rb < 0);
}
dc->jmp_cond = cond;
/* Cache the condition register in cpu_bvalue across any delay slot. */
tcg_gen_mov_i32(cpu_bvalue, reg_for_read(dc, ra));
/* Store the branch taken destination into btarget. */
if (dest_rb > 0) {
dc->jmp_dest = -1;
tcg_gen_addi_i32(cpu_btarget, cpu_R[dest_rb], dc->base.pc_next);
} else {
dc->jmp_dest = dc->base.pc_next + dest_imm;
tcg_gen_movi_i32(cpu_btarget, dc->jmp_dest);
}
/* Compute the final destination into btarget. */
zero = tcg_constant_i32(0);
next = tcg_constant_i32(dc->base.pc_next + (delay + 1) * 4);
tcg_gen_movcond_i32(dc->jmp_cond, cpu_btarget,
reg_for_read(dc, ra), zero,
cpu_btarget, next);
return true;
}
#define DO_BCC(NAME, COND) \
static bool trans_##NAME(DisasContext *dc, arg_typea_bc *arg) \
{ return do_bcc(dc, arg->rb, 0, COND, arg->ra, false); } \
static bool trans_##NAME##d(DisasContext *dc, arg_typea_bc *arg) \
{ return do_bcc(dc, arg->rb, 0, COND, arg->ra, true); } \
static bool trans_##NAME##i(DisasContext *dc, arg_typeb_bc *arg) \
{ return do_bcc(dc, -1, arg->imm, COND, arg->ra, false); } \
static bool trans_##NAME##id(DisasContext *dc, arg_typeb_bc *arg) \
{ return do_bcc(dc, -1, arg->imm, COND, arg->ra, true); }
DO_BCC(beq, TCG_COND_EQ)
DO_BCC(bge, TCG_COND_GE)
DO_BCC(bgt, TCG_COND_GT)
DO_BCC(ble, TCG_COND_LE)
DO_BCC(blt, TCG_COND_LT)
DO_BCC(bne, TCG_COND_NE)
static bool trans_brk(DisasContext *dc, arg_typea_br *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
if (invalid_delay_slot(dc, "brk")) {
return true;
}
tcg_gen_mov_i32(cpu_pc, reg_for_read(dc, arg->rb));
if (arg->rd) {
tcg_gen_movi_i32(cpu_R[arg->rd], dc->base.pc_next);
}
tcg_gen_ori_i32(cpu_msr, cpu_msr, MSR_BIP);
tcg_gen_movi_tl(cpu_res_addr, -1);
dc->base.is_jmp = DISAS_EXIT;
return true;
}
static bool trans_brki(DisasContext *dc, arg_typeb_br *arg)
{
uint32_t imm = arg->imm;
if (trap_userspace(dc, imm != 0x8 && imm != 0x18)) {
return true;
}
if (invalid_delay_slot(dc, "brki")) {
return true;
}
tcg_gen_movi_i32(cpu_pc, imm);
if (arg->rd) {
tcg_gen_movi_i32(cpu_R[arg->rd], dc->base.pc_next);
}
tcg_gen_movi_tl(cpu_res_addr, -1);
#ifdef CONFIG_USER_ONLY
switch (imm) {
case 0x8: /* syscall trap */
gen_raise_exception_sync(dc, EXCP_SYSCALL);
break;
case 0x18: /* debug trap */
gen_raise_exception_sync(dc, EXCP_DEBUG);
break;
default: /* eliminated with trap_userspace check */
g_assert_not_reached();
}
#else
uint32_t msr_to_set = 0;
if (imm != 0x18) {
msr_to_set |= MSR_BIP;
}
if (imm == 0x8 || imm == 0x18) {
/* MSR_UM and MSR_VM are in tb_flags, so we know their value. */
msr_to_set |= (dc->tb_flags & (MSR_UM | MSR_VM)) << 1;
tcg_gen_andi_i32(cpu_msr, cpu_msr,
~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM));
}
tcg_gen_ori_i32(cpu_msr, cpu_msr, msr_to_set);
dc->base.is_jmp = DISAS_EXIT;
#endif
return true;
}
static bool trans_mbar(DisasContext *dc, arg_mbar *arg)
{
int mbar_imm = arg->imm;
/* Note that mbar is a specialized branch instruction. */
if (invalid_delay_slot(dc, "mbar")) {
return true;
}
/* Data access memory barrier. */
if ((mbar_imm & 2) == 0) {
tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
}
/* Sleep. */
if (mbar_imm & 16) {
if (trap_userspace(dc, true)) {
/* Sleep is a privileged instruction. */
return true;
}
t_sync_flags(dc);
tcg_gen_st_i32(tcg_constant_i32(1), tcg_env,
-offsetof(MicroBlazeCPU, env)
+offsetof(CPUState, halted));
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next + 4);
gen_raise_exception(dc, EXCP_HLT);
}
/*
* If !(mbar_imm & 1), this is an instruction access memory barrier
* and we need to end the TB so that we recognize self-modified
* code immediately.
*
* However, there are some data mbars that need the TB break
* (and return to main loop) to recognize interrupts right away.
* E.g. recognizing a change to an interrupt controller register.
*
* Therefore, choose to end the TB always.
*/
dc->base.is_jmp = DISAS_EXIT_NEXT;
return true;
}
static bool do_rts(DisasContext *dc, arg_typeb_bc *arg, int to_set)
{
if (trap_userspace(dc, to_set)) {
return true;
}
if (invalid_delay_slot(dc, "rts")) {
return true;
}
dc->tb_flags_to_set |= to_set;
setup_dslot(dc, true);
dc->jmp_cond = TCG_COND_ALWAYS;
dc->jmp_dest = -1;
tcg_gen_addi_i32(cpu_btarget, reg_for_read(dc, arg->ra), arg->imm);
return true;
}
#define DO_RTS(NAME, IFLAG) \
static bool trans_##NAME(DisasContext *dc, arg_typeb_bc *arg) \
{ return do_rts(dc, arg, IFLAG); }
DO_RTS(rtbd, DRTB_FLAG)
DO_RTS(rtid, DRTI_FLAG)
DO_RTS(rted, DRTE_FLAG)
DO_RTS(rtsd, 0)
static bool trans_zero(DisasContext *dc, arg_zero *arg)
{
/* If opcode_0_illegal, trap. */
if (dc->cfg->opcode_0_illegal) {
trap_illegal(dc, true);
return true;
}
/*
* Otherwise, this is "add r0, r0, r0".
* Continue to trans_add so that MSR[C] gets cleared.
*/
return false;
}
static void msr_read(DisasContext *dc, TCGv_i32 d)
{
TCGv_i32 t;
/* Replicate the cpu_msr_c boolean into the proper bit and the copy. */
t = tcg_temp_new_i32();
tcg_gen_muli_i32(t, cpu_msr_c, MSR_C | MSR_CC);
tcg_gen_or_i32(d, cpu_msr, t);
}
static bool do_msrclrset(DisasContext *dc, arg_type_msr *arg, bool set)
{
uint32_t imm = arg->imm;
if (trap_userspace(dc, imm != MSR_C)) {
return true;
}
if (arg->rd) {
msr_read(dc, cpu_R[arg->rd]);
}
/*
* Handle the carry bit separately.
* This is the only bit that userspace can modify.
*/
if (imm & MSR_C) {
tcg_gen_movi_i32(cpu_msr_c, set);
}
/*
* MSR_C and MSR_CC set above.
* MSR_PVR is not writable, and is always clear.
*/
imm &= ~(MSR_C | MSR_CC | MSR_PVR);
if (imm != 0) {
if (set) {
tcg_gen_ori_i32(cpu_msr, cpu_msr, imm);
} else {
tcg_gen_andi_i32(cpu_msr, cpu_msr, ~imm);
}
dc->base.is_jmp = DISAS_EXIT_NEXT;
}
return true;
}
static bool trans_msrclr(DisasContext *dc, arg_type_msr *arg)
{
return do_msrclrset(dc, arg, false);
}
static bool trans_msrset(DisasContext *dc, arg_type_msr *arg)
{
return do_msrclrset(dc, arg, true);
}
static bool trans_mts(DisasContext *dc, arg_mts *arg)
{
if (trap_userspace(dc, true)) {
return true;
}
#ifdef CONFIG_USER_ONLY
g_assert_not_reached();
#else
if (arg->e && arg->rs != 0x1003) {
qemu_log_mask(LOG_GUEST_ERROR,
"Invalid extended mts reg 0x%x\n", arg->rs);
return true;
}
TCGv_i32 src = reg_for_read(dc, arg->ra);
switch (arg->rs) {
case SR_MSR:
/* Install MSR_C. */
tcg_gen_extract_i32(cpu_msr_c, src, 2, 1);
/*
* Clear MSR_C and MSR_CC;
* MSR_PVR is not writable, and is always clear.
*/
tcg_gen_andi_i32(cpu_msr, src, ~(MSR_C | MSR_CC | MSR_PVR));
break;
case SR_FSR:
tcg_gen_st_i32(src, tcg_env, offsetof(CPUMBState, fsr));
break;
case 0x800:
tcg_gen_st_i32(src, tcg_env, offsetof(CPUMBState, slr));
break;
case 0x802:
tcg_gen_st_i32(src, tcg_env, offsetof(CPUMBState, shr));
break;
case 0x1000: /* PID */
case 0x1001: /* ZPR */
case 0x1002: /* TLBX */
case 0x1003: /* TLBLO */
case 0x1004: /* TLBHI */
case 0x1005: /* TLBSX */
{
TCGv_i32 tmp_ext = tcg_constant_i32(arg->e);
TCGv_i32 tmp_reg = tcg_constant_i32(arg->rs & 7);
gen_helper_mmu_write(tcg_env, tmp_ext, tmp_reg, src);
}
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "Invalid mts reg 0x%x\n", arg->rs);
return true;
}
dc->base.is_jmp = DISAS_EXIT_NEXT;
return true;
#endif
}
static bool trans_mfs(DisasContext *dc, arg_mfs *arg)
{
TCGv_i32 dest = reg_for_write(dc, arg->rd);
if (arg->e) {
switch (arg->rs) {
case SR_EAR:
{
TCGv_i64 t64 = tcg_temp_new_i64();
tcg_gen_ld_i64(t64, tcg_env, offsetof(CPUMBState, ear));
tcg_gen_extrh_i64_i32(dest, t64);
}
return true;
#ifndef CONFIG_USER_ONLY
case 0x1003: /* TLBLO */
/* Handled below. */
break;
#endif
case 0x2006 ... 0x2009:
/* High bits of PVR6-9 not implemented. */
tcg_gen_movi_i32(dest, 0);
return true;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"Invalid extended mfs reg 0x%x\n", arg->rs);
return true;
}
}
switch (arg->rs) {
case SR_PC:
tcg_gen_movi_i32(dest, dc->base.pc_next);
break;
case SR_MSR:
msr_read(dc, dest);
break;
case SR_EAR:
{
TCGv_i64 t64 = tcg_temp_new_i64();
tcg_gen_ld_i64(t64, tcg_env, offsetof(CPUMBState, ear));
tcg_gen_extrl_i64_i32(dest, t64);
}
break;
case SR_ESR:
tcg_gen_ld_i32(dest, tcg_env, offsetof(CPUMBState, esr));
break;
case SR_FSR:
tcg_gen_ld_i32(dest, tcg_env, offsetof(CPUMBState, fsr));
break;
case SR_BTR:
tcg_gen_ld_i32(dest, tcg_env, offsetof(CPUMBState, btr));
break;
case SR_EDR:
tcg_gen_ld_i32(dest, tcg_env, offsetof(CPUMBState, edr));
break;
case 0x800:
tcg_gen_ld_i32(dest, tcg_env, offsetof(CPUMBState, slr));
break;
case 0x802:
tcg_gen_ld_i32(dest, tcg_env, offsetof(CPUMBState, shr));
break;
#ifndef CONFIG_USER_ONLY
case 0x1000: /* PID */
case 0x1001: /* ZPR */
case 0x1002: /* TLBX */
case 0x1003: /* TLBLO */
case 0x1004: /* TLBHI */
case 0x1005: /* TLBSX */
{
TCGv_i32 tmp_ext = tcg_constant_i32(arg->e);
TCGv_i32 tmp_reg = tcg_constant_i32(arg->rs & 7);
gen_helper_mmu_read(dest, tcg_env, tmp_ext, tmp_reg);
}
break;
#endif
case 0x2000 ... 0x200c:
tcg_gen_ld_i32(dest, tcg_env,
offsetof(MicroBlazeCPU, cfg.pvr_regs[arg->rs - 0x2000])
- offsetof(MicroBlazeCPU, env));
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "Invalid mfs reg 0x%x\n", arg->rs);
break;
}
return true;
}
static void do_rti(DisasContext *dc)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shri_i32(tmp, cpu_msr, 1);
tcg_gen_ori_i32(cpu_msr, cpu_msr, MSR_IE);
tcg_gen_andi_i32(tmp, tmp, MSR_VM | MSR_UM);
tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(cpu_msr, cpu_msr, tmp);
}
static void do_rtb(DisasContext *dc)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shri_i32(tmp, cpu_msr, 1);
tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VM | MSR_UM | MSR_BIP));
tcg_gen_andi_i32(tmp, tmp, (MSR_VM | MSR_UM));
tcg_gen_or_i32(cpu_msr, cpu_msr, tmp);
}
static void do_rte(DisasContext *dc)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_shri_i32(tmp, cpu_msr, 1);
tcg_gen_ori_i32(cpu_msr, cpu_msr, MSR_EE);
tcg_gen_andi_i32(tmp, tmp, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(cpu_msr, cpu_msr, ~(MSR_VM | MSR_UM | MSR_EIP));
tcg_gen_or_i32(cpu_msr, cpu_msr, tmp);
}
/* Insns connected to FSL or AXI stream attached devices. */
static bool do_get(DisasContext *dc, int rd, int rb, int imm, int ctrl)
{
TCGv_i32 t_id, t_ctrl;
if (trap_userspace(dc, true)) {
return true;
}
t_id = tcg_temp_new_i32();
if (rb) {
tcg_gen_andi_i32(t_id, cpu_R[rb], 0xf);
} else {
tcg_gen_movi_i32(t_id, imm);
}
t_ctrl = tcg_constant_i32(ctrl);
gen_helper_get(reg_for_write(dc, rd), t_id, t_ctrl);
return true;
}
static bool trans_get(DisasContext *dc, arg_get *arg)
{
return do_get(dc, arg->rd, 0, arg->imm, arg->ctrl);
}
static bool trans_getd(DisasContext *dc, arg_getd *arg)
{
return do_get(dc, arg->rd, arg->rb, 0, arg->ctrl);
}
static bool do_put(DisasContext *dc, int ra, int rb, int imm, int ctrl)
{
TCGv_i32 t_id, t_ctrl;
if (trap_userspace(dc, true)) {
return true;
}
t_id = tcg_temp_new_i32();
if (rb) {
tcg_gen_andi_i32(t_id, cpu_R[rb], 0xf);
} else {
tcg_gen_movi_i32(t_id, imm);
}
t_ctrl = tcg_constant_i32(ctrl);
gen_helper_put(t_id, t_ctrl, reg_for_read(dc, ra));
return true;
}
static bool trans_put(DisasContext *dc, arg_put *arg)
{
return do_put(dc, arg->ra, 0, arg->imm, arg->ctrl);
}
static bool trans_putd(DisasContext *dc, arg_putd *arg)
{
return do_put(dc, arg->ra, arg->rb, 0, arg->ctrl);
}
static void mb_tr_init_disas_context(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
int bound;
dc->cfg = &cpu->cfg;
dc->tb_flags = dc->base.tb->flags;
dc->ext_imm = dc->base.tb->cs_base;
dc->r0 = NULL;
dc->r0_set = false;
dc->mem_index = cpu_mmu_index(cs, false);
dc->jmp_cond = dc->tb_flags & D_FLAG ? TCG_COND_ALWAYS : TCG_COND_NEVER;
dc->jmp_dest = -1;
bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
dc->base.max_insns = MIN(dc->base.max_insns, bound);
}
static void mb_tr_tb_start(DisasContextBase *dcb, CPUState *cs)
{
}
static void mb_tr_insn_start(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
tcg_gen_insn_start(dc->base.pc_next, dc->tb_flags & ~MSR_TB_MASK);
dc->insn_start = tcg_last_op();
}
static void mb_tr_translate_insn(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
uint32_t ir;
/* TODO: This should raise an exception, not terminate qemu. */
if (dc->base.pc_next & 3) {
cpu_abort(cs, "Microblaze: unaligned PC=%x\n",
(uint32_t)dc->base.pc_next);
}
dc->tb_flags_to_set = 0;
ir = cpu_ldl_code(cpu_env(cs), dc->base.pc_next);
if (!decode(dc, ir)) {
trap_illegal(dc, true);
}
if (dc->r0) {
dc->r0 = NULL;
dc->r0_set = false;
}
/* Discard the imm global when its contents cannot be used. */
if ((dc->tb_flags & ~dc->tb_flags_to_set) & IMM_FLAG) {
tcg_gen_discard_i32(cpu_imm);
}
dc->tb_flags &= ~(IMM_FLAG | BIMM_FLAG | D_FLAG);
dc->tb_flags |= dc->tb_flags_to_set;
dc->base.pc_next += 4;
if (dc->jmp_cond != TCG_COND_NEVER && !(dc->tb_flags & D_FLAG)) {
/*
* Finish any return-from branch.
*/
uint32_t rt_ibe = dc->tb_flags & (DRTI_FLAG | DRTB_FLAG | DRTE_FLAG);
if (unlikely(rt_ibe != 0)) {
dc->tb_flags &= ~(DRTI_FLAG | DRTB_FLAG | DRTE_FLAG);
if (rt_ibe & DRTI_FLAG) {
do_rti(dc);
} else if (rt_ibe & DRTB_FLAG) {
do_rtb(dc);
} else {
do_rte(dc);
}
}
/* Complete the branch, ending the TB. */
switch (dc->base.is_jmp) {
case DISAS_NORETURN:
/*
* E.g. illegal insn in a delay slot. We've already exited
* and will handle D_FLAG in mb_cpu_do_interrupt.
*/
break;
case DISAS_NEXT:
/*
* Normal insn a delay slot.
* However, the return-from-exception type insns should
* return to the main loop, as they have adjusted MSR.
*/
dc->base.is_jmp = (rt_ibe ? DISAS_EXIT_JUMP : DISAS_JUMP);
break;
case DISAS_EXIT_NEXT:
/*
* E.g. mts insn in a delay slot. Continue with btarget,
* but still return to the main loop.
*/
dc->base.is_jmp = DISAS_EXIT_JUMP;
break;
default:
g_assert_not_reached();
}
}
}
static void mb_tr_tb_stop(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
if (dc->base.is_jmp == DISAS_NORETURN) {
/* We have already exited the TB. */
return;
}
t_sync_flags(dc);
switch (dc->base.is_jmp) {
case DISAS_TOO_MANY:
gen_goto_tb(dc, 0, dc->base.pc_next);
return;
case DISAS_EXIT:
break;
case DISAS_EXIT_NEXT:
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next);
break;
case DISAS_EXIT_JUMP:
tcg_gen_mov_i32(cpu_pc, cpu_btarget);
tcg_gen_discard_i32(cpu_btarget);
break;
case DISAS_JUMP:
if (dc->jmp_dest != -1 && !(tb_cflags(dc->base.tb) & CF_NO_GOTO_TB)) {
/* Direct jump. */
tcg_gen_discard_i32(cpu_btarget);
if (dc->jmp_cond != TCG_COND_ALWAYS) {
/* Conditional direct jump. */
TCGLabel *taken = gen_new_label();
TCGv_i32 tmp = tcg_temp_new_i32();
/*
* Copy bvalue to a temp now, so we can discard bvalue.
* This can avoid writing bvalue to memory when the
* delay slot cannot raise an exception.
*/
tcg_gen_mov_i32(tmp, cpu_bvalue);
tcg_gen_discard_i32(cpu_bvalue);
tcg_gen_brcondi_i32(dc->jmp_cond, tmp, 0, taken);
gen_goto_tb(dc, 1, dc->base.pc_next);
gen_set_label(taken);
}
gen_goto_tb(dc, 0, dc->jmp_dest);
return;
}
/* Indirect jump (or direct jump w/ goto_tb disabled) */
tcg_gen_mov_i32(cpu_pc, cpu_btarget);
tcg_gen_discard_i32(cpu_btarget);
tcg_gen_lookup_and_goto_ptr();
return;
default:
g_assert_not_reached();
}
/* Finish DISAS_EXIT_* */
if (unlikely(cs->singlestep_enabled)) {
gen_raise_exception(dc, EXCP_DEBUG);
} else {
tcg_gen_exit_tb(NULL, 0);
}
}
static void mb_tr_disas_log(const DisasContextBase *dcb,
CPUState *cs, FILE *logfile)
{
fprintf(logfile, "IN: %s\n", lookup_symbol(dcb->pc_first));
target_disas(logfile, cs, dcb->pc_first, dcb->tb->size);
}
static const TranslatorOps mb_tr_ops = {
.init_disas_context = mb_tr_init_disas_context,
.tb_start = mb_tr_tb_start,
.insn_start = mb_tr_insn_start,
.translate_insn = mb_tr_translate_insn,
.tb_stop = mb_tr_tb_stop,
.disas_log = mb_tr_disas_log,
};
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int *max_insns,
vaddr pc, void *host_pc)
{
DisasContext dc;
translator_loop(cpu, tb, max_insns, pc, host_pc, &mb_tr_ops, &dc.base);
}
void mb_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
CPUMBState *env = cpu_env(cs);
uint32_t iflags;
int i;
qemu_fprintf(f, "pc=0x%08x msr=0x%05x mode=%s(saved=%s) eip=%d ie=%d\n",
env->pc, env->msr,
(env->msr & MSR_UM) ? "user" : "kernel",
(env->msr & MSR_UMS) ? "user" : "kernel",
(bool)(env->msr & MSR_EIP),
(bool)(env->msr & MSR_IE));
iflags = env->iflags;
qemu_fprintf(f, "iflags: 0x%08x", iflags);
if (iflags & IMM_FLAG) {
qemu_fprintf(f, " IMM(0x%08x)", env->imm);
}
if (iflags & BIMM_FLAG) {
qemu_fprintf(f, " BIMM");
}
if (iflags & D_FLAG) {
qemu_fprintf(f, " D(btarget=0x%08x)", env->btarget);
}
if (iflags & DRTI_FLAG) {
qemu_fprintf(f, " DRTI");
}
if (iflags & DRTE_FLAG) {
qemu_fprintf(f, " DRTE");
}
if (iflags & DRTB_FLAG) {
qemu_fprintf(f, " DRTB");
}
if (iflags & ESR_ESS_FLAG) {
qemu_fprintf(f, " ESR_ESS(0x%04x)", iflags & ESR_ESS_MASK);
}
qemu_fprintf(f, "\nesr=0x%04x fsr=0x%02x btr=0x%08x edr=0x%x\n"
"ear=0x" TARGET_FMT_lx " slr=0x%x shr=0x%x\n",
env->esr, env->fsr, env->btr, env->edr,
env->ear, env->slr, env->shr);
for (i = 0; i < 32; i++) {
qemu_fprintf(f, "r%2.2d=%08x%c",
i, env->regs[i], i % 4 == 3 ? '\n' : ' ');
}
qemu_fprintf(f, "\n");
}
void mb_tcg_init(void)
{
#define R(X) { &cpu_R[X], offsetof(CPUMBState, regs[X]), "r" #X }
#define SP(X) { &cpu_##X, offsetof(CPUMBState, X), #X }
static const struct {
TCGv_i32 *var; int ofs; char name[8];
} i32s[] = {
/*
* Note that r0 is handled specially in reg_for_read
* and reg_for_write. Nothing should touch cpu_R[0].
* Leave that element NULL, which will assert quickly
* inside the tcg generator functions.
*/
R(1), R(2), R(3), R(4), R(5), R(6), R(7),
R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
SP(pc),
SP(msr),
SP(msr_c),
SP(imm),
SP(iflags),
SP(bvalue),
SP(btarget),
SP(res_val),
};
#undef R
#undef SP
for (int i = 0; i < ARRAY_SIZE(i32s); ++i) {
*i32s[i].var =
tcg_global_mem_new_i32(tcg_env, i32s[i].ofs, i32s[i].name);
}
cpu_res_addr =
tcg_global_mem_new(tcg_env, offsetof(CPUMBState, res_addr), "res_addr");
}