qemu-e2k/arch_init.c
Peter Lieven ee0b44aa9d page_cache: dup memory on insert
The page cache frees all data on finish, on resize and
if there is collision on insert. So it should be the caches
responsibility to dup the data that is stored in the cache.

Signed-off-by: Peter Lieven <pl@kamp.de>
Signed-off-by: Orit Wasserman <owasserm@redhat.com>

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Juan Quintela <quintela@redhat.com>
2013-03-11 13:32:03 +01:00

1176 lines
29 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdarg.h>
#include <stdlib.h>
#ifndef _WIN32
#include <sys/types.h>
#include <sys/mman.h>
#endif
#include "config.h"
#include "monitor/monitor.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "qemu/bitmap.h"
#include "sysemu/arch_init.h"
#include "audio/audio.h"
#include "hw/pc.h"
#include "hw/pci/pci.h"
#include "hw/audiodev.h"
#include "sysemu/kvm.h"
#include "migration/migration.h"
#include "exec/gdbstub.h"
#include "hw/smbios.h"
#include "exec/address-spaces.h"
#include "hw/pcspk.h"
#include "migration/page_cache.h"
#include "qemu/config-file.h"
#include "qmp-commands.h"
#include "trace.h"
#include "exec/cpu-all.h"
#ifdef DEBUG_ARCH_INIT
#define DPRINTF(fmt, ...) \
do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
int graphic_depth = 8;
#else
int graphic_width = 800;
int graphic_height = 600;
int graphic_depth = 15;
#endif
#if defined(TARGET_ALPHA)
#define QEMU_ARCH QEMU_ARCH_ALPHA
#elif defined(TARGET_ARM)
#define QEMU_ARCH QEMU_ARCH_ARM
#elif defined(TARGET_CRIS)
#define QEMU_ARCH QEMU_ARCH_CRIS
#elif defined(TARGET_I386)
#define QEMU_ARCH QEMU_ARCH_I386
#elif defined(TARGET_M68K)
#define QEMU_ARCH QEMU_ARCH_M68K
#elif defined(TARGET_LM32)
#define QEMU_ARCH QEMU_ARCH_LM32
#elif defined(TARGET_MICROBLAZE)
#define QEMU_ARCH QEMU_ARCH_MICROBLAZE
#elif defined(TARGET_MIPS)
#define QEMU_ARCH QEMU_ARCH_MIPS
#elif defined(TARGET_OPENRISC)
#define QEMU_ARCH QEMU_ARCH_OPENRISC
#elif defined(TARGET_PPC)
#define QEMU_ARCH QEMU_ARCH_PPC
#elif defined(TARGET_S390X)
#define QEMU_ARCH QEMU_ARCH_S390X
#elif defined(TARGET_SH4)
#define QEMU_ARCH QEMU_ARCH_SH4
#elif defined(TARGET_SPARC)
#define QEMU_ARCH QEMU_ARCH_SPARC
#elif defined(TARGET_XTENSA)
#define QEMU_ARCH QEMU_ARCH_XTENSA
#elif defined(TARGET_UNICORE32)
#define QEMU_ARCH QEMU_ARCH_UNICORE32
#endif
const uint32_t arch_type = QEMU_ARCH;
/***********************************************************/
/* ram save/restore */
#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
#define RAM_SAVE_FLAG_COMPRESS 0x02
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
#define RAM_SAVE_FLAG_PAGE 0x08
#define RAM_SAVE_FLAG_EOS 0x10
#define RAM_SAVE_FLAG_CONTINUE 0x20
#define RAM_SAVE_FLAG_XBZRLE 0x40
#ifdef __ALTIVEC__
#include <altivec.h>
#define VECTYPE vector unsigned char
#define SPLAT(p) vec_splat(vec_ld(0, p), 0)
#define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
/* altivec.h may redefine the bool macro as vector type.
* Reset it to POSIX semantics. */
#undef bool
#define bool _Bool
#elif defined __SSE2__
#include <emmintrin.h>
#define VECTYPE __m128i
#define SPLAT(p) _mm_set1_epi8(*(p))
#define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
#else
#define VECTYPE unsigned long
#define SPLAT(p) (*(p) * (~0UL / 255))
#define ALL_EQ(v1, v2) ((v1) == (v2))
#endif
static struct defconfig_file {
const char *filename;
/* Indicates it is an user config file (disabled by -no-user-config) */
bool userconfig;
} default_config_files[] = {
{ CONFIG_QEMU_CONFDIR "/qemu.conf", true },
{ CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
{ NULL }, /* end of list */
};
int qemu_read_default_config_files(bool userconfig)
{
int ret;
struct defconfig_file *f;
for (f = default_config_files; f->filename; f++) {
if (!userconfig && f->userconfig) {
continue;
}
ret = qemu_read_config_file(f->filename);
if (ret < 0 && ret != -ENOENT) {
return ret;
}
}
return 0;
}
static int is_dup_page(uint8_t *page)
{
VECTYPE *p = (VECTYPE *)page;
VECTYPE val = SPLAT(page);
int i;
for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
if (!ALL_EQ(val, p[i])) {
return 0;
}
}
return 1;
}
/* struct contains XBZRLE cache and a static page
used by the compression */
static struct {
/* buffer used for XBZRLE encoding */
uint8_t *encoded_buf;
/* buffer for storing page content */
uint8_t *current_buf;
/* buffer used for XBZRLE decoding */
uint8_t *decoded_buf;
/* Cache for XBZRLE */
PageCache *cache;
} XBZRLE = {
.encoded_buf = NULL,
.current_buf = NULL,
.decoded_buf = NULL,
.cache = NULL,
};
int64_t xbzrle_cache_resize(int64_t new_size)
{
if (XBZRLE.cache != NULL) {
return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
TARGET_PAGE_SIZE;
}
return pow2floor(new_size);
}
/* accounting for migration statistics */
typedef struct AccountingInfo {
uint64_t dup_pages;
uint64_t norm_pages;
uint64_t iterations;
uint64_t xbzrle_bytes;
uint64_t xbzrle_pages;
uint64_t xbzrle_cache_miss;
uint64_t xbzrle_overflows;
} AccountingInfo;
static AccountingInfo acct_info;
static void acct_clear(void)
{
memset(&acct_info, 0, sizeof(acct_info));
}
uint64_t dup_mig_bytes_transferred(void)
{
return acct_info.dup_pages * TARGET_PAGE_SIZE;
}
uint64_t dup_mig_pages_transferred(void)
{
return acct_info.dup_pages;
}
uint64_t norm_mig_bytes_transferred(void)
{
return acct_info.norm_pages * TARGET_PAGE_SIZE;
}
uint64_t norm_mig_pages_transferred(void)
{
return acct_info.norm_pages;
}
uint64_t xbzrle_mig_bytes_transferred(void)
{
return acct_info.xbzrle_bytes;
}
uint64_t xbzrle_mig_pages_transferred(void)
{
return acct_info.xbzrle_pages;
}
uint64_t xbzrle_mig_pages_cache_miss(void)
{
return acct_info.xbzrle_cache_miss;
}
uint64_t xbzrle_mig_pages_overflow(void)
{
return acct_info.xbzrle_overflows;
}
static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
int cont, int flag)
{
size_t size;
qemu_put_be64(f, offset | cont | flag);
size = 8;
if (!cont) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr,
strlen(block->idstr));
size += 1 + strlen(block->idstr);
}
return size;
}
#define ENCODING_FLAG_XBZRLE 0x1
static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
ram_addr_t current_addr, RAMBlock *block,
ram_addr_t offset, int cont, bool last_stage)
{
int encoded_len = 0, bytes_sent = -1;
uint8_t *prev_cached_page;
if (!cache_is_cached(XBZRLE.cache, current_addr)) {
if (!last_stage) {
cache_insert(XBZRLE.cache, current_addr, current_data);
}
acct_info.xbzrle_cache_miss++;
return -1;
}
prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
/* save current buffer into memory */
memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
/* XBZRLE encoding (if there is no overflow) */
encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
TARGET_PAGE_SIZE);
if (encoded_len == 0) {
DPRINTF("Skipping unmodified page\n");
return 0;
} else if (encoded_len == -1) {
DPRINTF("Overflow\n");
acct_info.xbzrle_overflows++;
/* update data in the cache */
memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
return -1;
}
/* we need to update the data in the cache, in order to get the same data */
if (!last_stage) {
memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
}
/* Send XBZRLE based compressed page */
bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
qemu_put_be16(f, encoded_len);
qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
bytes_sent += encoded_len + 1 + 2;
acct_info.xbzrle_pages++;
acct_info.xbzrle_bytes += bytes_sent;
return bytes_sent;
}
/* This is the last block that we have visited serching for dirty pages
*/
static RAMBlock *last_seen_block;
/* This is the last block from where we have sent data */
static RAMBlock *last_sent_block;
static ram_addr_t last_offset;
static unsigned long *migration_bitmap;
static uint64_t migration_dirty_pages;
static uint32_t last_version;
static inline
ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
ram_addr_t start)
{
unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
unsigned long nr = base + (start >> TARGET_PAGE_BITS);
unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
unsigned long next = find_next_bit(migration_bitmap, size, nr);
if (next < size) {
clear_bit(next, migration_bitmap);
migration_dirty_pages--;
}
return (next - base) << TARGET_PAGE_BITS;
}
static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
ram_addr_t offset)
{
bool ret;
int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
ret = test_and_set_bit(nr, migration_bitmap);
if (!ret) {
migration_dirty_pages++;
}
return ret;
}
/* Needs iothread lock! */
static void migration_bitmap_sync(void)
{
RAMBlock *block;
ram_addr_t addr;
uint64_t num_dirty_pages_init = migration_dirty_pages;
MigrationState *s = migrate_get_current();
static int64_t start_time;
static int64_t num_dirty_pages_period;
int64_t end_time;
if (!start_time) {
start_time = qemu_get_clock_ms(rt_clock);
}
trace_migration_bitmap_sync_start();
memory_global_sync_dirty_bitmap(get_system_memory());
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
if (memory_region_test_and_clear_dirty(block->mr,
addr, TARGET_PAGE_SIZE,
DIRTY_MEMORY_MIGRATION)) {
migration_bitmap_set_dirty(block->mr, addr);
}
}
}
trace_migration_bitmap_sync_end(migration_dirty_pages
- num_dirty_pages_init);
num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
end_time = qemu_get_clock_ms(rt_clock);
/* more than 1 second = 1000 millisecons */
if (end_time > start_time + 1000) {
s->dirty_pages_rate = num_dirty_pages_period * 1000
/ (end_time - start_time);
s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
start_time = end_time;
num_dirty_pages_period = 0;
}
}
/*
* ram_save_block: Writes a page of memory to the stream f
*
* Returns: The number of bytes written.
* 0 means no dirty pages
*/
static int ram_save_block(QEMUFile *f, bool last_stage)
{
RAMBlock *block = last_seen_block;
ram_addr_t offset = last_offset;
bool complete_round = false;
int bytes_sent = 0;
MemoryRegion *mr;
ram_addr_t current_addr;
if (!block)
block = QTAILQ_FIRST(&ram_list.blocks);
while (true) {
mr = block->mr;
offset = migration_bitmap_find_and_reset_dirty(mr, offset);
if (complete_round && block == last_seen_block &&
offset >= last_offset) {
break;
}
if (offset >= block->length) {
offset = 0;
block = QTAILQ_NEXT(block, next);
if (!block) {
block = QTAILQ_FIRST(&ram_list.blocks);
complete_round = true;
}
} else {
uint8_t *p;
int cont = (block == last_sent_block) ?
RAM_SAVE_FLAG_CONTINUE : 0;
p = memory_region_get_ram_ptr(mr) + offset;
/* In doubt sent page as normal */
bytes_sent = -1;
if (is_dup_page(p)) {
acct_info.dup_pages++;
bytes_sent = save_block_hdr(f, block, offset, cont,
RAM_SAVE_FLAG_COMPRESS);
qemu_put_byte(f, *p);
bytes_sent += 1;
} else if (migrate_use_xbzrle()) {
current_addr = block->offset + offset;
bytes_sent = save_xbzrle_page(f, p, current_addr, block,
offset, cont, last_stage);
if (!last_stage) {
p = get_cached_data(XBZRLE.cache, current_addr);
}
}
/* XBZRLE overflow or normal page */
if (bytes_sent == -1) {
bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
bytes_sent += TARGET_PAGE_SIZE;
acct_info.norm_pages++;
}
/* if page is unmodified, continue to the next */
if (bytes_sent > 0) {
last_sent_block = block;
break;
}
}
}
last_seen_block = block;
last_offset = offset;
return bytes_sent;
}
static uint64_t bytes_transferred;
static ram_addr_t ram_save_remaining(void)
{
return migration_dirty_pages;
}
uint64_t ram_bytes_remaining(void)
{
return ram_save_remaining() * TARGET_PAGE_SIZE;
}
uint64_t ram_bytes_transferred(void)
{
return bytes_transferred;
}
uint64_t ram_bytes_total(void)
{
RAMBlock *block;
uint64_t total = 0;
QTAILQ_FOREACH(block, &ram_list.blocks, next)
total += block->length;
return total;
}
static void migration_end(void)
{
if (migration_bitmap) {
memory_global_dirty_log_stop();
g_free(migration_bitmap);
migration_bitmap = NULL;
}
if (XBZRLE.cache) {
cache_fini(XBZRLE.cache);
g_free(XBZRLE.cache);
g_free(XBZRLE.encoded_buf);
g_free(XBZRLE.current_buf);
g_free(XBZRLE.decoded_buf);
XBZRLE.cache = NULL;
}
}
static void ram_migration_cancel(void *opaque)
{
migration_end();
}
static void reset_ram_globals(void)
{
last_seen_block = NULL;
last_sent_block = NULL;
last_offset = 0;
last_version = ram_list.version;
}
#define MAX_WAIT 50 /* ms, half buffered_file limit */
static int ram_save_setup(QEMUFile *f, void *opaque)
{
RAMBlock *block;
int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
migration_bitmap = bitmap_new(ram_pages);
bitmap_set(migration_bitmap, 0, ram_pages);
migration_dirty_pages = ram_pages;
if (migrate_use_xbzrle()) {
XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
TARGET_PAGE_SIZE,
TARGET_PAGE_SIZE);
if (!XBZRLE.cache) {
DPRINTF("Error creating cache\n");
return -1;
}
XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
acct_clear();
}
qemu_mutex_lock_iothread();
qemu_mutex_lock_ramlist();
bytes_transferred = 0;
reset_ram_globals();
memory_global_dirty_log_start();
migration_bitmap_sync();
qemu_mutex_unlock_iothread();
qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
qemu_put_byte(f, strlen(block->idstr));
qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
qemu_put_be64(f, block->length);
}
qemu_mutex_unlock_ramlist();
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
return 0;
}
static int ram_save_iterate(QEMUFile *f, void *opaque)
{
int ret;
int i;
int64_t t0;
int total_sent = 0;
qemu_mutex_lock_ramlist();
if (ram_list.version != last_version) {
reset_ram_globals();
}
t0 = qemu_get_clock_ns(rt_clock);
i = 0;
while ((ret = qemu_file_rate_limit(f)) == 0) {
int bytes_sent;
bytes_sent = ram_save_block(f, false);
/* no more blocks to sent */
if (bytes_sent == 0) {
break;
}
total_sent += bytes_sent;
acct_info.iterations++;
/* we want to check in the 1st loop, just in case it was the 1st time
and we had to sync the dirty bitmap.
qemu_get_clock_ns() is a bit expensive, so we only check each some
iterations
*/
if ((i & 63) == 0) {
uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
if (t1 > MAX_WAIT) {
DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
t1, i);
break;
}
}
i++;
}
qemu_mutex_unlock_ramlist();
if (ret < 0) {
bytes_transferred += total_sent;
return ret;
}
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
total_sent += 8;
bytes_transferred += total_sent;
return total_sent;
}
static int ram_save_complete(QEMUFile *f, void *opaque)
{
qemu_mutex_lock_ramlist();
migration_bitmap_sync();
/* try transferring iterative blocks of memory */
/* flush all remaining blocks regardless of rate limiting */
while (true) {
int bytes_sent;
bytes_sent = ram_save_block(f, true);
/* no more blocks to sent */
if (bytes_sent == 0) {
break;
}
bytes_transferred += bytes_sent;
}
migration_end();
qemu_mutex_unlock_ramlist();
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
return 0;
}
static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
{
uint64_t remaining_size;
remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
if (remaining_size < max_size) {
qemu_mutex_lock_iothread();
migration_bitmap_sync();
qemu_mutex_unlock_iothread();
remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
}
return remaining_size;
}
static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
{
int ret, rc = 0;
unsigned int xh_len;
int xh_flags;
if (!XBZRLE.decoded_buf) {
XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
}
/* extract RLE header */
xh_flags = qemu_get_byte(f);
xh_len = qemu_get_be16(f);
if (xh_flags != ENCODING_FLAG_XBZRLE) {
fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
return -1;
}
if (xh_len > TARGET_PAGE_SIZE) {
fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
return -1;
}
/* load data and decode */
qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
/* decode RLE */
ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
TARGET_PAGE_SIZE);
if (ret == -1) {
fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
rc = -1;
} else if (ret > TARGET_PAGE_SIZE) {
fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
ret, TARGET_PAGE_SIZE);
abort();
}
return rc;
}
static inline void *host_from_stream_offset(QEMUFile *f,
ram_addr_t offset,
int flags)
{
static RAMBlock *block = NULL;
char id[256];
uint8_t len;
if (flags & RAM_SAVE_FLAG_CONTINUE) {
if (!block) {
fprintf(stderr, "Ack, bad migration stream!\n");
return NULL;
}
return memory_region_get_ram_ptr(block->mr) + offset;
}
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
if (!strncmp(id, block->idstr, sizeof(id)))
return memory_region_get_ram_ptr(block->mr) + offset;
}
fprintf(stderr, "Can't find block %s!\n", id);
return NULL;
}
static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
ram_addr_t addr;
int flags, ret = 0;
int error;
static uint64_t seq_iter;
seq_iter++;
if (version_id < 4 || version_id > 4) {
return -EINVAL;
}
do {
addr = qemu_get_be64(f);
flags = addr & ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
if (version_id == 4) {
/* Synchronize RAM block list */
char id[256];
ram_addr_t length;
ram_addr_t total_ram_bytes = addr;
while (total_ram_bytes) {
RAMBlock *block;
uint8_t len;
len = qemu_get_byte(f);
qemu_get_buffer(f, (uint8_t *)id, len);
id[len] = 0;
length = qemu_get_be64(f);
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
if (!strncmp(id, block->idstr, sizeof(id))) {
if (block->length != length) {
ret = -EINVAL;
goto done;
}
break;
}
}
if (!block) {
fprintf(stderr, "Unknown ramblock \"%s\", cannot "
"accept migration\n", id);
ret = -EINVAL;
goto done;
}
total_ram_bytes -= length;
}
}
}
if (flags & RAM_SAVE_FLAG_COMPRESS) {
void *host;
uint8_t ch;
host = host_from_stream_offset(f, addr, flags);
if (!host) {
return -EINVAL;
}
ch = qemu_get_byte(f);
memset(host, ch, TARGET_PAGE_SIZE);
#ifndef _WIN32
if (ch == 0 &&
(!kvm_enabled() || kvm_has_sync_mmu()) &&
getpagesize() <= TARGET_PAGE_SIZE) {
qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
}
#endif
} else if (flags & RAM_SAVE_FLAG_PAGE) {
void *host;
host = host_from_stream_offset(f, addr, flags);
if (!host) {
return -EINVAL;
}
qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
} else if (flags & RAM_SAVE_FLAG_XBZRLE) {
void *host = host_from_stream_offset(f, addr, flags);
if (!host) {
return -EINVAL;
}
if (load_xbzrle(f, addr, host) < 0) {
ret = -EINVAL;
goto done;
}
}
error = qemu_file_get_error(f);
if (error) {
ret = error;
goto done;
}
} while (!(flags & RAM_SAVE_FLAG_EOS));
done:
DPRINTF("Completed load of VM with exit code %d seq iteration "
"%" PRIu64 "\n", ret, seq_iter);
return ret;
}
SaveVMHandlers savevm_ram_handlers = {
.save_live_setup = ram_save_setup,
.save_live_iterate = ram_save_iterate,
.save_live_complete = ram_save_complete,
.save_live_pending = ram_save_pending,
.load_state = ram_load,
.cancel = ram_migration_cancel,
};
#ifdef HAS_AUDIO
struct soundhw {
const char *name;
const char *descr;
int enabled;
int isa;
union {
int (*init_isa) (ISABus *bus);
int (*init_pci) (PCIBus *bus);
} init;
};
static struct soundhw soundhw[] = {
#ifdef HAS_AUDIO_CHOICE
#ifdef CONFIG_PCSPK
{
"pcspk",
"PC speaker",
0,
1,
{ .init_isa = pcspk_audio_init }
},
#endif
#ifdef CONFIG_SB16
{
"sb16",
"Creative Sound Blaster 16",
0,
1,
{ .init_isa = SB16_init }
},
#endif
#ifdef CONFIG_CS4231A
{
"cs4231a",
"CS4231A",
0,
1,
{ .init_isa = cs4231a_init }
},
#endif
#ifdef CONFIG_ADLIB
{
"adlib",
#ifdef HAS_YMF262
"Yamaha YMF262 (OPL3)",
#else
"Yamaha YM3812 (OPL2)",
#endif
0,
1,
{ .init_isa = Adlib_init }
},
#endif
#ifdef CONFIG_GUS
{
"gus",
"Gravis Ultrasound GF1",
0,
1,
{ .init_isa = GUS_init }
},
#endif
#ifdef CONFIG_AC97
{
"ac97",
"Intel 82801AA AC97 Audio",
0,
0,
{ .init_pci = ac97_init }
},
#endif
#ifdef CONFIG_ES1370
{
"es1370",
"ENSONIQ AudioPCI ES1370",
0,
0,
{ .init_pci = es1370_init }
},
#endif
#ifdef CONFIG_HDA
{
"hda",
"Intel HD Audio",
0,
0,
{ .init_pci = intel_hda_and_codec_init }
},
#endif
#endif /* HAS_AUDIO_CHOICE */
{ NULL, NULL, 0, 0, { NULL } }
};
void select_soundhw(const char *optarg)
{
struct soundhw *c;
if (is_help_option(optarg)) {
show_valid_cards:
#ifdef HAS_AUDIO_CHOICE
printf("Valid sound card names (comma separated):\n");
for (c = soundhw; c->name; ++c) {
printf ("%-11s %s\n", c->name, c->descr);
}
printf("\n-soundhw all will enable all of the above\n");
#else
printf("Machine has no user-selectable audio hardware "
"(it may or may not have always-present audio hardware).\n");
#endif
exit(!is_help_option(optarg));
}
else {
size_t l;
const char *p;
char *e;
int bad_card = 0;
if (!strcmp(optarg, "all")) {
for (c = soundhw; c->name; ++c) {
c->enabled = 1;
}
return;
}
p = optarg;
while (*p) {
e = strchr(p, ',');
l = !e ? strlen(p) : (size_t) (e - p);
for (c = soundhw; c->name; ++c) {
if (!strncmp(c->name, p, l) && !c->name[l]) {
c->enabled = 1;
break;
}
}
if (!c->name) {
if (l > 80) {
fprintf(stderr,
"Unknown sound card name (too big to show)\n");
}
else {
fprintf(stderr, "Unknown sound card name `%.*s'\n",
(int) l, p);
}
bad_card = 1;
}
p += l + (e != NULL);
}
if (bad_card) {
goto show_valid_cards;
}
}
}
void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
{
struct soundhw *c;
for (c = soundhw; c->name; ++c) {
if (c->enabled) {
if (c->isa) {
if (isa_bus) {
c->init.init_isa(isa_bus);
}
} else {
if (pci_bus) {
c->init.init_pci(pci_bus);
}
}
}
}
}
#else
void select_soundhw(const char *optarg)
{
}
void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
{
}
#endif
int qemu_uuid_parse(const char *str, uint8_t *uuid)
{
int ret;
if (strlen(str) != 36) {
return -1;
}
ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
&uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
&uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
&uuid[15]);
if (ret != 16) {
return -1;
}
#ifdef TARGET_I386
smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
#endif
return 0;
}
void do_acpitable_option(const char *optarg)
{
#ifdef TARGET_I386
if (acpi_table_add(optarg) < 0) {
fprintf(stderr, "Wrong acpi table provided\n");
exit(1);
}
#endif
}
void do_smbios_option(const char *optarg)
{
#ifdef TARGET_I386
if (smbios_entry_add(optarg) < 0) {
fprintf(stderr, "Wrong smbios provided\n");
exit(1);
}
#endif
}
void cpudef_init(void)
{
#if defined(cpudef_setup)
cpudef_setup(); /* parse cpu definitions in target config file */
#endif
}
int audio_available(void)
{
#ifdef HAS_AUDIO
return 1;
#else
return 0;
#endif
}
int tcg_available(void)
{
return 1;
}
int kvm_available(void)
{
#ifdef CONFIG_KVM
return 1;
#else
return 0;
#endif
}
int xen_available(void)
{
#ifdef CONFIG_XEN
return 1;
#else
return 0;
#endif
}
TargetInfo *qmp_query_target(Error **errp)
{
TargetInfo *info = g_malloc0(sizeof(*info));
info->arch = TARGET_TYPE;
return info;
}