qemu-e2k/hw/arm_boot.c

478 lines
15 KiB
C

/*
* ARM kernel loader.
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "config.h"
#include "hw.h"
#include "arm-misc.h"
#include "sysemu.h"
#include "boards.h"
#include "loader.h"
#include "elf.h"
#include "device_tree.h"
#include "qemu/config-file.h"
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
static uint32_t bootloader[] = {
0xe3a00000, /* mov r0, #0 */
0xe59f1004, /* ldr r1, [pc, #4] */
0xe59f2004, /* ldr r2, [pc, #4] */
0xe59ff004, /* ldr pc, [pc, #4] */
0, /* Board ID */
0, /* Address of kernel args. Set by integratorcp_init. */
0 /* Kernel entry point. Set by integratorcp_init. */
};
/* Handling for secondary CPU boot in a multicore system.
* Unlike the uniprocessor/primary CPU boot, this is platform
* dependent. The default code here is based on the secondary
* CPU boot protocol used on realview/vexpress boards, with
* some parameterisation to increase its flexibility.
* QEMU platform models for which this code is not appropriate
* should override write_secondary_boot and secondary_cpu_reset_hook
* instead.
*
* This code enables the interrupt controllers for the secondary
* CPUs and then puts all the secondary CPUs into a loop waiting
* for an interprocessor interrupt and polling a configurable
* location for the kernel secondary CPU entry point.
*/
#define DSB_INSN 0xf57ff04f
#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
static uint32_t smpboot[] = {
0xe59f2028, /* ldr r2, gic_cpu_if */
0xe59f0028, /* ldr r0, startaddr */
0xe3a01001, /* mov r1, #1 */
0xe5821000, /* str r1, [r2] - set GICC_CTLR.Enable */
0xe3a010ff, /* mov r1, #0xff */
0xe5821004, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
DSB_INSN, /* dsb */
0xe320f003, /* wfi */
0xe5901000, /* ldr r1, [r0] */
0xe1110001, /* tst r1, r1 */
0x0afffffb, /* beq <wfi> */
0xe12fff11, /* bx r1 */
0, /* gic_cpu_if: base address of GIC CPU interface */
0 /* bootreg: Boot register address is held here */
};
static void default_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
int n;
smpboot[ARRAY_SIZE(smpboot) - 1] = info->smp_bootreg_addr;
smpboot[ARRAY_SIZE(smpboot) - 2] = info->gic_cpu_if_addr;
for (n = 0; n < ARRAY_SIZE(smpboot); n++) {
/* Replace DSB with the pre-v7 DSB if necessary. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7) &&
smpboot[n] == DSB_INSN) {
smpboot[n] = CP15_DSB_INSN;
}
smpboot[n] = tswap32(smpboot[n]);
}
rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start);
}
static void default_reset_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
CPUARMState *env = &cpu->env;
stl_phys_notdirty(info->smp_bootreg_addr, 0);
env->regs[15] = info->smp_loader_start;
}
#define WRITE_WORD(p, value) do { \
stl_phys_notdirty(p, value); \
p += 4; \
} while (0)
static void set_kernel_args(const struct arm_boot_info *info)
{
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
hwaddr p;
p = base + KERNEL_ARGS_ADDR;
/* ATAG_CORE */
WRITE_WORD(p, 5);
WRITE_WORD(p, 0x54410001);
WRITE_WORD(p, 1);
WRITE_WORD(p, 0x1000);
WRITE_WORD(p, 0);
/* ATAG_MEM */
/* TODO: handle multiple chips on one ATAG list */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54410002);
WRITE_WORD(p, info->ram_size);
WRITE_WORD(p, info->loader_start);
if (initrd_size) {
/* ATAG_INITRD2 */
WRITE_WORD(p, 4);
WRITE_WORD(p, 0x54420005);
WRITE_WORD(p, info->initrd_start);
WRITE_WORD(p, initrd_size);
}
if (info->kernel_cmdline && *info->kernel_cmdline) {
/* ATAG_CMDLINE */
int cmdline_size;
cmdline_size = strlen(info->kernel_cmdline);
cpu_physical_memory_write(p + 8, (void *)info->kernel_cmdline,
cmdline_size + 1);
cmdline_size = (cmdline_size >> 2) + 1;
WRITE_WORD(p, cmdline_size + 2);
WRITE_WORD(p, 0x54410009);
p += cmdline_size * 4;
}
if (info->atag_board) {
/* ATAG_BOARD */
int atag_board_len;
uint8_t atag_board_buf[0x1000];
atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
WRITE_WORD(p, (atag_board_len + 8) >> 2);
WRITE_WORD(p, 0x414f4d50);
cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
p += atag_board_len;
}
/* ATAG_END */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
}
static void set_kernel_args_old(const struct arm_boot_info *info)
{
hwaddr p;
const char *s;
int initrd_size = info->initrd_size;
hwaddr base = info->loader_start;
/* see linux/include/asm-arm/setup.h */
p = base + KERNEL_ARGS_ADDR;
/* page_size */
WRITE_WORD(p, 4096);
/* nr_pages */
WRITE_WORD(p, info->ram_size / 4096);
/* ramdisk_size */
WRITE_WORD(p, 0);
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
/* flags */
WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
/* rootdev */
WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
/* video_num_cols */
WRITE_WORD(p, 0);
/* video_num_rows */
WRITE_WORD(p, 0);
/* video_x */
WRITE_WORD(p, 0);
/* video_y */
WRITE_WORD(p, 0);
/* memc_control_reg */
WRITE_WORD(p, 0);
/* unsigned char sounddefault */
/* unsigned char adfsdrives */
/* unsigned char bytes_per_char_h */
/* unsigned char bytes_per_char_v */
WRITE_WORD(p, 0);
/* pages_in_bank[4] */
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
WRITE_WORD(p, 0);
/* pages_in_vram */
WRITE_WORD(p, 0);
/* initrd_start */
if (initrd_size) {
WRITE_WORD(p, info->initrd_start);
} else {
WRITE_WORD(p, 0);
}
/* initrd_size */
WRITE_WORD(p, initrd_size);
/* rd_start */
WRITE_WORD(p, 0);
/* system_rev */
WRITE_WORD(p, 0);
/* system_serial_low */
WRITE_WORD(p, 0);
/* system_serial_high */
WRITE_WORD(p, 0);
/* mem_fclk_21285 */
WRITE_WORD(p, 0);
/* zero unused fields */
while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
WRITE_WORD(p, 0);
}
s = info->kernel_cmdline;
if (s) {
cpu_physical_memory_write(p, (void *)s, strlen(s) + 1);
} else {
WRITE_WORD(p, 0);
}
}
static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
{
#ifdef CONFIG_FDT
uint32_t *mem_reg_property;
uint32_t mem_reg_propsize;
void *fdt = NULL;
char *filename;
int size, rc;
uint32_t acells, scells, hival;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
if (!filename) {
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
return -1;
}
fdt = load_device_tree(filename, &size);
if (!fdt) {
fprintf(stderr, "Couldn't open dtb file %s\n", filename);
g_free(filename);
return -1;
}
g_free(filename);
acells = qemu_devtree_getprop_cell(fdt, "/", "#address-cells");
scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells");
if (acells == 0 || scells == 0) {
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
return -1;
}
mem_reg_propsize = acells + scells;
mem_reg_property = g_new0(uint32_t, mem_reg_propsize);
mem_reg_property[acells - 1] = cpu_to_be32(binfo->loader_start);
hival = cpu_to_be32(binfo->loader_start >> 32);
if (acells > 1) {
mem_reg_property[acells - 2] = hival;
} else if (hival != 0) {
fprintf(stderr, "qemu: dtb file not compatible with "
"RAM start address > 4GB\n");
exit(1);
}
mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size);
hival = cpu_to_be32(binfo->ram_size >> 32);
if (scells > 1) {
mem_reg_property[acells + scells - 2] = hival;
} else if (hival != 0) {
fprintf(stderr, "qemu: dtb file not compatible with "
"RAM size > 4GB\n");
exit(1);
}
rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
mem_reg_propsize * sizeof(uint32_t));
if (rc < 0) {
fprintf(stderr, "couldn't set /memory/reg\n");
}
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
binfo->kernel_cmdline);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
}
}
if (binfo->initrd_size) {
rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
binfo->initrd_start);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
binfo->initrd_start + binfo->initrd_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
cpu_physical_memory_write(addr, fdt, size);
return 0;
#else
fprintf(stderr, "Device tree requested, "
"but qemu was compiled without fdt support\n");
return -1;
#endif
}
static void do_cpu_reset(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
const struct arm_boot_info *info = env->boot_info;
cpu_reset(CPU(cpu));
if (info) {
if (!info->is_linux) {
/* Jump to the entry point. */
env->regs[15] = info->entry & 0xfffffffe;
env->thumb = info->entry & 1;
} else {
if (env == first_cpu) {
env->regs[15] = info->loader_start;
if (!info->dtb_filename) {
if (old_param) {
set_kernel_args_old(info);
} else {
set_kernel_args(info);
}
}
} else {
info->secondary_cpu_reset_hook(cpu, info);
}
}
}
}
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
CPUARMState *env = &cpu->env;
int kernel_size;
int initrd_size;
int n;
int is_linux = 0;
uint64_t elf_entry;
hwaddr entry;
int big_endian;
QemuOpts *machine_opts;
/* Load the kernel. */
if (!info->kernel_filename) {
fprintf(stderr, "Kernel image must be specified\n");
exit(1);
}
machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
if (machine_opts) {
info->dtb_filename = qemu_opt_get(machine_opts, "dtb");
} else {
info->dtb_filename = NULL;
}
if (!info->secondary_cpu_reset_hook) {
info->secondary_cpu_reset_hook = default_reset_secondary;
}
if (!info->write_secondary_boot) {
info->write_secondary_boot = default_write_secondary;
}
if (info->nb_cpus == 0)
info->nb_cpus = 1;
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#else
big_endian = 0;
#endif
/* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
* enough room for a decent sized initrd, and on boards with large
* amounts of RAM we must avoid the initrd being so far up in RAM
* that it is outside lowmem and inaccessible to the kernel.
* So for boards with less than 256MB of RAM we put the initrd
* halfway into RAM, and for boards with 256MB of RAM or more we put
* the initrd at 128MB.
*/
info->initrd_start = info->loader_start +
MIN(info->ram_size / 2, 128 * 1024 * 1024);
/* Assume that raw images are linux kernels, and ELF images are not. */
kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
NULL, NULL, big_endian, ELF_MACHINE, 1);
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
&is_linux);
}
if (kernel_size < 0) {
entry = info->loader_start + KERNEL_LOAD_ADDR;
kernel_size = load_image_targphys(info->kernel_filename, entry,
info->ram_size - KERNEL_LOAD_ADDR);
is_linux = 1;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
info->kernel_filename);
exit(1);
}
info->entry = entry;
if (is_linux) {
if (info->initrd_filename) {
initrd_size = load_image_targphys(info->initrd_filename,
info->initrd_start,
info->ram_size -
info->initrd_start);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initrd '%s'\n",
info->initrd_filename);
exit(1);
}
} else {
initrd_size = 0;
}
info->initrd_size = initrd_size;
bootloader[4] = info->board_id;
/* for device tree boot, we pass the DTB directly in r2. Otherwise
* we point to the kernel args.
*/
if (info->dtb_filename) {
/* Place the DTB after the initrd in memory */
hwaddr dtb_start = TARGET_PAGE_ALIGN(info->initrd_start +
initrd_size);
if (load_dtb(dtb_start, info)) {
exit(1);
}
bootloader[5] = dtb_start;
} else {
bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR;
if (info->ram_size >= (1ULL << 32)) {
fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
" Linux kernel using ATAGS (try passing a device tree"
" using -dtb)\n");
exit(1);
}
}
bootloader[6] = entry;
for (n = 0; n < sizeof(bootloader) / 4; n++) {
bootloader[n] = tswap32(bootloader[n]);
}
rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader),
info->loader_start);
if (info->nb_cpus > 1) {
info->write_secondary_boot(cpu, info);
}
}
info->is_linux = is_linux;
for (; env; env = env->next_cpu) {
cpu = arm_env_get_cpu(env);
env->boot_info = info;
qemu_register_reset(do_cpu_reset, cpu);
}
}