qemu-e2k/tcg/ppc64/tcg-target.c
Richard Henderson 39dc85b985 tcg-ppc64: Handle deposit of zero
The TCG optimizer does great work when inserting constants, being able
to fold the open-coded deposit expansion to just an AND or an OR.  Avoid
a bit the regression caused by having the deposit opcode by expanding
deposit of zero as an AND.

Reviewed-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Richard Henderson <rth@twiddle.net>
2013-04-15 20:09:55 +02:00

2198 lines
62 KiB
C

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#define TCG_CT_CONST_S16 0x100
#define TCG_CT_CONST_U16 0x200
#define TCG_CT_CONST_S32 0x400
#define TCG_CT_CONST_U32 0x800
#define TCG_CT_CONST_ZERO 0x1000
#define TCG_CT_CONST_MONE 0x2000
static uint8_t *tb_ret_addr;
#define FAST_PATH
#if TARGET_LONG_BITS == 32
#define LD_ADDR LWZU
#define CMP_L 0
#else
#define LD_ADDR LDU
#define CMP_L (1<<21)
#endif
#ifndef GUEST_BASE
#define GUEST_BASE 0
#endif
#ifdef CONFIG_GETAUXVAL
#include <sys/auxv.h>
static bool have_isa_2_06;
#define HAVE_ISA_2_06 have_isa_2_06
#define HAVE_ISEL have_isa_2_06
#else
#define HAVE_ISA_2_06 0
#define HAVE_ISEL 0
#endif
#ifdef CONFIG_USE_GUEST_BASE
#define TCG_GUEST_BASE_REG 30
#else
#define TCG_GUEST_BASE_REG 0
#endif
#ifndef NDEBUG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"r15",
"r16",
"r17",
"r18",
"r19",
"r20",
"r21",
"r22",
"r23",
"r24",
"r25",
"r26",
"r27",
"r28",
"r29",
"r30",
"r31"
};
#endif
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_R14,
TCG_REG_R15,
TCG_REG_R16,
TCG_REG_R17,
TCG_REG_R18,
TCG_REG_R19,
TCG_REG_R20,
TCG_REG_R21,
TCG_REG_R22,
TCG_REG_R23,
TCG_REG_R28,
TCG_REG_R29,
TCG_REG_R30,
TCG_REG_R31,
#ifdef __APPLE__
TCG_REG_R2,
#endif
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
TCG_REG_R7,
TCG_REG_R8,
TCG_REG_R9,
TCG_REG_R10,
#ifndef __APPLE__
TCG_REG_R11,
#endif
TCG_REG_R12,
TCG_REG_R24,
TCG_REG_R25,
TCG_REG_R26,
TCG_REG_R27
};
static const int tcg_target_call_iarg_regs[] = {
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
TCG_REG_R7,
TCG_REG_R8,
TCG_REG_R9,
TCG_REG_R10
};
static const int tcg_target_call_oarg_regs[] = {
TCG_REG_R3
};
static const int tcg_target_callee_save_regs[] = {
#ifdef __APPLE__
TCG_REG_R11,
#endif
TCG_REG_R14,
TCG_REG_R15,
TCG_REG_R16,
TCG_REG_R17,
TCG_REG_R18,
TCG_REG_R19,
TCG_REG_R20,
TCG_REG_R21,
TCG_REG_R22,
TCG_REG_R23,
TCG_REG_R24,
TCG_REG_R25,
TCG_REG_R26,
TCG_REG_R27, /* currently used for the global env */
TCG_REG_R28,
TCG_REG_R29,
TCG_REG_R30,
TCG_REG_R31
};
static uint32_t reloc_pc24_val (void *pc, tcg_target_long target)
{
tcg_target_long disp;
disp = target - (tcg_target_long) pc;
if ((disp << 38) >> 38 != disp)
tcg_abort ();
return disp & 0x3fffffc;
}
static void reloc_pc24 (void *pc, tcg_target_long target)
{
*(uint32_t *) pc = (*(uint32_t *) pc & ~0x3fffffc)
| reloc_pc24_val (pc, target);
}
static uint16_t reloc_pc14_val (void *pc, tcg_target_long target)
{
tcg_target_long disp;
disp = target - (tcg_target_long) pc;
if (disp != (int16_t) disp)
tcg_abort ();
return disp & 0xfffc;
}
static void reloc_pc14 (void *pc, tcg_target_long target)
{
*(uint32_t *) pc = (*(uint32_t *) pc & ~0xfffc)
| reloc_pc14_val (pc, target);
}
static void patch_reloc (uint8_t *code_ptr, int type,
tcg_target_long value, tcg_target_long addend)
{
value += addend;
switch (type) {
case R_PPC_REL14:
reloc_pc14 (code_ptr, value);
break;
case R_PPC_REL24:
reloc_pc24 (code_ptr, value);
break;
default:
tcg_abort ();
}
}
/* parse target specific constraints */
static int target_parse_constraint (TCGArgConstraint *ct, const char **pct_str)
{
const char *ct_str;
ct_str = *pct_str;
switch (ct_str[0]) {
case 'A': case 'B': case 'C': case 'D':
ct->ct |= TCG_CT_REG;
tcg_regset_set_reg (ct->u.regs, 3 + ct_str[0] - 'A');
break;
case 'r':
ct->ct |= TCG_CT_REG;
tcg_regset_set32 (ct->u.regs, 0, 0xffffffff);
break;
case 'L': /* qemu_ld constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set32 (ct->u.regs, 0, 0xffffffff);
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R3);
#ifdef CONFIG_SOFTMMU
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R4);
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R5);
#endif
break;
case 'S': /* qemu_st constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set32 (ct->u.regs, 0, 0xffffffff);
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R3);
#ifdef CONFIG_SOFTMMU
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R4);
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R5);
tcg_regset_reset_reg (ct->u.regs, TCG_REG_R6);
#endif
break;
case 'I':
ct->ct |= TCG_CT_CONST_S16;
break;
case 'J':
ct->ct |= TCG_CT_CONST_U16;
break;
case 'M':
ct->ct |= TCG_CT_CONST_MONE;
break;
case 'T':
ct->ct |= TCG_CT_CONST_S32;
break;
case 'U':
ct->ct |= TCG_CT_CONST_U32;
break;
case 'Z':
ct->ct |= TCG_CT_CONST_ZERO;
break;
default:
return -1;
}
ct_str++;
*pct_str = ct_str;
return 0;
}
/* test if a constant matches the constraint */
static int tcg_target_const_match (tcg_target_long val,
const TCGArgConstraint *arg_ct)
{
int ct = arg_ct->ct;
if (ct & TCG_CT_CONST) {
return 1;
} else if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
} else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
return 1;
}
return 0;
}
#define OPCD(opc) ((opc)<<26)
#define XO19(opc) (OPCD(19)|((opc)<<1))
#define XO30(opc) (OPCD(30)|((opc)<<2))
#define XO31(opc) (OPCD(31)|((opc)<<1))
#define XO58(opc) (OPCD(58)|(opc))
#define XO62(opc) (OPCD(62)|(opc))
#define B OPCD( 18)
#define BC OPCD( 16)
#define LBZ OPCD( 34)
#define LHZ OPCD( 40)
#define LHA OPCD( 42)
#define LWZ OPCD( 32)
#define STB OPCD( 38)
#define STH OPCD( 44)
#define STW OPCD( 36)
#define STD XO62( 0)
#define STDU XO62( 1)
#define STDX XO31(149)
#define LD XO58( 0)
#define LDX XO31( 21)
#define LDU XO58( 1)
#define LWA XO58( 2)
#define LWAX XO31(341)
#define ADDIC OPCD( 12)
#define ADDI OPCD( 14)
#define ADDIS OPCD( 15)
#define ORI OPCD( 24)
#define ORIS OPCD( 25)
#define XORI OPCD( 26)
#define XORIS OPCD( 27)
#define ANDI OPCD( 28)
#define ANDIS OPCD( 29)
#define MULLI OPCD( 7)
#define CMPLI OPCD( 10)
#define CMPI OPCD( 11)
#define SUBFIC OPCD( 8)
#define LWZU OPCD( 33)
#define STWU OPCD( 37)
#define RLWIMI OPCD( 20)
#define RLWINM OPCD( 21)
#define RLWNM OPCD( 23)
#define RLDICL XO30( 0)
#define RLDICR XO30( 1)
#define RLDIMI XO30( 3)
#define RLDCL XO30( 8)
#define BCLR XO19( 16)
#define BCCTR XO19(528)
#define CRAND XO19(257)
#define CRANDC XO19(129)
#define CRNAND XO19(225)
#define CROR XO19(449)
#define CRNOR XO19( 33)
#define EXTSB XO31(954)
#define EXTSH XO31(922)
#define EXTSW XO31(986)
#define ADD XO31(266)
#define ADDE XO31(138)
#define ADDME XO31(234)
#define ADDZE XO31(202)
#define ADDC XO31( 10)
#define AND XO31( 28)
#define SUBF XO31( 40)
#define SUBFC XO31( 8)
#define SUBFE XO31(136)
#define SUBFME XO31(232)
#define SUBFZE XO31(200)
#define OR XO31(444)
#define XOR XO31(316)
#define MULLW XO31(235)
#define MULHWU XO31( 11)
#define DIVW XO31(491)
#define DIVWU XO31(459)
#define CMP XO31( 0)
#define CMPL XO31( 32)
#define LHBRX XO31(790)
#define LWBRX XO31(534)
#define LDBRX XO31(532)
#define STHBRX XO31(918)
#define STWBRX XO31(662)
#define STDBRX XO31(660)
#define MFSPR XO31(339)
#define MTSPR XO31(467)
#define SRAWI XO31(824)
#define NEG XO31(104)
#define MFCR XO31( 19)
#define MFOCRF (MFCR | (1u << 20))
#define NOR XO31(124)
#define CNTLZW XO31( 26)
#define CNTLZD XO31( 58)
#define ANDC XO31( 60)
#define ORC XO31(412)
#define EQV XO31(284)
#define NAND XO31(476)
#define ISEL XO31( 15)
#define MULLD XO31(233)
#define MULHD XO31( 73)
#define MULHDU XO31( 9)
#define DIVD XO31(489)
#define DIVDU XO31(457)
#define LBZX XO31( 87)
#define LHZX XO31(279)
#define LHAX XO31(343)
#define LWZX XO31( 23)
#define STBX XO31(215)
#define STHX XO31(407)
#define STWX XO31(151)
#define SPR(a,b) ((((a)<<5)|(b))<<11)
#define LR SPR(8, 0)
#define CTR SPR(9, 0)
#define SLW XO31( 24)
#define SRW XO31(536)
#define SRAW XO31(792)
#define SLD XO31( 27)
#define SRD XO31(539)
#define SRAD XO31(794)
#define SRADI XO31(413<<1)
#define TW XO31( 4)
#define TRAP (TW | TO (31))
#define RT(r) ((r)<<21)
#define RS(r) ((r)<<21)
#define RA(r) ((r)<<16)
#define RB(r) ((r)<<11)
#define TO(t) ((t)<<21)
#define SH(s) ((s)<<11)
#define MB(b) ((b)<<6)
#define ME(e) ((e)<<1)
#define BO(o) ((o)<<21)
#define MB64(b) ((b)<<5)
#define FXM(b) (1 << (19 - (b)))
#define LK 1
#define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
#define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
#define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
#define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
#define BF(n) ((n)<<23)
#define BI(n, c) (((c)+((n)*4))<<16)
#define BT(n, c) (((c)+((n)*4))<<21)
#define BA(n, c) (((c)+((n)*4))<<16)
#define BB(n, c) (((c)+((n)*4))<<11)
#define BC_(n, c) (((c)+((n)*4))<<6)
#define BO_COND_TRUE BO (12)
#define BO_COND_FALSE BO ( 4)
#define BO_ALWAYS BO (20)
enum {
CR_LT,
CR_GT,
CR_EQ,
CR_SO
};
static const uint32_t tcg_to_bc[] = {
[TCG_COND_EQ] = BC | BI (7, CR_EQ) | BO_COND_TRUE,
[TCG_COND_NE] = BC | BI (7, CR_EQ) | BO_COND_FALSE,
[TCG_COND_LT] = BC | BI (7, CR_LT) | BO_COND_TRUE,
[TCG_COND_GE] = BC | BI (7, CR_LT) | BO_COND_FALSE,
[TCG_COND_LE] = BC | BI (7, CR_GT) | BO_COND_FALSE,
[TCG_COND_GT] = BC | BI (7, CR_GT) | BO_COND_TRUE,
[TCG_COND_LTU] = BC | BI (7, CR_LT) | BO_COND_TRUE,
[TCG_COND_GEU] = BC | BI (7, CR_LT) | BO_COND_FALSE,
[TCG_COND_LEU] = BC | BI (7, CR_GT) | BO_COND_FALSE,
[TCG_COND_GTU] = BC | BI (7, CR_GT) | BO_COND_TRUE,
};
/* The low bit here is set if the RA and RB fields must be inverted. */
static const uint32_t tcg_to_isel[] = {
[TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
[TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
[TCG_COND_LT] = ISEL | BC_(7, CR_LT),
[TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
[TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
[TCG_COND_GT] = ISEL | BC_(7, CR_GT),
[TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
[TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
[TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
[TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
};
static inline void tcg_out_mov(TCGContext *s, TCGType type,
TCGReg ret, TCGReg arg)
{
tcg_out32 (s, OR | SAB (arg, ret, arg));
}
static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
int sh, int mb)
{
sh = SH (sh & 0x1f) | (((sh >> 5) & 1) << 1);
mb = MB64 ((mb >> 5) | ((mb << 1) & 0x3f));
tcg_out32 (s, op | RA (ra) | RS (rs) | sh | mb);
}
static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
int sh, int mb, int me)
{
tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
}
static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_out_rld(s, RLDICL, dst, src, 0, 32);
}
static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
}
static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
}
static void tcg_out_movi32(TCGContext *s, TCGReg ret, int32_t arg)
{
if (arg == (int16_t) arg) {
tcg_out32(s, ADDI | TAI(ret, 0, arg));
} else {
tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
if (arg & 0xffff) {
tcg_out32(s, ORI | SAI(ret, ret, arg));
}
}
}
static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long arg)
{
if (type == TCG_TYPE_I32 || arg == (int32_t)arg) {
tcg_out_movi32(s, ret, arg);
} else if (arg == (uint32_t)arg && !(arg & 0x8000)) {
tcg_out32(s, ADDI | TAI(ret, 0, arg));
tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
} else {
int32_t high = arg >> 32;
tcg_out_movi32(s, ret, high);
if (high) {
tcg_out_shli64(s, ret, ret, 32);
}
if (arg & 0xffff0000) {
tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
}
if (arg & 0xffff) {
tcg_out32(s, ORI | SAI(ret, ret, arg));
}
}
}
static bool mask_operand(uint32_t c, int *mb, int *me)
{
uint32_t lsb, test;
/* Accept a bit pattern like:
0....01....1
1....10....0
0..01..10..0
Keep track of the transitions. */
if (c == 0 || c == -1) {
return false;
}
test = c;
lsb = test & -test;
test += lsb;
if (test & (test - 1)) {
return false;
}
*me = clz32(lsb);
*mb = test ? clz32(test & -test) + 1 : 0;
return true;
}
static bool mask64_operand(uint64_t c, int *mb, int *me)
{
uint64_t lsb;
if (c == 0) {
return false;
}
lsb = c & -c;
/* Accept 1..10..0. */
if (c == -lsb) {
*mb = 0;
*me = clz64(lsb);
return true;
}
/* Accept 0..01..1. */
if (lsb == 1 && (c & (c + 1)) == 0) {
*mb = clz64(c + 1) + 1;
*me = 63;
return true;
}
return false;
}
static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
{
int mb, me;
if ((c & 0xffff) == c) {
tcg_out32(s, ANDI | SAI(src, dst, c));
return;
} else if ((c & 0xffff0000) == c) {
tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
return;
} else if (mask_operand(c, &mb, &me)) {
tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
} else {
tcg_out_movi(s, TCG_TYPE_I32, 0, c);
tcg_out32(s, AND | SAB(src, dst, 0));
}
}
static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
{
int mb, me;
if ((c & 0xffff) == c) {
tcg_out32(s, ANDI | SAI(src, dst, c));
return;
} else if ((c & 0xffff0000) == c) {
tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
return;
} else if (mask64_operand(c, &mb, &me)) {
if (mb == 0) {
tcg_out_rld(s, RLDICR, dst, src, 0, me);
} else {
tcg_out_rld(s, RLDICL, dst, src, 0, mb);
}
} else {
tcg_out_movi(s, TCG_TYPE_I64, 0, c);
tcg_out32(s, AND | SAB(src, dst, 0));
}
}
static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
int op_lo, int op_hi)
{
if (c >> 16) {
tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
src = dst;
}
if (c & 0xffff) {
tcg_out32(s, op_lo | SAI(src, dst, c));
src = dst;
}
}
static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
{
tcg_out_zori32(s, dst, src, c, ORI, ORIS);
}
static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
{
tcg_out_zori32(s, dst, src, c, XORI, XORIS);
}
static void tcg_out_b (TCGContext *s, int mask, tcg_target_long target)
{
tcg_target_long disp;
disp = target - (tcg_target_long) s->code_ptr;
if ((disp << 38) >> 38 == disp)
tcg_out32 (s, B | (disp & 0x3fffffc) | mask);
else {
tcg_out_movi (s, TCG_TYPE_I64, 0, (tcg_target_long) target);
tcg_out32 (s, MTSPR | RS (0) | CTR);
tcg_out32 (s, BCCTR | BO_ALWAYS | mask);
}
}
static void tcg_out_call (TCGContext *s, tcg_target_long arg, int const_arg)
{
#ifdef __APPLE__
if (const_arg) {
tcg_out_b (s, LK, arg);
}
else {
tcg_out32 (s, MTSPR | RS (arg) | LR);
tcg_out32 (s, BCLR | BO_ALWAYS | LK);
}
#else
int reg;
if (const_arg) {
reg = 2;
tcg_out_movi (s, TCG_TYPE_I64, reg, arg);
}
else reg = arg;
tcg_out32 (s, LD | RT (0) | RA (reg));
tcg_out32 (s, MTSPR | RA (0) | CTR);
tcg_out32 (s, LD | RT (11) | RA (reg) | 16);
tcg_out32 (s, LD | RT (2) | RA (reg) | 8);
tcg_out32 (s, BCCTR | BO_ALWAYS | LK);
#endif
}
static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr,
int offset, int op1, int op2)
{
if (offset == (int16_t) offset) {
tcg_out32(s, op1 | TAI(ret, addr, offset));
} else {
tcg_out_movi(s, TCG_TYPE_I64, 0, offset);
tcg_out32(s, op2 | TAB(ret, addr, 0));
}
}
static void tcg_out_ldsta(TCGContext *s, TCGReg ret, TCGReg addr,
int offset, int op1, int op2)
{
if (offset == (int16_t) (offset & ~3)) {
tcg_out32(s, op1 | TAI(ret, addr, offset));
} else {
tcg_out_movi(s, TCG_TYPE_I64, 0, offset);
tcg_out32(s, op2 | TAB(ret, addr, 0));
}
}
#if defined (CONFIG_SOFTMMU)
#include "exec/softmmu_defs.h"
/* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
int mmu_idx) */
static const void * const qemu_ld_helpers[4] = {
helper_ldb_mmu,
helper_ldw_mmu,
helper_ldl_mmu,
helper_ldq_mmu,
};
/* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
uintxx_t val, int mmu_idx) */
static const void * const qemu_st_helpers[4] = {
helper_stb_mmu,
helper_stw_mmu,
helper_stl_mmu,
helper_stq_mmu,
};
static void tcg_out_tlb_read(TCGContext *s, TCGReg r0, TCGReg r1, TCGReg r2,
TCGReg addr_reg, int s_bits, int offset)
{
#if TARGET_LONG_BITS == 32
tcg_out_ext32u(s, addr_reg, addr_reg);
tcg_out_rlw(s, RLWINM, r0, addr_reg,
32 - (TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS),
32 - (CPU_TLB_BITS + CPU_TLB_ENTRY_BITS),
31 - CPU_TLB_ENTRY_BITS);
tcg_out32(s, ADD | TAB(r0, r0, TCG_AREG0));
tcg_out32(s, LWZU | TAI(r1, r0, offset));
tcg_out_rlw(s, RLWINM, r2, addr_reg, 0,
(32 - s_bits) & 31, 31 - TARGET_PAGE_BITS);
#else
tcg_out_rld (s, RLDICL, r0, addr_reg,
64 - TARGET_PAGE_BITS,
64 - CPU_TLB_BITS);
tcg_out_shli64(s, r0, r0, CPU_TLB_ENTRY_BITS);
tcg_out32(s, ADD | TAB(r0, r0, TCG_AREG0));
tcg_out32(s, LD_ADDR | TAI(r1, r0, offset));
if (!s_bits) {
tcg_out_rld (s, RLDICR, r2, addr_reg, 0, 63 - TARGET_PAGE_BITS);
}
else {
tcg_out_rld (s, RLDICL, r2, addr_reg,
64 - TARGET_PAGE_BITS,
TARGET_PAGE_BITS - s_bits);
tcg_out_rld (s, RLDICL, r2, r2, TARGET_PAGE_BITS, 0);
}
#endif
}
#endif
static const uint32_t qemu_ldx_opc[8] = {
#ifdef TARGET_WORDS_BIGENDIAN
LBZX, LHZX, LWZX, LDX,
0, LHAX, LWAX, LDX
#else
LBZX, LHBRX, LWBRX, LDBRX,
0, 0, 0, LDBRX,
#endif
};
static const uint32_t qemu_stx_opc[4] = {
#ifdef TARGET_WORDS_BIGENDIAN
STBX, STHX, STWX, STDX
#else
STBX, STHBRX, STWBRX, STDBRX,
#endif
};
static const uint32_t qemu_exts_opc[4] = {
EXTSB, EXTSH, EXTSW, 0
};
static void tcg_out_qemu_ld (TCGContext *s, const TCGArg *args, int opc)
{
TCGReg addr_reg, data_reg, r0, r1, rbase;
uint32_t insn, s_bits;
#ifdef CONFIG_SOFTMMU
TCGReg r2, ir;
int mem_index;
void *label1_ptr, *label2_ptr;
#endif
data_reg = *args++;
addr_reg = *args++;
s_bits = opc & 3;
#ifdef CONFIG_SOFTMMU
mem_index = *args;
r0 = 3;
r1 = 4;
r2 = 0;
rbase = 0;
tcg_out_tlb_read (s, r0, r1, r2, addr_reg, s_bits,
offsetof (CPUArchState, tlb_table[mem_index][0].addr_read));
tcg_out32 (s, CMP | BF (7) | RA (r2) | RB (r1) | CMP_L);
label1_ptr = s->code_ptr;
#ifdef FAST_PATH
tcg_out32 (s, BC | BI (7, CR_EQ) | BO_COND_TRUE);
#endif
/* slow path */
ir = 3;
tcg_out_mov (s, TCG_TYPE_I64, ir++, TCG_AREG0);
tcg_out_mov (s, TCG_TYPE_I64, ir++, addr_reg);
tcg_out_movi (s, TCG_TYPE_I64, ir++, mem_index);
tcg_out_call (s, (tcg_target_long) qemu_ld_helpers[s_bits], 1);
if (opc & 4) {
insn = qemu_exts_opc[s_bits];
tcg_out32(s, insn | RA(data_reg) | RS(3));
} else if (data_reg != 3) {
tcg_out_mov(s, TCG_TYPE_I64, data_reg, 3);
}
label2_ptr = s->code_ptr;
tcg_out32 (s, B);
/* label1: fast path */
#ifdef FAST_PATH
reloc_pc14 (label1_ptr, (tcg_target_long) s->code_ptr);
#endif
/* r0 now contains &env->tlb_table[mem_index][index].addr_read */
tcg_out32(s, LD | TAI(r0, r0,
offsetof(CPUTLBEntry, addend)
- offsetof(CPUTLBEntry, addr_read)));
/* r0 = env->tlb_table[mem_index][index].addend */
tcg_out32(s, ADD | TAB(r0, r0, addr_reg));
/* r0 = env->tlb_table[mem_index][index].addend + addr */
#else /* !CONFIG_SOFTMMU */
#if TARGET_LONG_BITS == 32
tcg_out_ext32u(s, addr_reg, addr_reg);
#endif
r0 = addr_reg;
r1 = 3;
rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0;
#endif
insn = qemu_ldx_opc[opc];
if (!HAVE_ISA_2_06 && insn == LDBRX) {
tcg_out32(s, ADDI | TAI(r1, r0, 4));
tcg_out32(s, LWBRX | TAB(data_reg, rbase, r0));
tcg_out32(s, LWBRX | TAB( r1, rbase, r1));
tcg_out_rld(s, RLDIMI, data_reg, r1, 32, 0);
} else if (insn) {
tcg_out32(s, insn | TAB(data_reg, rbase, r0));
} else {
insn = qemu_ldx_opc[s_bits];
tcg_out32(s, insn | TAB(data_reg, rbase, r0));
insn = qemu_exts_opc[s_bits];
tcg_out32 (s, insn | RA(data_reg) | RS(data_reg));
}
#ifdef CONFIG_SOFTMMU
reloc_pc24 (label2_ptr, (tcg_target_long) s->code_ptr);
#endif
}
static void tcg_out_qemu_st (TCGContext *s, const TCGArg *args, int opc)
{
TCGReg addr_reg, r0, r1, rbase, data_reg;
uint32_t insn;
#ifdef CONFIG_SOFTMMU
TCGReg r2, ir;
int mem_index;
void *label1_ptr, *label2_ptr;
#endif
data_reg = *args++;
addr_reg = *args++;
#ifdef CONFIG_SOFTMMU
mem_index = *args;
r0 = 3;
r1 = 4;
r2 = 0;
rbase = 0;
tcg_out_tlb_read (s, r0, r1, r2, addr_reg, opc,
offsetof (CPUArchState, tlb_table[mem_index][0].addr_write));
tcg_out32 (s, CMP | BF (7) | RA (r2) | RB (r1) | CMP_L);
label1_ptr = s->code_ptr;
#ifdef FAST_PATH
tcg_out32 (s, BC | BI (7, CR_EQ) | BO_COND_TRUE);
#endif
/* slow path */
ir = 3;
tcg_out_mov (s, TCG_TYPE_I64, ir++, TCG_AREG0);
tcg_out_mov (s, TCG_TYPE_I64, ir++, addr_reg);
tcg_out_rld (s, RLDICL, ir++, data_reg, 0, 64 - (1 << (3 + opc)));
tcg_out_movi (s, TCG_TYPE_I64, ir++, mem_index);
tcg_out_call (s, (tcg_target_long) qemu_st_helpers[opc], 1);
label2_ptr = s->code_ptr;
tcg_out32 (s, B);
/* label1: fast path */
#ifdef FAST_PATH
reloc_pc14 (label1_ptr, (tcg_target_long) s->code_ptr);
#endif
tcg_out32 (s, (LD
| RT (r0)
| RA (r0)
| (offsetof (CPUTLBEntry, addend)
- offsetof (CPUTLBEntry, addr_write))
));
/* r0 = env->tlb_table[mem_index][index].addend */
tcg_out32(s, ADD | TAB(r0, r0, addr_reg));
/* r0 = env->tlb_table[mem_index][index].addend + addr */
#else /* !CONFIG_SOFTMMU */
#if TARGET_LONG_BITS == 32
tcg_out_ext32u(s, addr_reg, addr_reg);
#endif
r1 = 3;
r0 = addr_reg;
rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0;
#endif
insn = qemu_stx_opc[opc];
if (!HAVE_ISA_2_06 && insn == STDBRX) {
tcg_out32(s, STWBRX | SAB(data_reg, rbase, r0));
tcg_out32(s, ADDI | TAI(r1, r0, 4));
tcg_out_shri64(s, 0, data_reg, 32);
tcg_out32(s, STWBRX | SAB(0, rbase, r1));
} else {
tcg_out32(s, insn | SAB(data_reg, rbase, r0));
}
#ifdef CONFIG_SOFTMMU
reloc_pc24 (label2_ptr, (tcg_target_long) s->code_ptr);
#endif
}
static void tcg_target_qemu_prologue (TCGContext *s)
{
int i, frame_size;
#ifndef __APPLE__
uint64_t addr;
#endif
frame_size = 0
+ 8 /* back chain */
+ 8 /* CR */
+ 8 /* LR */
+ 8 /* compiler doubleword */
+ 8 /* link editor doubleword */
+ 8 /* TOC save area */
+ TCG_STATIC_CALL_ARGS_SIZE
+ ARRAY_SIZE (tcg_target_callee_save_regs) * 8
+ CPU_TEMP_BUF_NLONGS * sizeof(long)
;
frame_size = (frame_size + 15) & ~15;
tcg_set_frame (s, TCG_REG_CALL_STACK, frame_size
- CPU_TEMP_BUF_NLONGS * sizeof (long),
CPU_TEMP_BUF_NLONGS * sizeof (long));
#ifndef __APPLE__
/* First emit adhoc function descriptor */
addr = (uint64_t) s->code_ptr + 24;
tcg_out32 (s, addr >> 32); tcg_out32 (s, addr); /* entry point */
s->code_ptr += 16; /* skip TOC and environment pointer */
#endif
/* Prologue */
tcg_out32 (s, MFSPR | RT (0) | LR);
tcg_out32 (s, STDU | RS (1) | RA (1) | (-frame_size & 0xffff));
for (i = 0; i < ARRAY_SIZE (tcg_target_callee_save_regs); ++i)
tcg_out32 (s, (STD
| RS (tcg_target_callee_save_regs[i])
| RA (1)
| (i * 8 + 48 + TCG_STATIC_CALL_ARGS_SIZE)
)
);
tcg_out32 (s, STD | RS (0) | RA (1) | (frame_size + 16));
#ifdef CONFIG_USE_GUEST_BASE
if (GUEST_BASE) {
tcg_out_movi (s, TCG_TYPE_I64, TCG_GUEST_BASE_REG, GUEST_BASE);
tcg_regset_set_reg (s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
tcg_out_mov (s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
tcg_out32 (s, MTSPR | RS (tcg_target_call_iarg_regs[1]) | CTR);
tcg_out32 (s, BCCTR | BO_ALWAYS);
/* Epilogue */
tb_ret_addr = s->code_ptr;
for (i = 0; i < ARRAY_SIZE (tcg_target_callee_save_regs); ++i)
tcg_out32 (s, (LD
| RT (tcg_target_callee_save_regs[i])
| RA (1)
| (i * 8 + 48 + TCG_STATIC_CALL_ARGS_SIZE)
)
);
tcg_out32(s, LD | TAI(0, 1, frame_size + 16));
tcg_out32(s, MTSPR | RS(0) | LR);
tcg_out32(s, ADDI | TAI(1, 1, frame_size));
tcg_out32(s, BCLR | BO_ALWAYS);
}
static void tcg_out_ld (TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
tcg_target_long arg2)
{
if (type == TCG_TYPE_I32)
tcg_out_ldst (s, ret, arg1, arg2, LWZ, LWZX);
else
tcg_out_ldsta (s, ret, arg1, arg2, LD, LDX);
}
static void tcg_out_st (TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
tcg_target_long arg2)
{
if (type == TCG_TYPE_I32)
tcg_out_ldst (s, arg, arg1, arg2, STW, STWX);
else
tcg_out_ldsta (s, arg, arg1, arg2, STD, STDX);
}
static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
int const_arg2, int cr, TCGType type)
{
int imm;
uint32_t op;
/* Simplify the comparisons below wrt CMPI. */
if (type == TCG_TYPE_I32) {
arg2 = (int32_t)arg2;
}
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
if (const_arg2) {
if ((int16_t) arg2 == arg2) {
op = CMPI;
imm = 1;
break;
}
else if ((uint16_t) arg2 == arg2) {
op = CMPLI;
imm = 1;
break;
}
}
op = CMPL;
imm = 0;
break;
case TCG_COND_LT:
case TCG_COND_GE:
case TCG_COND_LE:
case TCG_COND_GT:
if (const_arg2) {
if ((int16_t) arg2 == arg2) {
op = CMPI;
imm = 1;
break;
}
}
op = CMP;
imm = 0;
break;
case TCG_COND_LTU:
case TCG_COND_GEU:
case TCG_COND_LEU:
case TCG_COND_GTU:
if (const_arg2) {
if ((uint16_t) arg2 == arg2) {
op = CMPLI;
imm = 1;
break;
}
}
op = CMPL;
imm = 0;
break;
default:
tcg_abort ();
}
op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
if (imm) {
tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
} else {
if (const_arg2) {
tcg_out_movi(s, type, 0, arg2);
arg2 = 0;
}
tcg_out32(s, op | RA(arg1) | RB(arg2));
}
}
static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
TCGReg dst, TCGReg src)
{
tcg_out32(s, (type == TCG_TYPE_I64 ? CNTLZD : CNTLZW) | RS(src) | RA(dst));
tcg_out_shri64(s, dst, dst, type == TCG_TYPE_I64 ? 6 : 5);
}
static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
{
/* X != 0 implies X + -1 generates a carry. Extra addition
trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
if (dst != src) {
tcg_out32(s, ADDIC | TAI(dst, src, -1));
tcg_out32(s, SUBFE | TAB(dst, dst, src));
} else {
tcg_out32(s, ADDIC | TAI(0, src, -1));
tcg_out32(s, SUBFE | TAB(dst, 0, src));
}
}
static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
bool const_arg2)
{
if (const_arg2) {
if ((uint32_t)arg2 == arg2) {
tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
} else {
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
}
} else {
tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
}
return TCG_REG_R0;
}
static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGArg arg0, TCGArg arg1, TCGArg arg2,
int const_arg2)
{
int crop, sh;
/* Ignore high bits of a potential constant arg2. */
if (type == TCG_TYPE_I32) {
arg2 = (uint32_t)arg2;
}
/* Handle common and trivial cases before handling anything else. */
if (arg2 == 0) {
switch (cond) {
case TCG_COND_EQ:
tcg_out_setcond_eq0(s, type, arg0, arg1);
return;
case TCG_COND_NE:
if (type == TCG_TYPE_I32) {
tcg_out_ext32u(s, TCG_REG_R0, arg1);
arg1 = TCG_REG_R0;
}
tcg_out_setcond_ne0(s, arg0, arg1);
return;
case TCG_COND_GE:
tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
arg1 = arg0;
/* FALLTHRU */
case TCG_COND_LT:
/* Extract the sign bit. */
tcg_out_rld(s, RLDICL, arg0, arg1,
type == TCG_TYPE_I64 ? 1 : 33, 63);
return;
default:
break;
}
}
/* If we have ISEL, we can implement everything with 3 or 4 insns.
All other cases below are also at least 3 insns, so speed up the
code generator by not considering them and always using ISEL. */
if (HAVE_ISEL) {
int isel, tab;
tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
isel = tcg_to_isel[cond];
tcg_out_movi(s, type, arg0, 1);
if (isel & 1) {
/* arg0 = (bc ? 0 : 1) */
tab = TAB(arg0, 0, arg0);
isel &= ~1;
} else {
/* arg0 = (bc ? 1 : 0) */
tcg_out_movi(s, type, TCG_REG_R0, 0);
tab = TAB(arg0, arg0, TCG_REG_R0);
}
tcg_out32(s, isel | tab);
return;
}
switch (cond) {
case TCG_COND_EQ:
arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
tcg_out_setcond_eq0(s, type, arg0, arg1);
return;
case TCG_COND_NE:
arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
/* Discard the high bits only once, rather than both inputs. */
if (type == TCG_TYPE_I32) {
tcg_out_ext32u(s, TCG_REG_R0, arg1);
arg1 = TCG_REG_R0;
}
tcg_out_setcond_ne0(s, arg0, arg1);
return;
case TCG_COND_GT:
case TCG_COND_GTU:
sh = 30;
crop = 0;
goto crtest;
case TCG_COND_LT:
case TCG_COND_LTU:
sh = 29;
crop = 0;
goto crtest;
case TCG_COND_GE:
case TCG_COND_GEU:
sh = 31;
crop = CRNOR | BT (7, CR_EQ) | BA (7, CR_LT) | BB (7, CR_LT);
goto crtest;
case TCG_COND_LE:
case TCG_COND_LEU:
sh = 31;
crop = CRNOR | BT (7, CR_EQ) | BA (7, CR_GT) | BB (7, CR_GT);
crtest:
tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
if (crop) {
tcg_out32(s, crop);
}
tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
break;
default:
tcg_abort ();
}
}
static void tcg_out_bc (TCGContext *s, int bc, int label_index)
{
TCGLabel *l = &s->labels[label_index];
if (l->has_value)
tcg_out32 (s, bc | reloc_pc14_val (s->code_ptr, l->u.value));
else {
uint16_t val = *(uint16_t *) &s->code_ptr[2];
/* Thanks to Andrzej Zaborowski */
tcg_out32 (s, bc | (val & 0xfffc));
tcg_out_reloc (s, s->code_ptr - 4, R_PPC_REL14, label_index, 0);
}
}
static void tcg_out_brcond(TCGContext *s, TCGCond cond,
TCGArg arg1, TCGArg arg2, int const_arg2,
int label_index, TCGType type)
{
tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
tcg_out_bc(s, tcg_to_bc[cond], label_index);
}
static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
TCGArg v2, bool const_c2)
{
/* If for some reason both inputs are zero, don't produce bad code. */
if (v1 == 0 && v2 == 0) {
tcg_out_movi(s, type, dest, 0);
return;
}
tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
if (HAVE_ISEL) {
int isel = tcg_to_isel[cond];
/* Swap the V operands if the operation indicates inversion. */
if (isel & 1) {
int t = v1;
v1 = v2;
v2 = t;
isel &= ~1;
}
/* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
if (v2 == 0) {
tcg_out_movi(s, type, 0, 0);
}
tcg_out32(s, isel | TAB(dest, v1, v2));
} else {
if (dest == v2) {
cond = tcg_invert_cond(cond);
v2 = v1;
} else if (dest != v1) {
if (v1 == 0) {
tcg_out_movi(s, type, dest, 0);
} else {
tcg_out_mov(s, type, dest, v1);
}
}
/* Branch forward over one insn */
tcg_out32(s, tcg_to_bc[cond] | 8);
if (v2 == 0) {
tcg_out_movi(s, type, dest, 0);
} else {
tcg_out_mov(s, type, dest, v2);
}
}
}
void ppc_tb_set_jmp_target (unsigned long jmp_addr, unsigned long addr)
{
TCGContext s;
unsigned long patch_size;
s.code_ptr = (uint8_t *) jmp_addr;
tcg_out_b (&s, 0, addr);
patch_size = s.code_ptr - (uint8_t *) jmp_addr;
flush_icache_range (jmp_addr, jmp_addr + patch_size);
}
static void tcg_out_op (TCGContext *s, TCGOpcode opc, const TCGArg *args,
const int *const_args)
{
TCGArg a0, a1, a2;
int c;
switch (opc) {
case INDEX_op_exit_tb:
tcg_out_movi (s, TCG_TYPE_I64, TCG_REG_R3, args[0]);
tcg_out_b (s, 0, (tcg_target_long) tb_ret_addr);
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_offset) {
/* direct jump method */
s->tb_jmp_offset[args[0]] = s->code_ptr - s->code_buf;
s->code_ptr += 28;
}
else {
tcg_abort ();
}
s->tb_next_offset[args[0]] = s->code_ptr - s->code_buf;
break;
case INDEX_op_br:
{
TCGLabel *l = &s->labels[args[0]];
if (l->has_value) {
tcg_out_b (s, 0, l->u.value);
}
else {
uint32_t val = *(uint32_t *) s->code_ptr;
/* Thanks to Andrzej Zaborowski */
tcg_out32 (s, B | (val & 0x3fffffc));
tcg_out_reloc (s, s->code_ptr - 4, R_PPC_REL24, args[0], 0);
}
}
break;
case INDEX_op_call:
tcg_out_call (s, args[0], const_args[0]);
break;
case INDEX_op_movi_i32:
tcg_out_movi (s, TCG_TYPE_I32, args[0], args[1]);
break;
case INDEX_op_movi_i64:
tcg_out_movi (s, TCG_TYPE_I64, args[0], args[1]);
break;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
tcg_out_ldst (s, args[0], args[1], args[2], LBZ, LBZX);
break;
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
tcg_out_ldst (s, args[0], args[1], args[2], LBZ, LBZX);
tcg_out32 (s, EXTSB | RS (args[0]) | RA (args[0]));
break;
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
tcg_out_ldst (s, args[0], args[1], args[2], LHZ, LHZX);
break;
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
tcg_out_ldst (s, args[0], args[1], args[2], LHA, LHAX);
break;
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
tcg_out_ldst (s, args[0], args[1], args[2], LWZ, LWZX);
break;
case INDEX_op_ld32s_i64:
tcg_out_ldsta (s, args[0], args[1], args[2], LWA, LWAX);
break;
case INDEX_op_ld_i64:
tcg_out_ldsta (s, args[0], args[1], args[2], LD, LDX);
break;
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
tcg_out_ldst (s, args[0], args[1], args[2], STB, STBX);
break;
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
tcg_out_ldst (s, args[0], args[1], args[2], STH, STHX);
break;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
tcg_out_ldst (s, args[0], args[1], args[2], STW, STWX);
break;
case INDEX_op_st_i64:
tcg_out_ldsta (s, args[0], args[1], args[2], STD, STDX);
break;
case INDEX_op_add_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
int32_t l, h;
do_addi_32:
l = (int16_t)a2;
h = a2 - l;
if (h) {
tcg_out32(s, ADDIS | TAI(a0, a1, h >> 16));
a1 = a0;
}
if (l || a0 != a1) {
tcg_out32(s, ADDI | TAI(a0, a1, l));
}
} else {
tcg_out32(s, ADD | TAB(a0, a1, a2));
}
break;
case INDEX_op_sub_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[1]) {
if (const_args[2]) {
tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
} else {
tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
}
} else if (const_args[2]) {
a2 = -a2;
goto do_addi_32;
} else {
tcg_out32(s, SUBF | TAB(a0, a2, a1));
}
break;
case INDEX_op_and_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi32(s, a0, a1, a2);
} else {
tcg_out32(s, AND | SAB(a1, a0, a2));
}
break;
case INDEX_op_and_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi64(s, a0, a1, a2);
} else {
tcg_out32(s, AND | SAB(a1, a0, a2));
}
break;
case INDEX_op_or_i64:
case INDEX_op_or_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_ori32(s, a0, a1, a2);
} else {
tcg_out32(s, OR | SAB(a1, a0, a2));
}
break;
case INDEX_op_xor_i64:
case INDEX_op_xor_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_xori32(s, a0, a1, a2);
} else {
tcg_out32(s, XOR | SAB(a1, a0, a2));
}
break;
case INDEX_op_andc_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi32(s, a0, a1, ~a2);
} else {
tcg_out32(s, ANDC | SAB(a1, a0, a2));
}
break;
case INDEX_op_andc_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi64(s, a0, a1, ~a2);
} else {
tcg_out32(s, ANDC | SAB(a1, a0, a2));
}
break;
case INDEX_op_orc_i32:
if (const_args[2]) {
tcg_out_ori32(s, args[0], args[1], ~args[2]);
break;
}
/* FALLTHRU */
case INDEX_op_orc_i64:
tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_eqv_i32:
if (const_args[2]) {
tcg_out_xori32(s, args[0], args[1], ~args[2]);
break;
}
/* FALLTHRU */
case INDEX_op_eqv_i64:
tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_nand_i32:
case INDEX_op_nand_i64:
tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_nor_i32:
case INDEX_op_nor_i64:
tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_mul_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out32(s, MULLI | TAI(a0, a1, a2));
} else {
tcg_out32(s, MULLW | TAB(a0, a1, a2));
}
break;
case INDEX_op_div_i32:
tcg_out32 (s, DIVW | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_divu_i32:
tcg_out32 (s, DIVWU | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_rem_i32:
tcg_out32 (s, DIVW | TAB (0, args[1], args[2]));
tcg_out32 (s, MULLW | TAB (0, 0, args[2]));
tcg_out32 (s, SUBF | TAB (args[0], 0, args[1]));
break;
case INDEX_op_remu_i32:
tcg_out32 (s, DIVWU | TAB (0, args[1], args[2]));
tcg_out32 (s, MULLW | TAB (0, 0, args[2]));
tcg_out32 (s, SUBF | TAB (args[0], 0, args[1]));
break;
case INDEX_op_shl_i32:
if (const_args[2]) {
tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31 - args[2]);
} else {
tcg_out32 (s, SLW | SAB (args[1], args[0], args[2]));
}
break;
case INDEX_op_shr_i32:
if (const_args[2]) {
tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], args[2], 31);
} else {
tcg_out32 (s, SRW | SAB (args[1], args[0], args[2]));
}
break;
case INDEX_op_sar_i32:
if (const_args[2])
tcg_out32 (s, SRAWI | RS (args[1]) | RA (args[0]) | SH (args[2]));
else
tcg_out32 (s, SRAW | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_rotl_i32:
if (const_args[2]) {
tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
} else {
tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
| MB(0) | ME(31));
}
break;
case INDEX_op_rotr_i32:
if (const_args[2]) {
tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
} else {
tcg_out32(s, SUBFIC | TAI(0, args[2], 32));
tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
| MB(0) | ME(31));
}
break;
case INDEX_op_brcond_i32:
tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
args[3], TCG_TYPE_I32);
break;
case INDEX_op_brcond_i64:
tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
args[3], TCG_TYPE_I64);
break;
case INDEX_op_neg_i32:
case INDEX_op_neg_i64:
tcg_out32 (s, NEG | RT (args[0]) | RA (args[1]));
break;
case INDEX_op_not_i32:
case INDEX_op_not_i64:
tcg_out32 (s, NOR | SAB (args[1], args[0], args[1]));
break;
case INDEX_op_add_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
int32_t l0, h1, h2;
do_addi_64:
/* We can always split any 32-bit signed constant into 3 pieces.
Note the positive 0x80000000 coming from the sub_i64 path,
handled with the same code we need for eg 0x7fff8000. */
assert(a2 == (int32_t)a2 || a2 == 0x80000000);
l0 = (int16_t)a2;
h1 = a2 - l0;
h2 = 0;
if (h1 < 0 && (int64_t)a2 > 0) {
h2 = 0x40000000;
h1 = a2 - h2 - l0;
}
assert((TCGArg)h2 + h1 + l0 == a2);
if (h2) {
tcg_out32(s, ADDIS | TAI(a0, a1, h2 >> 16));
a1 = a0;
}
if (h1) {
tcg_out32(s, ADDIS | TAI(a0, a1, h1 >> 16));
a1 = a0;
}
if (l0 || a0 != a1) {
tcg_out32(s, ADDI | TAI(a0, a1, l0));
}
} else {
tcg_out32(s, ADD | TAB(a0, a1, a2));
}
break;
case INDEX_op_sub_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[1]) {
if (const_args[2]) {
tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
} else {
tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
}
} else if (const_args[2]) {
a2 = -a2;
goto do_addi_64;
} else {
tcg_out32(s, SUBF | TAB(a0, a2, a1));
}
break;
case INDEX_op_shl_i64:
if (const_args[2])
tcg_out_shli64(s, args[0], args[1], args[2]);
else
tcg_out32 (s, SLD | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_shr_i64:
if (const_args[2])
tcg_out_shri64(s, args[0], args[1], args[2]);
else
tcg_out32 (s, SRD | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_sar_i64:
if (const_args[2]) {
int sh = SH (args[2] & 0x1f) | (((args[2] >> 5) & 1) << 1);
tcg_out32 (s, SRADI | RA (args[0]) | RS (args[1]) | sh);
}
else
tcg_out32 (s, SRAD | SAB (args[1], args[0], args[2]));
break;
case INDEX_op_rotl_i64:
if (const_args[2]) {
tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
} else {
tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
}
break;
case INDEX_op_rotr_i64:
if (const_args[2]) {
tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
} else {
tcg_out32(s, SUBFIC | TAI(0, args[2], 64));
tcg_out32(s, RLDCL | SAB(args[1], args[0], 0) | MB64(0));
}
break;
case INDEX_op_mul_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out32(s, MULLI | TAI(a0, a1, a2));
} else {
tcg_out32(s, MULLD | TAB(a0, a1, a2));
}
break;
case INDEX_op_div_i64:
tcg_out32 (s, DIVD | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_divu_i64:
tcg_out32 (s, DIVDU | TAB (args[0], args[1], args[2]));
break;
case INDEX_op_rem_i64:
tcg_out32 (s, DIVD | TAB (0, args[1], args[2]));
tcg_out32 (s, MULLD | TAB (0, 0, args[2]));
tcg_out32 (s, SUBF | TAB (args[0], 0, args[1]));
break;
case INDEX_op_remu_i64:
tcg_out32 (s, DIVDU | TAB (0, args[1], args[2]));
tcg_out32 (s, MULLD | TAB (0, 0, args[2]));
tcg_out32 (s, SUBF | TAB (args[0], 0, args[1]));
break;
case INDEX_op_qemu_ld8u:
tcg_out_qemu_ld (s, args, 0);
break;
case INDEX_op_qemu_ld8s:
tcg_out_qemu_ld (s, args, 0 | 4);
break;
case INDEX_op_qemu_ld16u:
tcg_out_qemu_ld (s, args, 1);
break;
case INDEX_op_qemu_ld16s:
tcg_out_qemu_ld (s, args, 1 | 4);
break;
case INDEX_op_qemu_ld32:
case INDEX_op_qemu_ld32u:
tcg_out_qemu_ld (s, args, 2);
break;
case INDEX_op_qemu_ld32s:
tcg_out_qemu_ld (s, args, 2 | 4);
break;
case INDEX_op_qemu_ld64:
tcg_out_qemu_ld (s, args, 3);
break;
case INDEX_op_qemu_st8:
tcg_out_qemu_st (s, args, 0);
break;
case INDEX_op_qemu_st16:
tcg_out_qemu_st (s, args, 1);
break;
case INDEX_op_qemu_st32:
tcg_out_qemu_st (s, args, 2);
break;
case INDEX_op_qemu_st64:
tcg_out_qemu_st (s, args, 3);
break;
case INDEX_op_ext8s_i32:
case INDEX_op_ext8s_i64:
c = EXTSB;
goto gen_ext;
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
c = EXTSH;
goto gen_ext;
case INDEX_op_ext32s_i64:
c = EXTSW;
goto gen_ext;
gen_ext:
tcg_out32 (s, c | RS (args[1]) | RA (args[0]));
break;
case INDEX_op_setcond_i32:
tcg_out_setcond (s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
const_args[2]);
break;
case INDEX_op_setcond_i64:
tcg_out_setcond (s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
const_args[2]);
break;
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
a0 = args[0], a1 = args[1];
/* a1 = abcd */
if (a0 != a1) {
/* a0 = (a1 r<< 24) & 0xff # 000c */
tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
/* a0 = (a0 & ~0xff00) | (a1 r<< 8) & 0xff00 # 00dc */
tcg_out_rlw(s, RLWIMI, a0, a1, 8, 16, 23);
} else {
/* r0 = (a1 r<< 8) & 0xff00 # 00d0 */
tcg_out_rlw(s, RLWINM, TCG_REG_R0, a1, 8, 16, 23);
/* a0 = (a1 r<< 24) & 0xff # 000c */
tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
/* a0 = a0 | r0 # 00dc */
tcg_out32(s, OR | SAB(TCG_REG_R0, a0, a0));
}
break;
case INDEX_op_bswap32_i32:
case INDEX_op_bswap32_i64:
/* Stolen from gcc's builtin_bswap32 */
a1 = args[1];
a0 = args[0] == a1 ? TCG_REG_R0 : args[0];
/* a1 = args[1] # abcd */
/* a0 = rotate_left (a1, 8) # bcda */
tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
/* a0 = (a0 & ~0xff000000) | ((a1 r<< 24) & 0xff000000) # dcda */
tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
/* a0 = (a0 & ~0x0000ff00) | ((a1 r<< 24) & 0x0000ff00) # dcba */
tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
if (a0 == TCG_REG_R0) {
tcg_out_mov(s, TCG_TYPE_I64, args[0], a0);
}
break;
case INDEX_op_bswap64_i64:
a0 = args[0], a1 = args[1], a2 = 0;
if (a0 == a1) {
a0 = 0;
a2 = a1;
}
/* a1 = # abcd efgh */
/* a0 = rl32(a1, 8) # 0000 fghe */
tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
/* a0 = dep(a0, rl32(a1, 24), 0xff000000) # 0000 hghe */
tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
/* a0 = dep(a0, rl32(a1, 24), 0x0000ff00) # 0000 hgfe */
tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
/* a0 = rl64(a0, 32) # hgfe 0000 */
/* a2 = rl64(a1, 32) # efgh abcd */
tcg_out_rld(s, RLDICL, a0, a0, 32, 0);
tcg_out_rld(s, RLDICL, a2, a1, 32, 0);
/* a0 = dep(a0, rl32(a2, 8), 0xffffffff) # hgfe bcda */
tcg_out_rlw(s, RLWIMI, a0, a2, 8, 0, 31);
/* a0 = dep(a0, rl32(a2, 24), 0xff000000) # hgfe dcda */
tcg_out_rlw(s, RLWIMI, a0, a2, 24, 0, 7);
/* a0 = dep(a0, rl32(a2, 24), 0x0000ff00) # hgfe dcba */
tcg_out_rlw(s, RLWIMI, a0, a2, 24, 16, 23);
if (a0 == 0) {
tcg_out_mov(s, TCG_TYPE_I64, args[0], a0);
/* Revert the source rotate that we performed above. */
tcg_out_rld(s, RLDICL, a1, a1, 32, 0);
}
break;
case INDEX_op_deposit_i32:
if (const_args[2]) {
uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
tcg_out_andi32(s, args[0], args[0], ~mask);
} else {
tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
32 - args[3] - args[4], 31 - args[3]);
}
break;
case INDEX_op_deposit_i64:
if (const_args[2]) {
uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
tcg_out_andi64(s, args[0], args[0], ~mask);
} else {
tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
64 - args[3] - args[4]);
}
break;
case INDEX_op_movcond_i32:
tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
args[3], args[4], const_args[2]);
break;
case INDEX_op_movcond_i64:
tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
args[3], args[4], const_args[2]);
break;
case INDEX_op_add2_i64:
/* Note that the CA bit is defined based on the word size of the
environment. So in 64-bit mode it's always carry-out of bit 63.
The fallback code using deposit works just as well for 32-bit. */
a0 = args[0], a1 = args[1];
if (a0 == args[4] || (!const_args[5] && a0 == args[5])) {
a0 = TCG_REG_R0;
}
if (const_args[3]) {
tcg_out32(s, ADDIC | TAI(a0, args[2], args[3]));
} else {
tcg_out32(s, ADDC | TAB(a0, args[2], args[3]));
}
if (const_args[5]) {
tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[4]));
} else {
tcg_out32(s, ADDE | TAB(a1, args[4], args[5]));
}
if (a0 != args[0]) {
tcg_out_mov(s, TCG_TYPE_I64, args[0], a0);
}
break;
case INDEX_op_sub2_i64:
a0 = args[0], a1 = args[1];
if (a0 == args[5] || (!const_args[4] && a0 == args[4])) {
a0 = TCG_REG_R0;
}
if (const_args[2]) {
tcg_out32(s, SUBFIC | TAI(a0, args[3], args[2]));
} else {
tcg_out32(s, SUBFC | TAB(a0, args[3], args[2]));
}
if (const_args[4]) {
tcg_out32(s, (args[4] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
} else {
tcg_out32(s, SUBFE | TAB(a1, args[5], args[4]));
}
if (a0 != args[0]) {
tcg_out_mov(s, TCG_TYPE_I64, args[0], a0);
}
break;
case INDEX_op_mulu2_i64:
case INDEX_op_muls2_i64:
{
int oph = (opc == INDEX_op_mulu2_i64 ? MULHDU : MULHD);
TCGReg outl = args[0], outh = args[1];
a0 = args[2], a1 = args[3];
if (outl == a0 || outl == a1) {
if (outh == a0 || outh == a1) {
outl = TCG_REG_R0;
} else {
tcg_out32(s, oph | TAB(outh, a0, a1));
oph = 0;
}
}
tcg_out32(s, MULLD | TAB(outl, a0, a1));
if (oph != 0) {
tcg_out32(s, oph | TAB(outh, a0, a1));
}
if (outl != args[0]) {
tcg_out_mov(s, TCG_TYPE_I64, args[0], outl);
}
}
break;
default:
tcg_dump_ops (s);
tcg_abort ();
}
}
static const TCGTargetOpDef ppc_op_defs[] = {
{ INDEX_op_exit_tb, { } },
{ INDEX_op_goto_tb, { } },
{ INDEX_op_call, { "ri" } },
{ INDEX_op_br, { } },
{ INDEX_op_mov_i32, { "r", "r" } },
{ INDEX_op_mov_i64, { "r", "r" } },
{ INDEX_op_movi_i32, { "r" } },
{ INDEX_op_movi_i64, { "r" } },
{ INDEX_op_ld8u_i32, { "r", "r" } },
{ INDEX_op_ld8s_i32, { "r", "r" } },
{ INDEX_op_ld16u_i32, { "r", "r" } },
{ INDEX_op_ld16s_i32, { "r", "r" } },
{ INDEX_op_ld_i32, { "r", "r" } },
{ INDEX_op_ld_i64, { "r", "r" } },
{ INDEX_op_st8_i32, { "r", "r" } },
{ INDEX_op_st8_i64, { "r", "r" } },
{ INDEX_op_st16_i32, { "r", "r" } },
{ INDEX_op_st16_i64, { "r", "r" } },
{ INDEX_op_st_i32, { "r", "r" } },
{ INDEX_op_st_i64, { "r", "r" } },
{ INDEX_op_st32_i64, { "r", "r" } },
{ INDEX_op_ld8u_i64, { "r", "r" } },
{ INDEX_op_ld8s_i64, { "r", "r" } },
{ INDEX_op_ld16u_i64, { "r", "r" } },
{ INDEX_op_ld16s_i64, { "r", "r" } },
{ INDEX_op_ld32u_i64, { "r", "r" } },
{ INDEX_op_ld32s_i64, { "r", "r" } },
{ INDEX_op_add_i32, { "r", "r", "ri" } },
{ INDEX_op_mul_i32, { "r", "r", "rI" } },
{ INDEX_op_div_i32, { "r", "r", "r" } },
{ INDEX_op_divu_i32, { "r", "r", "r" } },
{ INDEX_op_rem_i32, { "r", "r", "r" } },
{ INDEX_op_remu_i32, { "r", "r", "r" } },
{ INDEX_op_sub_i32, { "r", "rI", "ri" } },
{ INDEX_op_and_i32, { "r", "r", "ri" } },
{ INDEX_op_or_i32, { "r", "r", "ri" } },
{ INDEX_op_xor_i32, { "r", "r", "ri" } },
{ INDEX_op_andc_i32, { "r", "r", "ri" } },
{ INDEX_op_orc_i32, { "r", "r", "ri" } },
{ INDEX_op_eqv_i32, { "r", "r", "ri" } },
{ INDEX_op_nand_i32, { "r", "r", "r" } },
{ INDEX_op_nor_i32, { "r", "r", "r" } },
{ INDEX_op_shl_i32, { "r", "r", "ri" } },
{ INDEX_op_shr_i32, { "r", "r", "ri" } },
{ INDEX_op_sar_i32, { "r", "r", "ri" } },
{ INDEX_op_rotl_i32, { "r", "r", "ri" } },
{ INDEX_op_rotr_i32, { "r", "r", "ri" } },
{ INDEX_op_brcond_i32, { "r", "ri" } },
{ INDEX_op_brcond_i64, { "r", "ri" } },
{ INDEX_op_neg_i32, { "r", "r" } },
{ INDEX_op_not_i32, { "r", "r" } },
{ INDEX_op_add_i64, { "r", "r", "rT" } },
{ INDEX_op_sub_i64, { "r", "rI", "rT" } },
{ INDEX_op_and_i64, { "r", "r", "ri" } },
{ INDEX_op_or_i64, { "r", "r", "rU" } },
{ INDEX_op_xor_i64, { "r", "r", "rU" } },
{ INDEX_op_andc_i64, { "r", "r", "ri" } },
{ INDEX_op_orc_i64, { "r", "r", "r" } },
{ INDEX_op_eqv_i64, { "r", "r", "r" } },
{ INDEX_op_nand_i64, { "r", "r", "r" } },
{ INDEX_op_nor_i64, { "r", "r", "r" } },
{ INDEX_op_shl_i64, { "r", "r", "ri" } },
{ INDEX_op_shr_i64, { "r", "r", "ri" } },
{ INDEX_op_sar_i64, { "r", "r", "ri" } },
{ INDEX_op_rotl_i64, { "r", "r", "ri" } },
{ INDEX_op_rotr_i64, { "r", "r", "ri" } },
{ INDEX_op_mul_i64, { "r", "r", "rI" } },
{ INDEX_op_div_i64, { "r", "r", "r" } },
{ INDEX_op_divu_i64, { "r", "r", "r" } },
{ INDEX_op_rem_i64, { "r", "r", "r" } },
{ INDEX_op_remu_i64, { "r", "r", "r" } },
{ INDEX_op_neg_i64, { "r", "r" } },
{ INDEX_op_not_i64, { "r", "r" } },
{ INDEX_op_qemu_ld8u, { "r", "L" } },
{ INDEX_op_qemu_ld8s, { "r", "L" } },
{ INDEX_op_qemu_ld16u, { "r", "L" } },
{ INDEX_op_qemu_ld16s, { "r", "L" } },
{ INDEX_op_qemu_ld32, { "r", "L" } },
{ INDEX_op_qemu_ld32u, { "r", "L" } },
{ INDEX_op_qemu_ld32s, { "r", "L" } },
{ INDEX_op_qemu_ld64, { "r", "L" } },
{ INDEX_op_qemu_st8, { "S", "S" } },
{ INDEX_op_qemu_st16, { "S", "S" } },
{ INDEX_op_qemu_st32, { "S", "S" } },
{ INDEX_op_qemu_st64, { "S", "S" } },
{ INDEX_op_ext8s_i32, { "r", "r" } },
{ INDEX_op_ext16s_i32, { "r", "r" } },
{ INDEX_op_ext8s_i64, { "r", "r" } },
{ INDEX_op_ext16s_i64, { "r", "r" } },
{ INDEX_op_ext32s_i64, { "r", "r" } },
{ INDEX_op_setcond_i32, { "r", "r", "ri" } },
{ INDEX_op_setcond_i64, { "r", "r", "ri" } },
{ INDEX_op_movcond_i32, { "r", "r", "ri", "rZ", "rZ" } },
{ INDEX_op_movcond_i64, { "r", "r", "ri", "rZ", "rZ" } },
{ INDEX_op_bswap16_i32, { "r", "r" } },
{ INDEX_op_bswap16_i64, { "r", "r" } },
{ INDEX_op_bswap32_i32, { "r", "r" } },
{ INDEX_op_bswap32_i64, { "r", "r" } },
{ INDEX_op_bswap64_i64, { "r", "r" } },
{ INDEX_op_deposit_i32, { "r", "0", "rZ" } },
{ INDEX_op_deposit_i64, { "r", "0", "rZ" } },
{ INDEX_op_add2_i64, { "r", "r", "r", "rI", "r", "rZM" } },
{ INDEX_op_sub2_i64, { "r", "r", "rI", "r", "rZM", "r" } },
{ INDEX_op_muls2_i64, { "r", "r", "r", "r" } },
{ INDEX_op_mulu2_i64, { "r", "r", "r", "r" } },
{ -1 },
};
static void tcg_target_init (TCGContext *s)
{
#ifdef CONFIG_GETAUXVAL
unsigned long hwcap = getauxval(AT_HWCAP);
if (hwcap & PPC_FEATURE_ARCH_2_06) {
have_isa_2_06 = true;
}
#endif
tcg_regset_set32 (tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffffffff);
tcg_regset_set32 (tcg_target_available_regs[TCG_TYPE_I64], 0, 0xffffffff);
tcg_regset_set32 (tcg_target_call_clobber_regs, 0,
(1 << TCG_REG_R0) |
#ifdef __APPLE__
(1 << TCG_REG_R2) |
#endif
(1 << TCG_REG_R3) |
(1 << TCG_REG_R4) |
(1 << TCG_REG_R5) |
(1 << TCG_REG_R6) |
(1 << TCG_REG_R7) |
(1 << TCG_REG_R8) |
(1 << TCG_REG_R9) |
(1 << TCG_REG_R10) |
(1 << TCG_REG_R11) |
(1 << TCG_REG_R12)
);
tcg_regset_clear (s->reserved_regs);
tcg_regset_set_reg (s->reserved_regs, TCG_REG_R0);
tcg_regset_set_reg (s->reserved_regs, TCG_REG_R1);
#ifndef __APPLE__
tcg_regset_set_reg (s->reserved_regs, TCG_REG_R2);
#endif
tcg_regset_set_reg (s->reserved_regs, TCG_REG_R13);
tcg_add_target_add_op_defs (ppc_op_defs);
}