qemu-e2k/accel/tcg/atomic_template.h
Emilio G. Cota e6d86bed50 tcg: let plugins instrument virtual memory accesses
To capture all memory accesses we need hook into all the various
helper functions that are involved in memory operations as well as the
injected inline helper calls. A later commit will allow us to resolve
the actual guest HW addresses by replaying the lookup.

Signed-off-by: Emilio G. Cota <cota@braap.org>
[AJB: drop haddr handling, just deal in vaddr]
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2019-10-28 15:12:38 +00:00

391 lines
14 KiB
C

/*
* Atomic helper templates
* Included from tcg-runtime.c and cputlb.c.
*
* Copyright (c) 2016 Red Hat, Inc
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/plugin.h"
#include "trace/mem.h"
#if DATA_SIZE == 16
# define SUFFIX o
# define DATA_TYPE Int128
# define BSWAP bswap128
# define SHIFT 4
#elif DATA_SIZE == 8
# define SUFFIX q
# define DATA_TYPE uint64_t
# define SDATA_TYPE int64_t
# define BSWAP bswap64
# define SHIFT 3
#elif DATA_SIZE == 4
# define SUFFIX l
# define DATA_TYPE uint32_t
# define SDATA_TYPE int32_t
# define BSWAP bswap32
# define SHIFT 2
#elif DATA_SIZE == 2
# define SUFFIX w
# define DATA_TYPE uint16_t
# define SDATA_TYPE int16_t
# define BSWAP bswap16
# define SHIFT 1
#elif DATA_SIZE == 1
# define SUFFIX b
# define DATA_TYPE uint8_t
# define SDATA_TYPE int8_t
# define BSWAP
# define SHIFT 0
#else
# error unsupported data size
#endif
#if DATA_SIZE >= 4
# define ABI_TYPE DATA_TYPE
#else
# define ABI_TYPE uint32_t
#endif
/* Define host-endian atomic operations. Note that END is used within
the ATOMIC_NAME macro, and redefined below. */
#if DATA_SIZE == 1
# define END
# define MEND _be /* either le or be would be fine */
#elif defined(HOST_WORDS_BIGENDIAN)
# define END _be
# define MEND _be
#else
# define END _le
# define MEND _le
#endif
ABI_TYPE ATOMIC_NAME(cmpxchg)(CPUArchState *env, target_ulong addr,
ABI_TYPE cmpv, ABI_TYPE newv EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP;
DATA_TYPE ret;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, false,
ATOMIC_MMU_IDX);
atomic_trace_rmw_pre(env, addr, info);
#if DATA_SIZE == 16
ret = atomic16_cmpxchg(haddr, cmpv, newv);
#else
ret = atomic_cmpxchg__nocheck(haddr, cmpv, newv);
#endif
ATOMIC_MMU_CLEANUP;
atomic_trace_rmw_post(env, addr, info);
return ret;
}
#if DATA_SIZE >= 16
#if HAVE_ATOMIC128
ABI_TYPE ATOMIC_NAME(ld)(CPUArchState *env, target_ulong addr EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE val, *haddr = ATOMIC_MMU_LOOKUP;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, false,
ATOMIC_MMU_IDX);
atomic_trace_ld_pre(env, addr, info);
val = atomic16_read(haddr);
ATOMIC_MMU_CLEANUP;
atomic_trace_ld_post(env, addr, info);
return val;
}
void ATOMIC_NAME(st)(CPUArchState *env, target_ulong addr,
ABI_TYPE val EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, true,
ATOMIC_MMU_IDX);
atomic_trace_st_pre(env, addr, info);
atomic16_set(haddr, val);
ATOMIC_MMU_CLEANUP;
atomic_trace_st_post(env, addr, info);
}
#endif
#else
ABI_TYPE ATOMIC_NAME(xchg)(CPUArchState *env, target_ulong addr,
ABI_TYPE val EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP;
DATA_TYPE ret;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, false,
ATOMIC_MMU_IDX);
atomic_trace_rmw_pre(env, addr, info);
ret = atomic_xchg__nocheck(haddr, val);
ATOMIC_MMU_CLEANUP;
atomic_trace_rmw_post(env, addr, info);
return ret;
}
#define GEN_ATOMIC_HELPER(X) \
ABI_TYPE ATOMIC_NAME(X)(CPUArchState *env, target_ulong addr, \
ABI_TYPE val EXTRA_ARGS) \
{ \
ATOMIC_MMU_DECLS; \
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP; \
DATA_TYPE ret; \
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, \
false, \
ATOMIC_MMU_IDX); \
\
atomic_trace_rmw_pre(env, addr, info); \
ret = atomic_##X(haddr, val); \
ATOMIC_MMU_CLEANUP; \
atomic_trace_rmw_post(env, addr, info); \
return ret; \
}
GEN_ATOMIC_HELPER(fetch_add)
GEN_ATOMIC_HELPER(fetch_and)
GEN_ATOMIC_HELPER(fetch_or)
GEN_ATOMIC_HELPER(fetch_xor)
GEN_ATOMIC_HELPER(add_fetch)
GEN_ATOMIC_HELPER(and_fetch)
GEN_ATOMIC_HELPER(or_fetch)
GEN_ATOMIC_HELPER(xor_fetch)
#undef GEN_ATOMIC_HELPER
/* These helpers are, as a whole, full barriers. Within the helper,
* the leading barrier is explicit and the trailing barrier is within
* cmpxchg primitive.
*
* Trace this load + RMW loop as a single RMW op. This way, regardless
* of CF_PARALLEL's value, we'll trace just a read and a write.
*/
#define GEN_ATOMIC_HELPER_FN(X, FN, XDATA_TYPE, RET) \
ABI_TYPE ATOMIC_NAME(X)(CPUArchState *env, target_ulong addr, \
ABI_TYPE xval EXTRA_ARGS) \
{ \
ATOMIC_MMU_DECLS; \
XDATA_TYPE *haddr = ATOMIC_MMU_LOOKUP; \
XDATA_TYPE cmp, old, new, val = xval; \
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, \
false, \
ATOMIC_MMU_IDX); \
\
atomic_trace_rmw_pre(env, addr, info); \
smp_mb(); \
cmp = atomic_read__nocheck(haddr); \
do { \
old = cmp; new = FN(old, val); \
cmp = atomic_cmpxchg__nocheck(haddr, old, new); \
} while (cmp != old); \
ATOMIC_MMU_CLEANUP; \
atomic_trace_rmw_post(env, addr, info); \
return RET; \
}
GEN_ATOMIC_HELPER_FN(fetch_smin, MIN, SDATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(fetch_umin, MIN, DATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(fetch_smax, MAX, SDATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(fetch_umax, MAX, DATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(smin_fetch, MIN, SDATA_TYPE, new)
GEN_ATOMIC_HELPER_FN(umin_fetch, MIN, DATA_TYPE, new)
GEN_ATOMIC_HELPER_FN(smax_fetch, MAX, SDATA_TYPE, new)
GEN_ATOMIC_HELPER_FN(umax_fetch, MAX, DATA_TYPE, new)
#undef GEN_ATOMIC_HELPER_FN
#endif /* DATA SIZE >= 16 */
#undef END
#undef MEND
#if DATA_SIZE > 1
/* Define reverse-host-endian atomic operations. Note that END is used
within the ATOMIC_NAME macro. */
#ifdef HOST_WORDS_BIGENDIAN
# define END _le
# define MEND _le
#else
# define END _be
# define MEND _be
#endif
ABI_TYPE ATOMIC_NAME(cmpxchg)(CPUArchState *env, target_ulong addr,
ABI_TYPE cmpv, ABI_TYPE newv EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP;
DATA_TYPE ret;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT,
false,
ATOMIC_MMU_IDX);
atomic_trace_rmw_pre(env, addr, info);
#if DATA_SIZE == 16
ret = atomic16_cmpxchg(haddr, BSWAP(cmpv), BSWAP(newv));
#else
ret = atomic_cmpxchg__nocheck(haddr, BSWAP(cmpv), BSWAP(newv));
#endif
ATOMIC_MMU_CLEANUP;
atomic_trace_rmw_post(env, addr, info);
return BSWAP(ret);
}
#if DATA_SIZE >= 16
#if HAVE_ATOMIC128
ABI_TYPE ATOMIC_NAME(ld)(CPUArchState *env, target_ulong addr EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE val, *haddr = ATOMIC_MMU_LOOKUP;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT,
false,
ATOMIC_MMU_IDX);
atomic_trace_ld_pre(env, addr, info);
val = atomic16_read(haddr);
ATOMIC_MMU_CLEANUP;
atomic_trace_ld_post(env, addr, info);
return BSWAP(val);
}
void ATOMIC_NAME(st)(CPUArchState *env, target_ulong addr,
ABI_TYPE val EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT,
true,
ATOMIC_MMU_IDX);
val = BSWAP(val);
atomic_trace_st_pre(env, addr, info);
val = BSWAP(val);
atomic16_set(haddr, val);
ATOMIC_MMU_CLEANUP;
atomic_trace_st_post(env, addr, info);
}
#endif
#else
ABI_TYPE ATOMIC_NAME(xchg)(CPUArchState *env, target_ulong addr,
ABI_TYPE val EXTRA_ARGS)
{
ATOMIC_MMU_DECLS;
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP;
ABI_TYPE ret;
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT,
false,
ATOMIC_MMU_IDX);
atomic_trace_rmw_pre(env, addr, info);
ret = atomic_xchg__nocheck(haddr, BSWAP(val));
ATOMIC_MMU_CLEANUP;
atomic_trace_rmw_post(env, addr, info);
return BSWAP(ret);
}
#define GEN_ATOMIC_HELPER(X) \
ABI_TYPE ATOMIC_NAME(X)(CPUArchState *env, target_ulong addr, \
ABI_TYPE val EXTRA_ARGS) \
{ \
ATOMIC_MMU_DECLS; \
DATA_TYPE *haddr = ATOMIC_MMU_LOOKUP; \
DATA_TYPE ret; \
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, \
false, \
ATOMIC_MMU_IDX); \
\
atomic_trace_rmw_pre(env, addr, info); \
ret = atomic_##X(haddr, BSWAP(val)); \
ATOMIC_MMU_CLEANUP; \
atomic_trace_rmw_post(env, addr, info); \
return BSWAP(ret); \
}
GEN_ATOMIC_HELPER(fetch_and)
GEN_ATOMIC_HELPER(fetch_or)
GEN_ATOMIC_HELPER(fetch_xor)
GEN_ATOMIC_HELPER(and_fetch)
GEN_ATOMIC_HELPER(or_fetch)
GEN_ATOMIC_HELPER(xor_fetch)
#undef GEN_ATOMIC_HELPER
/* These helpers are, as a whole, full barriers. Within the helper,
* the leading barrier is explicit and the trailing barrier is within
* cmpxchg primitive.
*
* Trace this load + RMW loop as a single RMW op. This way, regardless
* of CF_PARALLEL's value, we'll trace just a read and a write.
*/
#define GEN_ATOMIC_HELPER_FN(X, FN, XDATA_TYPE, RET) \
ABI_TYPE ATOMIC_NAME(X)(CPUArchState *env, target_ulong addr, \
ABI_TYPE xval EXTRA_ARGS) \
{ \
ATOMIC_MMU_DECLS; \
XDATA_TYPE *haddr = ATOMIC_MMU_LOOKUP; \
XDATA_TYPE ldo, ldn, old, new, val = xval; \
uint16_t info = glue(trace_mem_build_info_no_se, MEND)(SHIFT, \
false, \
ATOMIC_MMU_IDX); \
\
atomic_trace_rmw_pre(env, addr, info); \
smp_mb(); \
ldn = atomic_read__nocheck(haddr); \
do { \
ldo = ldn; old = BSWAP(ldo); new = FN(old, val); \
ldn = atomic_cmpxchg__nocheck(haddr, ldo, BSWAP(new)); \
} while (ldo != ldn); \
ATOMIC_MMU_CLEANUP; \
atomic_trace_rmw_post(env, addr, info); \
return RET; \
}
GEN_ATOMIC_HELPER_FN(fetch_smin, MIN, SDATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(fetch_umin, MIN, DATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(fetch_smax, MAX, SDATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(fetch_umax, MAX, DATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(smin_fetch, MIN, SDATA_TYPE, new)
GEN_ATOMIC_HELPER_FN(umin_fetch, MIN, DATA_TYPE, new)
GEN_ATOMIC_HELPER_FN(smax_fetch, MAX, SDATA_TYPE, new)
GEN_ATOMIC_HELPER_FN(umax_fetch, MAX, DATA_TYPE, new)
/* Note that for addition, we need to use a separate cmpxchg loop instead
of bswaps for the reverse-host-endian helpers. */
#define ADD(X, Y) (X + Y)
GEN_ATOMIC_HELPER_FN(fetch_add, ADD, DATA_TYPE, old)
GEN_ATOMIC_HELPER_FN(add_fetch, ADD, DATA_TYPE, new)
#undef ADD
#undef GEN_ATOMIC_HELPER_FN
#endif /* DATA_SIZE >= 16 */
#undef END
#undef MEND
#endif /* DATA_SIZE > 1 */
#undef BSWAP
#undef ABI_TYPE
#undef DATA_TYPE
#undef SDATA_TYPE
#undef SUFFIX
#undef DATA_SIZE
#undef SHIFT