qemu-e2k/hw/net/cadence_gem.c
Sai Pavan Boddu 2801339f2f cadence_gem: Fix Rx buffer size field mask
This patch corrects the Rx buffer size field mask to mask bits 23 to 16
to match Xilinx UG585 documentation.

Signed-off-by: Sai Pavan Boddu <saipava@xilinx.com>
Reviewed-by: Alistair Francis <alistair.francis@xilinx.com>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2015-06-03 16:03:03 +03:00

1249 lines
41 KiB
C

/*
* QEMU Cadence GEM emulation
*
* Copyright (c) 2011 Xilinx, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <zlib.h> /* For crc32 */
#include "hw/net/cadence_gem.h"
#include "net/checksum.h"
#ifdef CADENCE_GEM_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0);
#else
#define DB_PRINT(...)
#endif
#define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
#define GEM_NWCFG (0x00000004/4) /* Network Config reg */
#define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
#define GEM_USERIO (0x0000000C/4) /* User IO reg */
#define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
#define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
#define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
#define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
#define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
#define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
#define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
#define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
#define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
#define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
#define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
#define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
#define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
#define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
#define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
#define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
#define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
#define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
#define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
#define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
#define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
#define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
#define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
#define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
#define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
#define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
#define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
#define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
#define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
#define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
#define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
#define GEM_MODID (0x000000FC/4) /* Module ID reg */
#define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
#define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
#define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
#define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
#define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
#define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
#define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
#define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
#define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
#define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
#define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
#define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
#define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
#define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
#define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
#define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
#define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
#define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
#define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
#define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
#define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
#define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
#define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
#define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
#define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
#define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
#define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
#define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
#define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
#define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
#define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
#define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
#define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
#define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
#define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
#define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
#define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
#define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
#define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
#define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
#define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
#define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
#define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
#define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
#define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
#define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
#define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
#define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
#define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
#define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
#define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
#define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
#define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
#define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
/* Design Configuration Registers */
#define GEM_DESCONF (0x00000280/4)
#define GEM_DESCONF2 (0x00000284/4)
#define GEM_DESCONF3 (0x00000288/4)
#define GEM_DESCONF4 (0x0000028C/4)
#define GEM_DESCONF5 (0x00000290/4)
#define GEM_DESCONF6 (0x00000294/4)
#define GEM_DESCONF7 (0x00000298/4)
/*****************************************/
#define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
#define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
#define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
#define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
#define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
#define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
#define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
#define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
#define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
#define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
#define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
#define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
#define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
#define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
#define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
#define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
#define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
#define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
#define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
#define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
#define GEM_INT_TXUSED 0x00000008
#define GEM_INT_RXUSED 0x00000004
#define GEM_INT_RXCMPL 0x00000002
#define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
#define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
#define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
#define GEM_PHYMNTNC_ADDR_SHFT 23
#define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
#define GEM_PHYMNTNC_REG_SHIFT 18
/* Marvell PHY definitions */
#define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
#define PHY_REG_CONTROL 0
#define PHY_REG_STATUS 1
#define PHY_REG_PHYID1 2
#define PHY_REG_PHYID2 3
#define PHY_REG_ANEGADV 4
#define PHY_REG_LINKPABIL 5
#define PHY_REG_ANEGEXP 6
#define PHY_REG_NEXTP 7
#define PHY_REG_LINKPNEXTP 8
#define PHY_REG_100BTCTRL 9
#define PHY_REG_1000BTSTAT 10
#define PHY_REG_EXTSTAT 15
#define PHY_REG_PHYSPCFC_CTL 16
#define PHY_REG_PHYSPCFC_ST 17
#define PHY_REG_INT_EN 18
#define PHY_REG_INT_ST 19
#define PHY_REG_EXT_PHYSPCFC_CTL 20
#define PHY_REG_RXERR 21
#define PHY_REG_EACD 22
#define PHY_REG_LED 24
#define PHY_REG_LED_OVRD 25
#define PHY_REG_EXT_PHYSPCFC_CTL2 26
#define PHY_REG_EXT_PHYSPCFC_ST 27
#define PHY_REG_CABLE_DIAG 28
#define PHY_REG_CONTROL_RST 0x8000
#define PHY_REG_CONTROL_LOOP 0x4000
#define PHY_REG_CONTROL_ANEG 0x1000
#define PHY_REG_STATUS_LINK 0x0004
#define PHY_REG_STATUS_ANEGCMPL 0x0020
#define PHY_REG_INT_ST_ANEGCMPL 0x0800
#define PHY_REG_INT_ST_LINKC 0x0400
#define PHY_REG_INT_ST_ENERGY 0x0010
/***********************************************************************/
#define GEM_RX_REJECT (-1)
#define GEM_RX_PROMISCUOUS_ACCEPT (-2)
#define GEM_RX_BROADCAST_ACCEPT (-3)
#define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
#define GEM_RX_UNICAST_HASH_ACCEPT (-5)
#define GEM_RX_SAR_ACCEPT 0
/***********************************************************************/
#define DESC_1_USED 0x80000000
#define DESC_1_LENGTH 0x00001FFF
#define DESC_1_TX_WRAP 0x40000000
#define DESC_1_TX_LAST 0x00008000
#define DESC_0_RX_WRAP 0x00000002
#define DESC_0_RX_OWNERSHIP 0x00000001
#define R_DESC_1_RX_SAR_SHIFT 25
#define R_DESC_1_RX_SAR_LENGTH 2
#define R_DESC_1_RX_SAR_MATCH (1 << 27)
#define R_DESC_1_RX_UNICAST_HASH (1 << 29)
#define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
#define R_DESC_1_RX_BROADCAST (1 << 31)
#define DESC_1_RX_SOF 0x00004000
#define DESC_1_RX_EOF 0x00008000
static inline unsigned tx_desc_get_buffer(unsigned *desc)
{
return desc[0];
}
static inline unsigned tx_desc_get_used(unsigned *desc)
{
return (desc[1] & DESC_1_USED) ? 1 : 0;
}
static inline void tx_desc_set_used(unsigned *desc)
{
desc[1] |= DESC_1_USED;
}
static inline unsigned tx_desc_get_wrap(unsigned *desc)
{
return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
}
static inline unsigned tx_desc_get_last(unsigned *desc)
{
return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
}
static inline unsigned tx_desc_get_length(unsigned *desc)
{
return desc[1] & DESC_1_LENGTH;
}
static inline void print_gem_tx_desc(unsigned *desc)
{
DB_PRINT("TXDESC:\n");
DB_PRINT("bufaddr: 0x%08x\n", *desc);
DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
DB_PRINT("last: %d\n", tx_desc_get_last(desc));
DB_PRINT("length: %d\n", tx_desc_get_length(desc));
}
static inline unsigned rx_desc_get_buffer(unsigned *desc)
{
return desc[0] & ~0x3UL;
}
static inline unsigned rx_desc_get_wrap(unsigned *desc)
{
return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
}
static inline unsigned rx_desc_get_ownership(unsigned *desc)
{
return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
}
static inline void rx_desc_set_ownership(unsigned *desc)
{
desc[0] |= DESC_0_RX_OWNERSHIP;
}
static inline void rx_desc_set_sof(unsigned *desc)
{
desc[1] |= DESC_1_RX_SOF;
}
static inline void rx_desc_set_eof(unsigned *desc)
{
desc[1] |= DESC_1_RX_EOF;
}
static inline void rx_desc_set_length(unsigned *desc, unsigned len)
{
desc[1] &= ~DESC_1_LENGTH;
desc[1] |= len;
}
static inline void rx_desc_set_broadcast(unsigned *desc)
{
desc[1] |= R_DESC_1_RX_BROADCAST;
}
static inline void rx_desc_set_unicast_hash(unsigned *desc)
{
desc[1] |= R_DESC_1_RX_UNICAST_HASH;
}
static inline void rx_desc_set_multicast_hash(unsigned *desc)
{
desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
}
static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
{
desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
sar_idx);
desc[1] |= R_DESC_1_RX_SAR_MATCH;
}
/* The broadcast MAC address: 0xFFFFFFFFFFFF */
static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
/*
* gem_init_register_masks:
* One time initialization.
* Set masks to identify which register bits have magical clear properties
*/
static void gem_init_register_masks(CadenceGEMState *s)
{
/* Mask of register bits which are read only */
memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
s->regs_ro[GEM_DMACFG] = 0xFE00F000;
s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
s->regs_ro[GEM_RXQBASE] = 0x00000003;
s->regs_ro[GEM_TXQBASE] = 0x00000003;
s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
/* Mask of register bits which are clear on read */
memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
/* Mask of register bits which are write 1 to clear */
memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
/* Mask of register bits which are write only */
memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
s->regs_wo[GEM_NWCTRL] = 0x00073E60;
s->regs_wo[GEM_IER] = 0x07FFFFFF;
s->regs_wo[GEM_IDR] = 0x07FFFFFF;
}
/*
* phy_update_link:
* Make the emulated PHY link state match the QEMU "interface" state.
*/
static void phy_update_link(CadenceGEMState *s)
{
DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
PHY_REG_STATUS_LINK);
s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
} else {
s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
PHY_REG_STATUS_LINK);
s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
PHY_REG_INT_ST_ANEGCMPL |
PHY_REG_INT_ST_ENERGY);
}
}
static int gem_can_receive(NetClientState *nc)
{
CadenceGEMState *s;
s = qemu_get_nic_opaque(nc);
/* Do nothing if receive is not enabled. */
if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
if (s->can_rx_state != 1) {
s->can_rx_state = 1;
DB_PRINT("can't receive - no enable\n");
}
return 0;
}
if (rx_desc_get_ownership(s->rx_desc) == 1) {
if (s->can_rx_state != 2) {
s->can_rx_state = 2;
DB_PRINT("can't receive - busy buffer descriptor 0x%x\n",
s->rx_desc_addr);
}
return 0;
}
if (s->can_rx_state != 0) {
s->can_rx_state = 0;
DB_PRINT("can receive 0x%x\n", s->rx_desc_addr);
}
return 1;
}
/*
* gem_update_int_status:
* Raise or lower interrupt based on current status.
*/
static void gem_update_int_status(CadenceGEMState *s)
{
if (s->regs[GEM_ISR]) {
DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]);
qemu_set_irq(s->irq, 1);
}
}
/*
* gem_receive_updatestats:
* Increment receive statistics.
*/
static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
unsigned bytes)
{
uint64_t octets;
/* Total octets (bytes) received */
octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
s->regs[GEM_OCTRXHI];
octets += bytes;
s->regs[GEM_OCTRXLO] = octets >> 32;
s->regs[GEM_OCTRXHI] = octets;
/* Error-free Frames received */
s->regs[GEM_RXCNT]++;
/* Error-free Broadcast Frames counter */
if (!memcmp(packet, broadcast_addr, 6)) {
s->regs[GEM_RXBROADCNT]++;
}
/* Error-free Multicast Frames counter */
if (packet[0] == 0x01) {
s->regs[GEM_RXMULTICNT]++;
}
if (bytes <= 64) {
s->regs[GEM_RX64CNT]++;
} else if (bytes <= 127) {
s->regs[GEM_RX65CNT]++;
} else if (bytes <= 255) {
s->regs[GEM_RX128CNT]++;
} else if (bytes <= 511) {
s->regs[GEM_RX256CNT]++;
} else if (bytes <= 1023) {
s->regs[GEM_RX512CNT]++;
} else if (bytes <= 1518) {
s->regs[GEM_RX1024CNT]++;
} else {
s->regs[GEM_RX1519CNT]++;
}
}
/*
* Get the MAC Address bit from the specified position
*/
static unsigned get_bit(const uint8_t *mac, unsigned bit)
{
unsigned byte;
byte = mac[bit / 8];
byte >>= (bit & 0x7);
byte &= 1;
return byte;
}
/*
* Calculate a GEM MAC Address hash index
*/
static unsigned calc_mac_hash(const uint8_t *mac)
{
int index_bit, mac_bit;
unsigned hash_index;
hash_index = 0;
mac_bit = 5;
for (index_bit = 5; index_bit >= 0; index_bit--) {
hash_index |= (get_bit(mac, mac_bit) ^
get_bit(mac, mac_bit + 6) ^
get_bit(mac, mac_bit + 12) ^
get_bit(mac, mac_bit + 18) ^
get_bit(mac, mac_bit + 24) ^
get_bit(mac, mac_bit + 30) ^
get_bit(mac, mac_bit + 36) ^
get_bit(mac, mac_bit + 42)) << index_bit;
mac_bit--;
}
return hash_index;
}
/*
* gem_mac_address_filter:
* Accept or reject this destination address?
* Returns:
* GEM_RX_REJECT: reject
* >= 0: Specific address accept (which matched SAR is returned)
* others for various other modes of accept:
* GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
* GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
*/
static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
{
uint8_t *gem_spaddr;
int i;
/* Promiscuous mode? */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
return GEM_RX_PROMISCUOUS_ACCEPT;
}
if (!memcmp(packet, broadcast_addr, 6)) {
/* Reject broadcast packets? */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
return GEM_RX_REJECT;
}
return GEM_RX_BROADCAST_ACCEPT;
}
/* Accept packets -w- hash match? */
if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
(packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
unsigned hash_index;
hash_index = calc_mac_hash(packet);
if (hash_index < 32) {
if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
GEM_RX_UNICAST_HASH_ACCEPT;
}
} else {
hash_index -= 32;
if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
GEM_RX_UNICAST_HASH_ACCEPT;
}
}
}
/* Check all 4 specific addresses */
gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
for (i = 3; i >= 0; i--) {
if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
return GEM_RX_SAR_ACCEPT + i;
}
}
/* No address match; reject the packet */
return GEM_RX_REJECT;
}
static void gem_get_rx_desc(CadenceGEMState *s)
{
DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr);
/* read current descriptor */
cpu_physical_memory_read(s->rx_desc_addr,
(uint8_t *)s->rx_desc, sizeof(s->rx_desc));
/* Descriptor owned by software ? */
if (rx_desc_get_ownership(s->rx_desc) == 1) {
DB_PRINT("descriptor 0x%x owned by sw.\n",
(unsigned)s->rx_desc_addr);
s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
/* Handle interrupt consequences */
gem_update_int_status(s);
}
}
/*
* gem_receive:
* Fit a packet handed to us by QEMU into the receive descriptor ring.
*/
static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
CadenceGEMState *s;
unsigned rxbufsize, bytes_to_copy;
unsigned rxbuf_offset;
uint8_t rxbuf[2048];
uint8_t *rxbuf_ptr;
bool first_desc = true;
int maf;
s = qemu_get_nic_opaque(nc);
/* Is this destination MAC address "for us" ? */
maf = gem_mac_address_filter(s, buf);
if (maf == GEM_RX_REJECT) {
return -1;
}
/* Discard packets with receive length error enabled ? */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
unsigned type_len;
/* Fish the ethertype / length field out of the RX packet */
type_len = buf[12] << 8 | buf[13];
/* It is a length field, not an ethertype */
if (type_len < 0x600) {
if (size < type_len) {
/* discard */
return -1;
}
}
}
/*
* Determine configured receive buffer offset (probably 0)
*/
rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
GEM_NWCFG_BUFF_OFST_S;
/* The configure size of each receive buffer. Determines how many
* buffers needed to hold this packet.
*/
rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
bytes_to_copy = size;
/* Pad to minimum length. Assume FCS field is stripped, logic
* below will increment it to the real minimum of 64 when
* not FCS stripping
*/
if (size < 60) {
size = 60;
}
/* Strip of FCS field ? (usually yes) */
if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
rxbuf_ptr = (void *)buf;
} else {
unsigned crc_val;
/* The application wants the FCS field, which QEMU does not provide.
* We must try and calculate one.
*/
memcpy(rxbuf, buf, size);
memset(rxbuf + size, 0, sizeof(rxbuf) - size);
rxbuf_ptr = rxbuf;
crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
bytes_to_copy += 4;
size += 4;
}
DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
while (bytes_to_copy) {
/* Do nothing if receive is not enabled. */
if (!gem_can_receive(nc)) {
assert(!first_desc);
return -1;
}
DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
rx_desc_get_buffer(s->rx_desc));
/* Copy packet data to emulated DMA buffer */
cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc) + rxbuf_offset,
rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
/* Update the descriptor. */
if (first_desc) {
rx_desc_set_sof(s->rx_desc);
first_desc = false;
}
if (bytes_to_copy == 0) {
rx_desc_set_eof(s->rx_desc);
rx_desc_set_length(s->rx_desc, size);
}
rx_desc_set_ownership(s->rx_desc);
switch (maf) {
case GEM_RX_PROMISCUOUS_ACCEPT:
break;
case GEM_RX_BROADCAST_ACCEPT:
rx_desc_set_broadcast(s->rx_desc);
break;
case GEM_RX_UNICAST_HASH_ACCEPT:
rx_desc_set_unicast_hash(s->rx_desc);
break;
case GEM_RX_MULTICAST_HASH_ACCEPT:
rx_desc_set_multicast_hash(s->rx_desc);
break;
case GEM_RX_REJECT:
abort();
default: /* SAR */
rx_desc_set_sar(s->rx_desc, maf);
}
/* Descriptor write-back. */
cpu_physical_memory_write(s->rx_desc_addr,
(uint8_t *)s->rx_desc, sizeof(s->rx_desc));
/* Next descriptor */
if (rx_desc_get_wrap(s->rx_desc)) {
DB_PRINT("wrapping RX descriptor list\n");
s->rx_desc_addr = s->regs[GEM_RXQBASE];
} else {
DB_PRINT("incrementing RX descriptor list\n");
s->rx_desc_addr += 8;
}
gem_get_rx_desc(s);
}
/* Count it */
gem_receive_updatestats(s, buf, size);
s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
/* Handle interrupt consequences */
gem_update_int_status(s);
return size;
}
/*
* gem_transmit_updatestats:
* Increment transmit statistics.
*/
static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
unsigned bytes)
{
uint64_t octets;
/* Total octets (bytes) transmitted */
octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
s->regs[GEM_OCTTXHI];
octets += bytes;
s->regs[GEM_OCTTXLO] = octets >> 32;
s->regs[GEM_OCTTXHI] = octets;
/* Error-free Frames transmitted */
s->regs[GEM_TXCNT]++;
/* Error-free Broadcast Frames counter */
if (!memcmp(packet, broadcast_addr, 6)) {
s->regs[GEM_TXBCNT]++;
}
/* Error-free Multicast Frames counter */
if (packet[0] == 0x01) {
s->regs[GEM_TXMCNT]++;
}
if (bytes <= 64) {
s->regs[GEM_TX64CNT]++;
} else if (bytes <= 127) {
s->regs[GEM_TX65CNT]++;
} else if (bytes <= 255) {
s->regs[GEM_TX128CNT]++;
} else if (bytes <= 511) {
s->regs[GEM_TX256CNT]++;
} else if (bytes <= 1023) {
s->regs[GEM_TX512CNT]++;
} else if (bytes <= 1518) {
s->regs[GEM_TX1024CNT]++;
} else {
s->regs[GEM_TX1519CNT]++;
}
}
/*
* gem_transmit:
* Fish packets out of the descriptor ring and feed them to QEMU
*/
static void gem_transmit(CadenceGEMState *s)
{
unsigned desc[2];
hwaddr packet_desc_addr;
uint8_t tx_packet[2048];
uint8_t *p;
unsigned total_bytes;
/* Do nothing if transmit is not enabled. */
if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
return;
}
DB_PRINT("\n");
/* The packet we will hand off to QEMU.
* Packets scattered across multiple descriptors are gathered to this
* one contiguous buffer first.
*/
p = tx_packet;
total_bytes = 0;
/* read current descriptor */
packet_desc_addr = s->tx_desc_addr;
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
cpu_physical_memory_read(packet_desc_addr,
(uint8_t *)desc, sizeof(desc));
/* Handle all descriptors owned by hardware */
while (tx_desc_get_used(desc) == 0) {
/* Do nothing if transmit is not enabled. */
if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
return;
}
print_gem_tx_desc(desc);
/* The real hardware would eat this (and possibly crash).
* For QEMU let's lend a helping hand.
*/
if ((tx_desc_get_buffer(desc) == 0) ||
(tx_desc_get_length(desc) == 0)) {
DB_PRINT("Invalid TX descriptor @ 0x%x\n",
(unsigned)packet_desc_addr);
break;
}
/* Gather this fragment of the packet from "dma memory" to our contig.
* buffer.
*/
cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
tx_desc_get_length(desc));
p += tx_desc_get_length(desc);
total_bytes += tx_desc_get_length(desc);
/* Last descriptor for this packet; hand the whole thing off */
if (tx_desc_get_last(desc)) {
unsigned desc_first[2];
/* Modify the 1st descriptor of this packet to be owned by
* the processor.
*/
cpu_physical_memory_read(s->tx_desc_addr, (uint8_t *)desc_first,
sizeof(desc_first));
tx_desc_set_used(desc_first);
cpu_physical_memory_write(s->tx_desc_addr, (uint8_t *)desc_first,
sizeof(desc_first));
/* Advance the hardware current descriptor past this packet */
if (tx_desc_get_wrap(desc)) {
s->tx_desc_addr = s->regs[GEM_TXQBASE];
} else {
s->tx_desc_addr = packet_desc_addr + 8;
}
DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr);
s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
/* Handle interrupt consequences */
gem_update_int_status(s);
/* Is checksum offload enabled? */
if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
net_checksum_calculate(tx_packet, total_bytes);
}
/* Update MAC statistics */
gem_transmit_updatestats(s, tx_packet, total_bytes);
/* Send the packet somewhere */
if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) {
gem_receive(qemu_get_queue(s->nic), tx_packet, total_bytes);
} else {
qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
total_bytes);
}
/* Prepare for next packet */
p = tx_packet;
total_bytes = 0;
}
/* read next descriptor */
if (tx_desc_get_wrap(desc)) {
packet_desc_addr = s->regs[GEM_TXQBASE];
} else {
packet_desc_addr += 8;
}
DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
cpu_physical_memory_read(packet_desc_addr,
(uint8_t *)desc, sizeof(desc));
}
if (tx_desc_get_used(desc)) {
s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
gem_update_int_status(s);
}
}
static void gem_phy_reset(CadenceGEMState *s)
{
memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
s->phy_regs[PHY_REG_CONTROL] = 0x1140;
s->phy_regs[PHY_REG_STATUS] = 0x7969;
s->phy_regs[PHY_REG_PHYID1] = 0x0141;
s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
s->phy_regs[PHY_REG_NEXTP] = 0x2001;
s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0xBC00;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
s->phy_regs[PHY_REG_LED] = 0x4100;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
phy_update_link(s);
}
static void gem_reset(DeviceState *d)
{
int i;
CadenceGEMState *s = CADENCE_GEM(d);
DB_PRINT("\n");
/* Set post reset register values */
memset(&s->regs[0], 0, sizeof(s->regs));
s->regs[GEM_NWCFG] = 0x00080000;
s->regs[GEM_NWSTATUS] = 0x00000006;
s->regs[GEM_DMACFG] = 0x00020784;
s->regs[GEM_IMR] = 0x07ffffff;
s->regs[GEM_TXPAUSE] = 0x0000ffff;
s->regs[GEM_TXPARTIALSF] = 0x000003ff;
s->regs[GEM_RXPARTIALSF] = 0x000003ff;
s->regs[GEM_MODID] = 0x00020118;
s->regs[GEM_DESCONF] = 0x02500111;
s->regs[GEM_DESCONF2] = 0x2ab13fff;
s->regs[GEM_DESCONF5] = 0x002f2145;
s->regs[GEM_DESCONF6] = 0x00000200;
for (i = 0; i < 4; i++) {
s->sar_active[i] = false;
}
gem_phy_reset(s);
gem_update_int_status(s);
}
static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
{
DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
return s->phy_regs[reg_num];
}
static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
{
DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
switch (reg_num) {
case PHY_REG_CONTROL:
if (val & PHY_REG_CONTROL_RST) {
/* Phy reset */
gem_phy_reset(s);
val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
s->phy_loop = 0;
}
if (val & PHY_REG_CONTROL_ANEG) {
/* Complete autonegotiation immediately */
val &= ~PHY_REG_CONTROL_ANEG;
s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
}
if (val & PHY_REG_CONTROL_LOOP) {
DB_PRINT("PHY placed in loopback\n");
s->phy_loop = 1;
} else {
s->phy_loop = 0;
}
break;
}
s->phy_regs[reg_num] = val;
}
/*
* gem_read32:
* Read a GEM register.
*/
static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
{
CadenceGEMState *s;
uint32_t retval;
s = (CadenceGEMState *)opaque;
offset >>= 2;
retval = s->regs[offset];
DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
switch (offset) {
case GEM_ISR:
DB_PRINT("lowering irq on ISR read\n");
qemu_set_irq(s->irq, 0);
break;
case GEM_PHYMNTNC:
if (retval & GEM_PHYMNTNC_OP_R) {
uint32_t phy_addr, reg_num;
phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
retval &= 0xFFFF0000;
retval |= gem_phy_read(s, reg_num);
} else {
retval |= 0xFFFF; /* No device at this address */
}
}
break;
}
/* Squash read to clear bits */
s->regs[offset] &= ~(s->regs_rtc[offset]);
/* Do not provide write only bits */
retval &= ~(s->regs_wo[offset]);
DB_PRINT("0x%08x\n", retval);
return retval;
}
/*
* gem_write32:
* Write a GEM register.
*/
static void gem_write(void *opaque, hwaddr offset, uint64_t val,
unsigned size)
{
CadenceGEMState *s = (CadenceGEMState *)opaque;
uint32_t readonly;
DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
offset >>= 2;
/* Squash bits which are read only in write value */
val &= ~(s->regs_ro[offset]);
/* Preserve (only) bits which are read only and wtc in register */
readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
/* Copy register write to backing store */
s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
/* do w1c */
s->regs[offset] &= ~(s->regs_w1c[offset] & val);
/* Handle register write side effects */
switch (offset) {
case GEM_NWCTRL:
if (val & GEM_NWCTRL_RXENA) {
gem_get_rx_desc(s);
}
if (val & GEM_NWCTRL_TXSTART) {
gem_transmit(s);
}
if (!(val & GEM_NWCTRL_TXENA)) {
/* Reset to start of Q when transmit disabled. */
s->tx_desc_addr = s->regs[GEM_TXQBASE];
}
if (gem_can_receive(qemu_get_queue(s->nic))) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case GEM_TXSTATUS:
gem_update_int_status(s);
break;
case GEM_RXQBASE:
s->rx_desc_addr = val;
break;
case GEM_TXQBASE:
s->tx_desc_addr = val;
break;
case GEM_RXSTATUS:
gem_update_int_status(s);
break;
case GEM_IER:
s->regs[GEM_IMR] &= ~val;
gem_update_int_status(s);
break;
case GEM_IDR:
s->regs[GEM_IMR] |= val;
gem_update_int_status(s);
break;
case GEM_SPADDR1LO:
case GEM_SPADDR2LO:
case GEM_SPADDR3LO:
case GEM_SPADDR4LO:
s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
break;
case GEM_SPADDR1HI:
case GEM_SPADDR2HI:
case GEM_SPADDR3HI:
case GEM_SPADDR4HI:
s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
break;
case GEM_PHYMNTNC:
if (val & GEM_PHYMNTNC_OP_W) {
uint32_t phy_addr, reg_num;
phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
gem_phy_write(s, reg_num, val);
}
}
break;
}
DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
}
static const MemoryRegionOps gem_ops = {
.read = gem_read,
.write = gem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void gem_set_link(NetClientState *nc)
{
DB_PRINT("\n");
phy_update_link(qemu_get_nic_opaque(nc));
}
static NetClientInfo net_gem_info = {
.type = NET_CLIENT_OPTIONS_KIND_NIC,
.size = sizeof(NICState),
.can_receive = gem_can_receive,
.receive = gem_receive,
.link_status_changed = gem_set_link,
};
static int gem_init(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
CadenceGEMState *s = CADENCE_GEM(dev);
DB_PRINT("\n");
gem_init_register_masks(s);
memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
"enet", sizeof(s->regs));
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_gem_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id, s);
return 0;
}
static const VMStateDescription vmstate_cadence_gem = {
.name = "cadence_gem",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
VMSTATE_UINT8(phy_loop, CadenceGEMState),
VMSTATE_UINT32(rx_desc_addr, CadenceGEMState),
VMSTATE_UINT32(tx_desc_addr, CadenceGEMState),
VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
VMSTATE_END_OF_LIST(),
}
};
static Property gem_properties[] = {
DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void gem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
sdc->init = gem_init;
dc->props = gem_properties;
dc->vmsd = &vmstate_cadence_gem;
dc->reset = gem_reset;
}
static const TypeInfo gem_info = {
.name = TYPE_CADENCE_GEM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CadenceGEMState),
.class_init = gem_class_init,
};
static void gem_register_types(void)
{
type_register_static(&gem_info);
}
type_init(gem_register_types)