qemu-e2k/hw/s390x/s390-skeys.c
David Hildenbrand 2162faf77e hw/s390x/s390-skeys: check if an address is valid before dumping the key
Let's validate the given address and report a proper error in case it's
not. All call paths now properly check the validity of the given GFN.
Remove the TODO.

The errors inside the getter and setter should only trigger if something
really goes wrong now, for example, with a broken migration stream. Or
when we forget to update the storage key allocation with memory hotplug.

Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210903155514.44772-12-david@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2021-09-06 16:24:05 +02:00

463 lines
13 KiB
C

/*
* s390 storage key device
*
* Copyright 2015 IBM Corp.
* Author(s): Jason J. Herne <jjherne@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at
* your option) any later version. See the COPYING file in the top-level
* directory.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/boards.h"
#include "hw/s390x/storage-keys.h"
#include "qapi/error.h"
#include "qapi/qapi-commands-misc-target.h"
#include "qapi/qmp/qdict.h"
#include "qemu/error-report.h"
#include "sysemu/memory_mapping.h"
#include "exec/address-spaces.h"
#include "sysemu/kvm.h"
#include "migration/qemu-file-types.h"
#include "migration/register.h"
#define S390_SKEYS_BUFFER_SIZE (128 * KiB) /* Room for 128k storage keys */
#define S390_SKEYS_SAVE_FLAG_EOS 0x01
#define S390_SKEYS_SAVE_FLAG_SKEYS 0x02
#define S390_SKEYS_SAVE_FLAG_ERROR 0x04
S390SKeysState *s390_get_skeys_device(void)
{
S390SKeysState *ss;
ss = S390_SKEYS(object_resolve_path_type("", TYPE_S390_SKEYS, NULL));
assert(ss);
return ss;
}
void s390_skeys_init(void)
{
Object *obj;
if (kvm_enabled()) {
obj = object_new(TYPE_KVM_S390_SKEYS);
} else {
obj = object_new(TYPE_QEMU_S390_SKEYS);
}
object_property_add_child(qdev_get_machine(), TYPE_S390_SKEYS,
obj);
object_unref(obj);
qdev_realize(DEVICE(obj), NULL, &error_fatal);
}
static void write_keys(FILE *f, uint8_t *keys, uint64_t startgfn,
uint64_t count, Error **errp)
{
uint64_t curpage = startgfn;
uint64_t maxpage = curpage + count - 1;
for (; curpage <= maxpage; curpage++) {
uint8_t acc = (*keys & 0xF0) >> 4;
int fp = (*keys & 0x08);
int ref = (*keys & 0x04);
int ch = (*keys & 0x02);
int res = (*keys & 0x01);
fprintf(f, "page=%03" PRIx64 ": key(%d) => ACC=%X, FP=%d, REF=%d,"
" ch=%d, reserved=%d\n",
curpage, *keys, acc, fp, ref, ch, res);
keys++;
}
}
void hmp_info_skeys(Monitor *mon, const QDict *qdict)
{
S390SKeysState *ss = s390_get_skeys_device();
S390SKeysClass *skeyclass = S390_SKEYS_GET_CLASS(ss);
uint64_t addr = qdict_get_int(qdict, "addr");
uint8_t key;
int r;
/* Quick check to see if guest is using storage keys*/
if (!skeyclass->skeys_enabled(ss)) {
monitor_printf(mon, "Error: This guest is not using storage keys\n");
return;
}
if (!address_space_access_valid(&address_space_memory,
addr & TARGET_PAGE_MASK, TARGET_PAGE_SIZE,
false, MEMTXATTRS_UNSPECIFIED)) {
monitor_printf(mon, "Error: The given address is not valid\n");
return;
}
r = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (r < 0) {
monitor_printf(mon, "Error: %s\n", strerror(-r));
return;
}
monitor_printf(mon, " key: 0x%X\n", key);
}
void hmp_dump_skeys(Monitor *mon, const QDict *qdict)
{
const char *filename = qdict_get_str(qdict, "filename");
Error *err = NULL;
qmp_dump_skeys(filename, &err);
if (err) {
error_report_err(err);
}
}
void qmp_dump_skeys(const char *filename, Error **errp)
{
S390SKeysState *ss = s390_get_skeys_device();
S390SKeysClass *skeyclass = S390_SKEYS_GET_CLASS(ss);
GuestPhysBlockList guest_phys_blocks;
GuestPhysBlock *block;
uint64_t pages, gfn;
Error *lerr = NULL;
uint8_t *buf;
int ret;
int fd;
FILE *f;
/* Quick check to see if guest is using storage keys*/
if (!skeyclass->skeys_enabled(ss)) {
error_setg(errp, "This guest is not using storage keys - "
"nothing to dump");
return;
}
fd = qemu_open_old(filename, O_WRONLY | O_CREAT | O_TRUNC, 0600);
if (fd < 0) {
error_setg_file_open(errp, errno, filename);
return;
}
f = fdopen(fd, "wb");
if (!f) {
close(fd);
error_setg_file_open(errp, errno, filename);
return;
}
buf = g_try_malloc(S390_SKEYS_BUFFER_SIZE);
if (!buf) {
error_setg(errp, "Could not allocate memory");
goto out;
}
assert(qemu_mutex_iothread_locked());
guest_phys_blocks_init(&guest_phys_blocks);
guest_phys_blocks_append(&guest_phys_blocks);
QTAILQ_FOREACH(block, &guest_phys_blocks.head, next) {
assert(QEMU_IS_ALIGNED(block->target_start, TARGET_PAGE_SIZE));
assert(QEMU_IS_ALIGNED(block->target_end, TARGET_PAGE_SIZE));
gfn = block->target_start / TARGET_PAGE_SIZE;
pages = (block->target_end - block->target_start) / TARGET_PAGE_SIZE;
while (pages) {
const uint64_t cur_pages = MIN(pages, S390_SKEYS_BUFFER_SIZE);
ret = skeyclass->get_skeys(ss, gfn, cur_pages, buf);
if (ret < 0) {
error_setg_errno(errp, -ret, "get_keys error");
goto out_free;
}
/* write keys to stream */
write_keys(f, buf, gfn, cur_pages, &lerr);
if (lerr) {
goto out_free;
}
gfn += cur_pages;
pages -= cur_pages;
}
}
out_free:
guest_phys_blocks_free(&guest_phys_blocks);
error_propagate(errp, lerr);
g_free(buf);
out:
fclose(f);
}
static void qemu_s390_skeys_init(Object *obj)
{
QEMUS390SKeysState *skeys = QEMU_S390_SKEYS(obj);
MachineState *machine = MACHINE(qdev_get_machine());
skeys->key_count = machine->ram_size / TARGET_PAGE_SIZE;
skeys->keydata = g_malloc0(skeys->key_count);
}
static int qemu_s390_skeys_enabled(S390SKeysState *ss)
{
return 1;
}
static int qemu_s390_skeys_set(S390SKeysState *ss, uint64_t start_gfn,
uint64_t count, uint8_t *keys)
{
QEMUS390SKeysState *skeydev = QEMU_S390_SKEYS(ss);
int i;
/* Check for uint64 overflow and access beyond end of key data */
if (start_gfn + count > skeydev->key_count || start_gfn + count < count) {
error_report("Error: Setting storage keys for page beyond the end "
"of memory: gfn=%" PRIx64 " count=%" PRId64,
start_gfn, count);
return -EINVAL;
}
for (i = 0; i < count; i++) {
skeydev->keydata[start_gfn + i] = keys[i];
}
return 0;
}
static int qemu_s390_skeys_get(S390SKeysState *ss, uint64_t start_gfn,
uint64_t count, uint8_t *keys)
{
QEMUS390SKeysState *skeydev = QEMU_S390_SKEYS(ss);
int i;
/* Check for uint64 overflow and access beyond end of key data */
if (start_gfn + count > skeydev->key_count || start_gfn + count < count) {
error_report("Error: Getting storage keys for page beyond the end "
"of memory: gfn=%" PRIx64 " count=%" PRId64,
start_gfn, count);
return -EINVAL;
}
for (i = 0; i < count; i++) {
keys[i] = skeydev->keydata[start_gfn + i];
}
return 0;
}
static void qemu_s390_skeys_class_init(ObjectClass *oc, void *data)
{
S390SKeysClass *skeyclass = S390_SKEYS_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
skeyclass->skeys_enabled = qemu_s390_skeys_enabled;
skeyclass->get_skeys = qemu_s390_skeys_get;
skeyclass->set_skeys = qemu_s390_skeys_set;
/* Reason: Internal device (only one skeys device for the whole memory) */
dc->user_creatable = false;
}
static const TypeInfo qemu_s390_skeys_info = {
.name = TYPE_QEMU_S390_SKEYS,
.parent = TYPE_S390_SKEYS,
.instance_init = qemu_s390_skeys_init,
.instance_size = sizeof(QEMUS390SKeysState),
.class_init = qemu_s390_skeys_class_init,
.class_size = sizeof(S390SKeysClass),
};
static void s390_storage_keys_save(QEMUFile *f, void *opaque)
{
S390SKeysState *ss = S390_SKEYS(opaque);
S390SKeysClass *skeyclass = S390_SKEYS_GET_CLASS(ss);
GuestPhysBlockList guest_phys_blocks;
GuestPhysBlock *block;
uint64_t pages, gfn;
int error = 0;
uint8_t *buf;
if (!skeyclass->skeys_enabled(ss)) {
goto end_stream;
}
buf = g_try_malloc(S390_SKEYS_BUFFER_SIZE);
if (!buf) {
error_report("storage key save could not allocate memory");
goto end_stream;
}
guest_phys_blocks_init(&guest_phys_blocks);
guest_phys_blocks_append(&guest_phys_blocks);
/* Send each contiguous physical memory range separately. */
QTAILQ_FOREACH(block, &guest_phys_blocks.head, next) {
assert(QEMU_IS_ALIGNED(block->target_start, TARGET_PAGE_SIZE));
assert(QEMU_IS_ALIGNED(block->target_end, TARGET_PAGE_SIZE));
gfn = block->target_start / TARGET_PAGE_SIZE;
pages = (block->target_end - block->target_start) / TARGET_PAGE_SIZE;
qemu_put_be64(f, block->target_start | S390_SKEYS_SAVE_FLAG_SKEYS);
qemu_put_be64(f, pages);
while (pages) {
const uint64_t cur_pages = MIN(pages, S390_SKEYS_BUFFER_SIZE);
if (!error) {
error = skeyclass->get_skeys(ss, gfn, cur_pages, buf);
if (error) {
/*
* Create a valid stream with all 0x00 and indicate
* S390_SKEYS_SAVE_FLAG_ERROR to the destination.
*/
error_report("S390_GET_KEYS error %d", error);
memset(buf, 0, S390_SKEYS_BUFFER_SIZE);
}
}
qemu_put_buffer(f, buf, cur_pages);
gfn += cur_pages;
pages -= cur_pages;
}
if (error) {
break;
}
}
guest_phys_blocks_free(&guest_phys_blocks);
g_free(buf);
end_stream:
if (error) {
qemu_put_be64(f, S390_SKEYS_SAVE_FLAG_ERROR);
} else {
qemu_put_be64(f, S390_SKEYS_SAVE_FLAG_EOS);
}
}
static int s390_storage_keys_load(QEMUFile *f, void *opaque, int version_id)
{
S390SKeysState *ss = S390_SKEYS(opaque);
S390SKeysClass *skeyclass = S390_SKEYS_GET_CLASS(ss);
int ret = 0;
while (!ret) {
ram_addr_t addr;
int flags;
addr = qemu_get_be64(f);
flags = addr & ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
switch (flags) {
case S390_SKEYS_SAVE_FLAG_SKEYS: {
const uint64_t total_count = qemu_get_be64(f);
uint64_t handled_count = 0, cur_count;
uint64_t cur_gfn = addr / TARGET_PAGE_SIZE;
uint8_t *buf = g_try_malloc(S390_SKEYS_BUFFER_SIZE);
if (!buf) {
error_report("storage key load could not allocate memory");
ret = -ENOMEM;
break;
}
while (handled_count < total_count) {
cur_count = MIN(total_count - handled_count,
S390_SKEYS_BUFFER_SIZE);
qemu_get_buffer(f, buf, cur_count);
ret = skeyclass->set_skeys(ss, cur_gfn, cur_count, buf);
if (ret < 0) {
error_report("S390_SET_KEYS error %d", ret);
break;
}
handled_count += cur_count;
cur_gfn += cur_count;
}
g_free(buf);
break;
}
case S390_SKEYS_SAVE_FLAG_ERROR: {
error_report("Storage key data is incomplete");
ret = -EINVAL;
break;
}
case S390_SKEYS_SAVE_FLAG_EOS:
/* normal exit */
return 0;
default:
error_report("Unexpected storage key flag data: %#x", flags);
ret = -EINVAL;
}
}
return ret;
}
static inline bool s390_skeys_get_migration_enabled(Object *obj, Error **errp)
{
S390SKeysState *ss = S390_SKEYS(obj);
return ss->migration_enabled;
}
static SaveVMHandlers savevm_s390_storage_keys = {
.save_state = s390_storage_keys_save,
.load_state = s390_storage_keys_load,
};
static inline void s390_skeys_set_migration_enabled(Object *obj, bool value,
Error **errp)
{
S390SKeysState *ss = S390_SKEYS(obj);
/* Prevent double registration of savevm handler */
if (ss->migration_enabled == value) {
return;
}
ss->migration_enabled = value;
if (ss->migration_enabled) {
register_savevm_live(TYPE_S390_SKEYS, 0, 1,
&savevm_s390_storage_keys, ss);
} else {
unregister_savevm(VMSTATE_IF(ss), TYPE_S390_SKEYS, ss);
}
}
static void s390_skeys_instance_init(Object *obj)
{
object_property_add_bool(obj, "migration-enabled",
s390_skeys_get_migration_enabled,
s390_skeys_set_migration_enabled);
object_property_set_bool(obj, "migration-enabled", true, NULL);
}
static void s390_skeys_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->hotpluggable = false;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static const TypeInfo s390_skeys_info = {
.name = TYPE_S390_SKEYS,
.parent = TYPE_DEVICE,
.instance_init = s390_skeys_instance_init,
.instance_size = sizeof(S390SKeysState),
.class_init = s390_skeys_class_init,
.class_size = sizeof(S390SKeysClass),
.abstract = true,
};
static void qemu_s390_skeys_register_types(void)
{
type_register_static(&s390_skeys_info);
type_register_static(&qemu_s390_skeys_info);
}
type_init(qemu_s390_skeys_register_types)