546 lines
18 KiB
C
546 lines
18 KiB
C
/*
|
|
* RISC-V ACLINT (Advanced Core Local Interruptor)
|
|
* URL: https://github.com/riscv/riscv-aclint
|
|
*
|
|
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
|
|
* Copyright (c) 2017 SiFive, Inc.
|
|
* Copyright (c) 2021 Western Digital Corporation or its affiliates.
|
|
*
|
|
* This provides real-time clock, timer and interprocessor interrupts.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "hw/sysbus.h"
|
|
#include "target/riscv/cpu.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/intc/riscv_aclint.h"
|
|
#include "qemu/timer.h"
|
|
#include "hw/irq.h"
|
|
|
|
typedef struct riscv_aclint_mtimer_callback {
|
|
RISCVAclintMTimerState *s;
|
|
int num;
|
|
} riscv_aclint_mtimer_callback;
|
|
|
|
static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq)
|
|
{
|
|
return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
timebase_freq, NANOSECONDS_PER_SECOND);
|
|
}
|
|
|
|
static uint64_t cpu_riscv_read_rtc(void *opaque)
|
|
{
|
|
RISCVAclintMTimerState *mtimer = opaque;
|
|
return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta;
|
|
}
|
|
|
|
/*
|
|
* Called when timecmp is written to update the QEMU timer or immediately
|
|
* trigger timer interrupt if mtimecmp <= current timer value.
|
|
*/
|
|
static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
|
|
RISCVCPU *cpu,
|
|
int hartid,
|
|
uint64_t value)
|
|
{
|
|
uint32_t timebase_freq = mtimer->timebase_freq;
|
|
uint64_t next;
|
|
uint64_t diff;
|
|
|
|
uint64_t rtc_r = cpu_riscv_read_rtc(mtimer);
|
|
|
|
cpu->env.timecmp = value;
|
|
if (cpu->env.timecmp <= rtc_r) {
|
|
/*
|
|
* If we're setting an MTIMECMP value in the "past",
|
|
* immediately raise the timer interrupt
|
|
*/
|
|
qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
|
|
return;
|
|
}
|
|
|
|
/* otherwise, set up the future timer interrupt */
|
|
qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
|
|
diff = cpu->env.timecmp - rtc_r;
|
|
/* back to ns (note args switched in muldiv64) */
|
|
uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
|
|
|
|
/*
|
|
* check if ns_diff overflowed and check if the addition would potentially
|
|
* overflow
|
|
*/
|
|
if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
|
|
ns_diff > INT64_MAX) {
|
|
next = INT64_MAX;
|
|
} else {
|
|
/*
|
|
* as it is very unlikely qemu_clock_get_ns will return a value
|
|
* greater than INT64_MAX, no additional check is needed for an
|
|
* unsigned integer overflow.
|
|
*/
|
|
next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
|
|
/*
|
|
* if ns_diff is INT64_MAX next may still be outside the range
|
|
* of a signed integer.
|
|
*/
|
|
next = MIN(next, INT64_MAX);
|
|
}
|
|
|
|
timer_mod(cpu->env.timer, next);
|
|
}
|
|
|
|
/*
|
|
* Callback used when the timer set using timer_mod expires.
|
|
* Should raise the timer interrupt line
|
|
*/
|
|
static void riscv_aclint_mtimer_cb(void *opaque)
|
|
{
|
|
riscv_aclint_mtimer_callback *state = opaque;
|
|
|
|
qemu_irq_raise(state->s->timer_irqs[state->num]);
|
|
}
|
|
|
|
/* CPU read MTIMER register */
|
|
static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
RISCVAclintMTimerState *mtimer = opaque;
|
|
|
|
if (addr >= mtimer->timecmp_base &&
|
|
addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
|
|
size_t hartid = mtimer->hartid_base +
|
|
((addr - mtimer->timecmp_base) >> 3);
|
|
CPUState *cpu = qemu_get_cpu(hartid);
|
|
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
|
|
if (!env) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"aclint-mtimer: invalid hartid: %zu", hartid);
|
|
} else if ((addr & 0x7) == 0) {
|
|
/* timecmp_lo for RV32/RV64 or timecmp for RV64 */
|
|
uint64_t timecmp = env->timecmp;
|
|
return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp;
|
|
} else if ((addr & 0x7) == 4) {
|
|
/* timecmp_hi */
|
|
uint64_t timecmp = env->timecmp;
|
|
return (timecmp >> 32) & 0xFFFFFFFF;
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"aclint-mtimer: invalid read: %08x", (uint32_t)addr);
|
|
return 0;
|
|
}
|
|
} else if (addr == mtimer->time_base) {
|
|
/* time_lo for RV32/RV64 or timecmp for RV64 */
|
|
uint64_t rtc = cpu_riscv_read_rtc(mtimer);
|
|
return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc;
|
|
} else if (addr == mtimer->time_base + 4) {
|
|
/* time_hi */
|
|
return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF;
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"aclint-mtimer: invalid read: %08x", (uint32_t)addr);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU write MTIMER register */
|
|
static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
RISCVAclintMTimerState *mtimer = opaque;
|
|
int i;
|
|
|
|
if (addr >= mtimer->timecmp_base &&
|
|
addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
|
|
size_t hartid = mtimer->hartid_base +
|
|
((addr - mtimer->timecmp_base) >> 3);
|
|
CPUState *cpu = qemu_get_cpu(hartid);
|
|
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
|
|
if (!env) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"aclint-mtimer: invalid hartid: %zu", hartid);
|
|
} else if ((addr & 0x7) == 0) {
|
|
if (size == 4) {
|
|
/* timecmp_lo for RV32/RV64 */
|
|
uint64_t timecmp_hi = env->timecmp >> 32;
|
|
riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
|
|
timecmp_hi << 32 | (value & 0xFFFFFFFF));
|
|
} else {
|
|
/* timecmp for RV64 */
|
|
riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
|
|
value);
|
|
}
|
|
} else if ((addr & 0x7) == 4) {
|
|
if (size == 4) {
|
|
/* timecmp_hi for RV32/RV64 */
|
|
uint64_t timecmp_lo = env->timecmp;
|
|
riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
|
|
value << 32 | (timecmp_lo & 0xFFFFFFFF));
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"aclint-mtimer: invalid timecmp_hi write: %08x",
|
|
(uint32_t)addr);
|
|
}
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"aclint-mtimer: invalid timecmp write: %08x",
|
|
(uint32_t)addr);
|
|
}
|
|
return;
|
|
} else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) {
|
|
uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq);
|
|
|
|
if (addr == mtimer->time_base) {
|
|
if (size == 4) {
|
|
/* time_lo for RV32/RV64 */
|
|
mtimer->time_delta = ((rtc_r & ~0xFFFFFFFFULL) | value) - rtc_r;
|
|
} else {
|
|
/* time for RV64 */
|
|
mtimer->time_delta = value - rtc_r;
|
|
}
|
|
} else {
|
|
if (size == 4) {
|
|
/* time_hi for RV32/RV64 */
|
|
mtimer->time_delta = (value << 32 | (rtc_r & 0xFFFFFFFF)) - rtc_r;
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"aclint-mtimer: invalid time_hi write: %08x",
|
|
(uint32_t)addr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Check if timer interrupt is triggered for each hart. */
|
|
for (i = 0; i < mtimer->num_harts; i++) {
|
|
CPUState *cpu = qemu_get_cpu(mtimer->hartid_base + i);
|
|
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
|
|
if (!env) {
|
|
continue;
|
|
}
|
|
riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu),
|
|
mtimer->hartid_base + i,
|
|
env->timecmp);
|
|
}
|
|
return;
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"aclint-mtimer: invalid write: %08x", (uint32_t)addr);
|
|
}
|
|
|
|
static const MemoryRegionOps riscv_aclint_mtimer_ops = {
|
|
.read = riscv_aclint_mtimer_read,
|
|
.write = riscv_aclint_mtimer_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 8
|
|
},
|
|
.impl = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 8,
|
|
}
|
|
};
|
|
|
|
static Property riscv_aclint_mtimer_properties[] = {
|
|
DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
|
|
hartid_base, 0),
|
|
DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
|
|
DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
|
|
timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
|
|
DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
|
|
time_base, RISCV_ACLINT_DEFAULT_MTIME),
|
|
DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
|
|
aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
|
|
DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
|
|
timebase_freq, 0),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
|
|
int i;
|
|
|
|
memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
|
|
s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
|
|
|
|
s->timer_irqs = g_new(qemu_irq, s->num_harts);
|
|
qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
|
|
|
|
/* Claim timer interrupt bits */
|
|
for (i = 0; i < s->num_harts; i++) {
|
|
RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
|
|
if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
|
|
error_report("MTIP already claimed");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type)
|
|
{
|
|
/*
|
|
* According to RISC-V ACLINT spec:
|
|
* - On MTIMER device reset, the MTIME register is cleared to zero.
|
|
* - On MTIMER device reset, the MTIMECMP registers are in unknown state.
|
|
*/
|
|
RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj);
|
|
|
|
/*
|
|
* Clear mtime register by writing to 0 it.
|
|
* Pending mtime interrupts will also be cleared at the same time.
|
|
*/
|
|
riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8);
|
|
}
|
|
|
|
static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
dc->realize = riscv_aclint_mtimer_realize;
|
|
device_class_set_props(dc, riscv_aclint_mtimer_properties);
|
|
ResettableClass *rc = RESETTABLE_CLASS(klass);
|
|
rc->phases.enter = riscv_aclint_mtimer_reset_enter;
|
|
}
|
|
|
|
static const TypeInfo riscv_aclint_mtimer_info = {
|
|
.name = TYPE_RISCV_ACLINT_MTIMER,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(RISCVAclintMTimerState),
|
|
.class_init = riscv_aclint_mtimer_class_init,
|
|
};
|
|
|
|
/*
|
|
* Create ACLINT MTIMER device.
|
|
*/
|
|
DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
|
|
uint32_t hartid_base, uint32_t num_harts,
|
|
uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
|
|
bool provide_rdtime)
|
|
{
|
|
int i;
|
|
DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
|
|
|
|
assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
|
|
assert(!(addr & 0x7));
|
|
assert(!(timecmp_base & 0x7));
|
|
assert(!(time_base & 0x7));
|
|
|
|
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
|
|
qdev_prop_set_uint32(dev, "num-harts", num_harts);
|
|
qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
|
|
qdev_prop_set_uint32(dev, "time-base", time_base);
|
|
qdev_prop_set_uint32(dev, "aperture-size", size);
|
|
qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
|
|
|
|
for (i = 0; i < num_harts; i++) {
|
|
CPUState *cpu = qemu_get_cpu(hartid_base + i);
|
|
RISCVCPU *rvcpu = RISCV_CPU(cpu);
|
|
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
|
|
riscv_aclint_mtimer_callback *cb =
|
|
g_new0(riscv_aclint_mtimer_callback, 1);
|
|
|
|
if (!env) {
|
|
g_free(cb);
|
|
continue;
|
|
}
|
|
if (provide_rdtime) {
|
|
riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev);
|
|
}
|
|
|
|
cb->s = RISCV_ACLINT_MTIMER(dev);
|
|
cb->num = i;
|
|
env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
&riscv_aclint_mtimer_cb, cb);
|
|
env->timecmp = 0;
|
|
|
|
qdev_connect_gpio_out(dev, i,
|
|
qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
/* CPU read [M|S]SWI register */
|
|
static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
RISCVAclintSwiState *swi = opaque;
|
|
|
|
if (addr < (swi->num_harts << 2)) {
|
|
size_t hartid = swi->hartid_base + (addr >> 2);
|
|
CPUState *cpu = qemu_get_cpu(hartid);
|
|
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
|
|
if (!env) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"aclint-swi: invalid hartid: %zu", hartid);
|
|
} else if ((addr & 0x3) == 0) {
|
|
return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"aclint-swi: invalid read: %08x", (uint32_t)addr);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU write [M|S]SWI register */
|
|
static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
|
|
unsigned size)
|
|
{
|
|
RISCVAclintSwiState *swi = opaque;
|
|
|
|
if (addr < (swi->num_harts << 2)) {
|
|
size_t hartid = swi->hartid_base + (addr >> 2);
|
|
CPUState *cpu = qemu_get_cpu(hartid);
|
|
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
|
|
if (!env) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"aclint-swi: invalid hartid: %zu", hartid);
|
|
} else if ((addr & 0x3) == 0) {
|
|
if (value & 0x1) {
|
|
qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
|
|
} else {
|
|
if (!swi->sswi) {
|
|
qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"aclint-swi: invalid write: %08x", (uint32_t)addr);
|
|
}
|
|
|
|
static const MemoryRegionOps riscv_aclint_swi_ops = {
|
|
.read = riscv_aclint_swi_read,
|
|
.write = riscv_aclint_swi_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 4,
|
|
.max_access_size = 4
|
|
}
|
|
};
|
|
|
|
static Property riscv_aclint_swi_properties[] = {
|
|
DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
|
|
DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
|
|
DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
|
|
int i;
|
|
|
|
memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
|
|
TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
|
|
|
|
swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
|
|
qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
|
|
|
|
/* Claim software interrupt bits */
|
|
for (i = 0; i < swi->num_harts; i++) {
|
|
RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
|
|
/* We don't claim mip.SSIP because it is writable by software */
|
|
if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
|
|
error_report("MSIP already claimed");
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type)
|
|
{
|
|
/*
|
|
* According to RISC-V ACLINT spec:
|
|
* - On MSWI device reset, each MSIP register is cleared to zero.
|
|
*
|
|
* p.s. SSWI device reset does nothing since SETSIP register always reads 0.
|
|
*/
|
|
RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj);
|
|
int i;
|
|
|
|
if (!swi->sswi) {
|
|
for (i = 0; i < swi->num_harts; i++) {
|
|
/* Clear MSIP registers by lowering software interrupts. */
|
|
qemu_irq_lower(swi->soft_irqs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
dc->realize = riscv_aclint_swi_realize;
|
|
device_class_set_props(dc, riscv_aclint_swi_properties);
|
|
ResettableClass *rc = RESETTABLE_CLASS(klass);
|
|
rc->phases.enter = riscv_aclint_swi_reset_enter;
|
|
}
|
|
|
|
static const TypeInfo riscv_aclint_swi_info = {
|
|
.name = TYPE_RISCV_ACLINT_SWI,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(RISCVAclintSwiState),
|
|
.class_init = riscv_aclint_swi_class_init,
|
|
};
|
|
|
|
/*
|
|
* Create ACLINT [M|S]SWI device.
|
|
*/
|
|
DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
|
|
uint32_t num_harts, bool sswi)
|
|
{
|
|
int i;
|
|
DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
|
|
|
|
assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
|
|
assert(!(addr & 0x3));
|
|
|
|
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
|
|
qdev_prop_set_uint32(dev, "num-harts", num_harts);
|
|
qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
|
|
|
|
for (i = 0; i < num_harts; i++) {
|
|
CPUState *cpu = qemu_get_cpu(hartid_base + i);
|
|
RISCVCPU *rvcpu = RISCV_CPU(cpu);
|
|
|
|
qdev_connect_gpio_out(dev, i,
|
|
qdev_get_gpio_in(DEVICE(rvcpu),
|
|
(sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
|
|
}
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void riscv_aclint_register_types(void)
|
|
{
|
|
type_register_static(&riscv_aclint_mtimer_info);
|
|
type_register_static(&riscv_aclint_swi_info);
|
|
}
|
|
|
|
type_init(riscv_aclint_register_types)
|