qemu-e2k/tests/qtest/libqos/pci.c
Eric Auger 3df72d1c55 tests/qtest/libqos/pci: Introduce pio_limit
At the moment the IO space limit is hardcoded to
QPCI_PIO_LIMIT = 0x10000. When accesses are performed to a bar,
the base address of this latter is compared against the limit
to decide whether we perform an IO or a memory access.

On ARM, we cannot keep this PIO limit as the arm-virt machine
uses [0x3eff0000, 0x3f000000 ] for the IO space map and we
are mandated to allocate at 0x0.

Add a new flag in QPCIBar indicating whether it is an IO bar
or a memory bar. This flag is set on QPCIBar allocation and
provisionned based on the BAR configuration. Then the new flag
is used in access functions and in iomap() function.

Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220504152025.1785704-2-eric.auger@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 12:07:06 +02:00

599 lines
16 KiB
C

/*
* libqos PCI bindings
*
* Copyright IBM, Corp. 2012-2013
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "pci.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bridge.h"
#include "hw/pci/pci_regs.h"
#include "qemu/host-utils.h"
#include "qgraph.h"
void qpci_device_foreach(QPCIBus *bus, int vendor_id, int device_id,
void (*func)(QPCIDevice *dev, int devfn, void *data),
void *data)
{
int slot;
for (slot = 0; slot < 32; slot++) {
int fn;
for (fn = 0; fn < 8; fn++) {
QPCIDevice *dev;
dev = qpci_device_find(bus, QPCI_DEVFN(slot, fn));
if (!dev) {
continue;
}
if (vendor_id != -1 &&
qpci_config_readw(dev, PCI_VENDOR_ID) != vendor_id) {
g_free(dev);
continue;
}
if (device_id != -1 &&
qpci_config_readw(dev, PCI_DEVICE_ID) != device_id) {
g_free(dev);
continue;
}
func(dev, QPCI_DEVFN(slot, fn), data);
}
}
}
bool qpci_has_buggy_msi(QPCIDevice *dev)
{
return dev->bus->has_buggy_msi;
}
bool qpci_check_buggy_msi(QPCIDevice *dev)
{
if (qpci_has_buggy_msi(dev)) {
g_test_skip("Skipping due to incomplete support for MSI");
return true;
}
return false;
}
static void qpci_device_set(QPCIDevice *dev, QPCIBus *bus, int devfn)
{
g_assert(dev);
dev->bus = bus;
dev->devfn = devfn;
}
QPCIDevice *qpci_device_find(QPCIBus *bus, int devfn)
{
QPCIDevice *dev;
dev = g_malloc0(sizeof(*dev));
qpci_device_set(dev, bus, devfn);
if (qpci_config_readw(dev, PCI_VENDOR_ID) == 0xFFFF) {
g_free(dev);
return NULL;
}
return dev;
}
void qpci_device_init(QPCIDevice *dev, QPCIBus *bus, QPCIAddress *addr)
{
uint16_t vendor_id, device_id;
qpci_device_set(dev, bus, addr->devfn);
vendor_id = qpci_config_readw(dev, PCI_VENDOR_ID);
device_id = qpci_config_readw(dev, PCI_DEVICE_ID);
g_assert(!addr->vendor_id || vendor_id == addr->vendor_id);
g_assert(!addr->device_id || device_id == addr->device_id);
}
static uint8_t qpci_find_resource_reserve_capability(QPCIDevice *dev)
{
uint16_t device_id;
uint8_t cap = 0;
if (qpci_config_readw(dev, PCI_VENDOR_ID) != PCI_VENDOR_ID_REDHAT) {
return 0;
}
device_id = qpci_config_readw(dev, PCI_DEVICE_ID);
if (device_id != PCI_DEVICE_ID_REDHAT_PCIE_RP &&
device_id != PCI_DEVICE_ID_REDHAT_BRIDGE) {
return 0;
}
do {
cap = qpci_find_capability(dev, PCI_CAP_ID_VNDR, cap);
} while (cap &&
qpci_config_readb(dev, cap + REDHAT_PCI_CAP_TYPE_OFFSET) !=
REDHAT_PCI_CAP_RESOURCE_RESERVE);
if (cap) {
uint8_t cap_len = qpci_config_readb(dev, cap + PCI_CAP_FLAGS);
if (cap_len < REDHAT_PCI_CAP_RES_RESERVE_CAP_SIZE) {
return 0;
}
}
return cap;
}
static void qpci_secondary_buses_rec(QPCIBus *qbus, int bus, int *pci_bus)
{
QPCIDevice *dev;
uint16_t class;
uint8_t pribus, secbus, subbus;
int index;
for (index = 0; index < 32; index++) {
dev = qpci_device_find(qbus, QPCI_DEVFN(bus + index, 0));
if (dev == NULL) {
continue;
}
class = qpci_config_readw(dev, PCI_CLASS_DEVICE);
if (class == PCI_CLASS_BRIDGE_PCI) {
qpci_config_writeb(dev, PCI_SECONDARY_BUS, 255);
qpci_config_writeb(dev, PCI_SUBORDINATE_BUS, 0);
}
g_free(dev);
}
for (index = 0; index < 32; index++) {
dev = qpci_device_find(qbus, QPCI_DEVFN(bus + index, 0));
if (dev == NULL) {
continue;
}
class = qpci_config_readw(dev, PCI_CLASS_DEVICE);
if (class != PCI_CLASS_BRIDGE_PCI) {
g_free(dev);
continue;
}
pribus = qpci_config_readb(dev, PCI_PRIMARY_BUS);
if (pribus != bus) {
qpci_config_writeb(dev, PCI_PRIMARY_BUS, bus);
}
secbus = qpci_config_readb(dev, PCI_SECONDARY_BUS);
(*pci_bus)++;
if (*pci_bus != secbus) {
secbus = *pci_bus;
qpci_config_writeb(dev, PCI_SECONDARY_BUS, secbus);
}
subbus = qpci_config_readb(dev, PCI_SUBORDINATE_BUS);
qpci_config_writeb(dev, PCI_SUBORDINATE_BUS, 255);
qpci_secondary_buses_rec(qbus, secbus << 5, pci_bus);
if (subbus != *pci_bus) {
uint8_t res_bus = *pci_bus;
uint8_t cap = qpci_find_resource_reserve_capability(dev);
if (cap) {
uint32_t tmp_res_bus;
tmp_res_bus = qpci_config_readl(dev, cap +
REDHAT_PCI_CAP_RES_RESERVE_BUS_RES);
if (tmp_res_bus != (uint32_t)-1) {
res_bus = tmp_res_bus & 0xFF;
if ((uint8_t)(res_bus + secbus) < secbus ||
(uint8_t)(res_bus + secbus) < res_bus) {
res_bus = 0;
}
if (secbus + res_bus > *pci_bus) {
res_bus = secbus + res_bus;
}
}
}
subbus = res_bus;
*pci_bus = res_bus;
}
qpci_config_writeb(dev, PCI_SUBORDINATE_BUS, subbus);
g_free(dev);
}
}
int qpci_secondary_buses_init(QPCIBus *bus)
{
int last_bus = 0;
qpci_secondary_buses_rec(bus, 0, &last_bus);
return last_bus;
}
void qpci_device_enable(QPCIDevice *dev)
{
uint16_t cmd;
/* FIXME -- does this need to be a bus callout? */
cmd = qpci_config_readw(dev, PCI_COMMAND);
cmd |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
qpci_config_writew(dev, PCI_COMMAND, cmd);
/* Verify the bits are now set. */
cmd = qpci_config_readw(dev, PCI_COMMAND);
g_assert_cmphex(cmd & PCI_COMMAND_IO, ==, PCI_COMMAND_IO);
g_assert_cmphex(cmd & PCI_COMMAND_MEMORY, ==, PCI_COMMAND_MEMORY);
g_assert_cmphex(cmd & PCI_COMMAND_MASTER, ==, PCI_COMMAND_MASTER);
}
/**
* qpci_find_capability:
* @dev: the PCI device
* @id: the PCI Capability ID (PCI_CAP_ID_*)
* @start_addr: 0 to begin iteration or the last return value to continue
* iteration
*
* Iterate over the PCI Capabilities List.
*
* Returns: PCI Configuration Space offset of the capabililty structure or
* 0 if no further matching capability is found
*/
uint8_t qpci_find_capability(QPCIDevice *dev, uint8_t id, uint8_t start_addr)
{
uint8_t cap;
uint8_t addr;
if (start_addr) {
addr = qpci_config_readb(dev, start_addr + PCI_CAP_LIST_NEXT);
} else {
addr = qpci_config_readb(dev, PCI_CAPABILITY_LIST);
}
do {
cap = qpci_config_readb(dev, addr);
if (cap != id) {
addr = qpci_config_readb(dev, addr + PCI_CAP_LIST_NEXT);
}
} while (cap != id && addr != 0);
return addr;
}
void qpci_msix_enable(QPCIDevice *dev)
{
uint8_t addr;
uint16_t val;
uint32_t table;
uint8_t bir_table;
uint8_t bir_pba;
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
qpci_config_writew(dev, addr + PCI_MSIX_FLAGS, val | PCI_MSIX_FLAGS_ENABLE);
table = qpci_config_readl(dev, addr + PCI_MSIX_TABLE);
bir_table = table & PCI_MSIX_FLAGS_BIRMASK;
dev->msix_table_bar = qpci_iomap(dev, bir_table, NULL);
dev->msix_table_off = table & ~PCI_MSIX_FLAGS_BIRMASK;
table = qpci_config_readl(dev, addr + PCI_MSIX_PBA);
bir_pba = table & PCI_MSIX_FLAGS_BIRMASK;
if (bir_pba != bir_table) {
dev->msix_pba_bar = qpci_iomap(dev, bir_pba, NULL);
} else {
dev->msix_pba_bar = dev->msix_table_bar;
}
dev->msix_pba_off = table & ~PCI_MSIX_FLAGS_BIRMASK;
dev->msix_enabled = true;
}
void qpci_msix_disable(QPCIDevice *dev)
{
uint8_t addr;
uint16_t val;
g_assert(dev->msix_enabled);
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
qpci_config_writew(dev, addr + PCI_MSIX_FLAGS,
val & ~PCI_MSIX_FLAGS_ENABLE);
if (dev->msix_pba_bar.addr != dev->msix_table_bar.addr) {
qpci_iounmap(dev, dev->msix_pba_bar);
}
qpci_iounmap(dev, dev->msix_table_bar);
dev->msix_enabled = 0;
dev->msix_table_off = 0;
dev->msix_pba_off = 0;
}
bool qpci_msix_pending(QPCIDevice *dev, uint16_t entry)
{
uint32_t pba_entry;
uint8_t bit_n = entry % 32;
uint64_t off = (entry / 32) * PCI_MSIX_ENTRY_SIZE / 4;
g_assert(dev->msix_enabled);
pba_entry = qpci_io_readl(dev, dev->msix_pba_bar, dev->msix_pba_off + off);
qpci_io_writel(dev, dev->msix_pba_bar, dev->msix_pba_off + off,
pba_entry & ~(1 << bit_n));
return (pba_entry & (1 << bit_n)) != 0;
}
bool qpci_msix_masked(QPCIDevice *dev, uint16_t entry)
{
uint8_t addr;
uint16_t val;
uint64_t vector_off = dev->msix_table_off + entry * PCI_MSIX_ENTRY_SIZE;
g_assert(dev->msix_enabled);
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0);
g_assert_cmphex(addr, !=, 0);
val = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
if (val & PCI_MSIX_FLAGS_MASKALL) {
return true;
} else {
return (qpci_io_readl(dev, dev->msix_table_bar,
vector_off + PCI_MSIX_ENTRY_VECTOR_CTRL)
& PCI_MSIX_ENTRY_CTRL_MASKBIT) != 0;
}
}
uint16_t qpci_msix_table_size(QPCIDevice *dev)
{
uint8_t addr;
uint16_t control;
addr = qpci_find_capability(dev, PCI_CAP_ID_MSIX, 0);
g_assert_cmphex(addr, !=, 0);
control = qpci_config_readw(dev, addr + PCI_MSIX_FLAGS);
return (control & PCI_MSIX_FLAGS_QSIZE) + 1;
}
uint8_t qpci_config_readb(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readb(dev->bus, dev->devfn, offset);
}
uint16_t qpci_config_readw(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readw(dev->bus, dev->devfn, offset);
}
uint32_t qpci_config_readl(QPCIDevice *dev, uint8_t offset)
{
return dev->bus->config_readl(dev->bus, dev->devfn, offset);
}
void qpci_config_writeb(QPCIDevice *dev, uint8_t offset, uint8_t value)
{
dev->bus->config_writeb(dev->bus, dev->devfn, offset, value);
}
void qpci_config_writew(QPCIDevice *dev, uint8_t offset, uint16_t value)
{
dev->bus->config_writew(dev->bus, dev->devfn, offset, value);
}
void qpci_config_writel(QPCIDevice *dev, uint8_t offset, uint32_t value)
{
dev->bus->config_writel(dev->bus, dev->devfn, offset, value);
}
uint8_t qpci_io_readb(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
return bus->pio_readb(bus, token.addr + off);
} else {
uint8_t val;
bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return val;
}
}
uint16_t qpci_io_readw(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
return bus->pio_readw(bus, token.addr + off);
} else {
uint16_t val;
bus->memread(bus, token.addr + off, &val, sizeof(val));
return le16_to_cpu(val);
}
}
uint32_t qpci_io_readl(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
return bus->pio_readl(bus, token.addr + off);
} else {
uint32_t val;
bus->memread(dev->bus, token.addr + off, &val, sizeof(val));
return le32_to_cpu(val);
}
}
uint64_t qpci_io_readq(QPCIDevice *dev, QPCIBar token, uint64_t off)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
return bus->pio_readq(bus, token.addr + off);
} else {
uint64_t val;
bus->memread(bus, token.addr + off, &val, sizeof(val));
return le64_to_cpu(val);
}
}
void qpci_io_writeb(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint8_t value)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
bus->pio_writeb(bus, token.addr + off, value);
} else {
bus->memwrite(bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writew(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint16_t value)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
bus->pio_writew(bus, token.addr + off, value);
} else {
value = cpu_to_le16(value);
bus->memwrite(bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writel(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint32_t value)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
bus->pio_writel(bus, token.addr + off, value);
} else {
value = cpu_to_le32(value);
bus->memwrite(bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_io_writeq(QPCIDevice *dev, QPCIBar token, uint64_t off,
uint64_t value)
{
QPCIBus *bus = dev->bus;
if (token.is_io) {
bus->pio_writeq(bus, token.addr + off, value);
} else {
value = cpu_to_le64(value);
bus->memwrite(bus, token.addr + off, &value, sizeof(value));
}
}
void qpci_memread(QPCIDevice *dev, QPCIBar token, uint64_t off,
void *buf, size_t len)
{
g_assert(!token.is_io);
dev->bus->memread(dev->bus, token.addr + off, buf, len);
}
void qpci_memwrite(QPCIDevice *dev, QPCIBar token, uint64_t off,
const void *buf, size_t len)
{
g_assert(!token.is_io);
dev->bus->memwrite(dev->bus, token.addr + off, buf, len);
}
QPCIBar qpci_iomap(QPCIDevice *dev, int barno, uint64_t *sizeptr)
{
QPCIBus *bus = dev->bus;
static const int bar_reg_map[] = {
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3, PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5,
};
QPCIBar bar;
int bar_reg;
uint32_t addr, size;
uint32_t io_type;
uint64_t loc;
g_assert(barno >= 0 && barno <= 5);
bar_reg = bar_reg_map[barno];
qpci_config_writel(dev, bar_reg, 0xFFFFFFFF);
addr = qpci_config_readl(dev, bar_reg);
io_type = addr & PCI_BASE_ADDRESS_SPACE;
if (io_type == PCI_BASE_ADDRESS_SPACE_IO) {
addr &= PCI_BASE_ADDRESS_IO_MASK;
} else {
addr &= PCI_BASE_ADDRESS_MEM_MASK;
}
g_assert(addr); /* Must have *some* size bits */
size = 1U << ctz32(addr);
if (sizeptr) {
*sizeptr = size;
}
if (io_type == PCI_BASE_ADDRESS_SPACE_IO) {
loc = QEMU_ALIGN_UP(bus->pio_alloc_ptr, size);
g_assert(loc >= bus->pio_alloc_ptr);
g_assert(loc + size <= bus->pio_limit);
bus->pio_alloc_ptr = loc + size;
bar.is_io = true;
qpci_config_writel(dev, bar_reg, loc | PCI_BASE_ADDRESS_SPACE_IO);
} else {
loc = QEMU_ALIGN_UP(bus->mmio_alloc_ptr, size);
/* Check for space */
g_assert(loc >= bus->mmio_alloc_ptr);
g_assert(loc + size <= bus->mmio_limit);
bus->mmio_alloc_ptr = loc + size;
bar.is_io = false;
qpci_config_writel(dev, bar_reg, loc);
}
bar.addr = loc;
return bar;
}
void qpci_iounmap(QPCIDevice *dev, QPCIBar bar)
{
/* FIXME */
}
QPCIBar qpci_legacy_iomap(QPCIDevice *dev, uint16_t addr)
{
QPCIBar bar = { .addr = addr, .is_io = true };
return bar;
}
void add_qpci_address(QOSGraphEdgeOptions *opts, QPCIAddress *addr)
{
g_assert(addr);
g_assert(opts);
opts->arg = addr;
opts->size_arg = sizeof(QPCIAddress);
}