qemu-e2k/migration/postcopy-ram.c
Peter Maydell c8eaf81fd2 virtio,acpi: features, fixes, cleanups.
vdpa support
 virtio-mem support
 a handy script for disassembling acpi tables
 misc fixes and cleanups
 
 Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAl8EY+MPHG1zdEByZWRo
 YXQuY29tAAoJECgfDbjSjVRpOMkIAMMhfbzZXlwv1xiQ/pMTtEqXDnLeic7NK6xF
 RJkAFlMM+eEXBRZLYJXhPAFjneTA813vR0xlygHn2pYhCF3ozTfLqEABfQsG0w+d
 VDSYTnFHAx2GwGGQBNYltsIs+8lAADYhlo9VG/qC5nAsNaoVBeTJLuF96un1WGDz
 vWH0Cx/AG+yhiKvlSHA/CCSXMVGVTkRfUCjGF8Yq0mVtx23OZ9blQkJRkGfHWctB
 GxQlh/b+4YLaXhy+V1+/Iu2U45KgKN7qrsyKvHBMgKd2qazowr/D8Aexh4hN/eg5
 jibmxurDHXze+VUDCySy6qLBBySNkz++qLKfPOQ0iszDHLXQzOQ=
 =H/KL
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging

virtio,acpi: features, fixes, cleanups.

vdpa support
virtio-mem support
a handy script for disassembling acpi tables
misc fixes and cleanups

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>

# gpg: Signature made Tue 07 Jul 2020 13:00:35 BST
# gpg:                using RSA key 5D09FD0871C8F85B94CA8A0D281F0DB8D28D5469
# gpg:                issuer "mst@redhat.com"
# gpg: Good signature from "Michael S. Tsirkin <mst@kernel.org>" [full]
# gpg:                 aka "Michael S. Tsirkin <mst@redhat.com>" [full]
# Primary key fingerprint: 0270 606B 6F3C DF3D 0B17  0970 C350 3912 AFBE 8E67
#      Subkey fingerprint: 5D09 FD08 71C8 F85B 94CA  8A0D 281F 0DB8 D28D 5469

* remotes/mst/tags/for_upstream: (41 commits)
  vhost-vdpa: introduce vhost-vdpa net client
  vhost-vdpa: introduce vhost-vdpa backend
  vhost_net: introduce set_config & get_config
  vhost: implement vhost_force_iommu method
  vhost: introduce new VhostOps vhost_force_iommu
  vhost: implement vhost_vq_get_addr method
  vhost: introduce new VhostOps vhost_vq_get_addr
  vhost: implement vhost_dev_start method
  vhost: introduce new VhostOps vhost_dev_start
  vhost: check the existence of vhost_set_iotlb_callback
  virtio-pci: implement queue_enabled method
  virtio-bus: introduce queue_enabled method
  vhost_net: use the function qemu_get_peer
  net: introduce qemu_get_peer
  MAINTAINERS: add VT-d entry
  docs: vhost-user: add Virtio status protocol feature
  tests/acpi: remove stale allowed tables
  numa: Auto-enable NUMA when any memory devices are possible
  virtio-mem: Exclude unplugged memory during migration
  virtio-mem: Add trace events
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>

# Conflicts:
#	hw/arm/virt.c
#	hw/virtio/trace-events
2020-07-07 17:37:44 +01:00

1449 lines
46 KiB
C

/*
* Postcopy migration for RAM
*
* Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Dave Gilbert <dgilbert@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
/*
* Postcopy is a migration technique where the execution flips from the
* source to the destination before all the data has been copied.
*/
#include "qemu/osdep.h"
#include "exec/target_page.h"
#include "migration.h"
#include "qemu-file.h"
#include "savevm.h"
#include "postcopy-ram.h"
#include "ram.h"
#include "qapi/error.h"
#include "qemu/notify.h"
#include "qemu/rcu.h"
#include "sysemu/sysemu.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "hw/boards.h"
/* Arbitrary limit on size of each discard command,
* keeps them around ~200 bytes
*/
#define MAX_DISCARDS_PER_COMMAND 12
struct PostcopyDiscardState {
const char *ramblock_name;
uint16_t cur_entry;
/*
* Start and length of a discard range (bytes)
*/
uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
unsigned int nsentwords;
unsigned int nsentcmds;
};
static NotifierWithReturnList postcopy_notifier_list;
void postcopy_infrastructure_init(void)
{
notifier_with_return_list_init(&postcopy_notifier_list);
}
void postcopy_add_notifier(NotifierWithReturn *nn)
{
notifier_with_return_list_add(&postcopy_notifier_list, nn);
}
void postcopy_remove_notifier(NotifierWithReturn *n)
{
notifier_with_return_remove(n);
}
int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
{
struct PostcopyNotifyData pnd;
pnd.reason = reason;
pnd.errp = errp;
return notifier_with_return_list_notify(&postcopy_notifier_list,
&pnd);
}
/* Postcopy needs to detect accesses to pages that haven't yet been copied
* across, and efficiently map new pages in, the techniques for doing this
* are target OS specific.
*/
#if defined(__linux__)
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <asm/types.h> /* for __u64 */
#endif
#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
#include <sys/eventfd.h>
#include <linux/userfaultfd.h>
typedef struct PostcopyBlocktimeContext {
/* time when page fault initiated per vCPU */
uint32_t *page_fault_vcpu_time;
/* page address per vCPU */
uintptr_t *vcpu_addr;
uint32_t total_blocktime;
/* blocktime per vCPU */
uint32_t *vcpu_blocktime;
/* point in time when last page fault was initiated */
uint32_t last_begin;
/* number of vCPU are suspended */
int smp_cpus_down;
uint64_t start_time;
/*
* Handler for exit event, necessary for
* releasing whole blocktime_ctx
*/
Notifier exit_notifier;
} PostcopyBlocktimeContext;
static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
{
g_free(ctx->page_fault_vcpu_time);
g_free(ctx->vcpu_addr);
g_free(ctx->vcpu_blocktime);
g_free(ctx);
}
static void migration_exit_cb(Notifier *n, void *data)
{
PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
exit_notifier);
destroy_blocktime_context(ctx);
}
static struct PostcopyBlocktimeContext *blocktime_context_new(void)
{
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
ctx->exit_notifier.notify = migration_exit_cb;
ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
qemu_add_exit_notifier(&ctx->exit_notifier);
return ctx;
}
static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
{
MachineState *ms = MACHINE(qdev_get_machine());
uint32List *list = NULL, *entry = NULL;
int i;
for (i = ms->smp.cpus - 1; i >= 0; i--) {
entry = g_new0(uint32List, 1);
entry->value = ctx->vcpu_blocktime[i];
entry->next = list;
list = entry;
}
return list;
}
/*
* This function just populates MigrationInfo from postcopy's
* blocktime context. It will not populate MigrationInfo,
* unless postcopy-blocktime capability was set.
*
* @info: pointer to MigrationInfo to populate
*/
void fill_destination_postcopy_migration_info(MigrationInfo *info)
{
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
if (!bc) {
return;
}
info->has_postcopy_blocktime = true;
info->postcopy_blocktime = bc->total_blocktime;
info->has_postcopy_vcpu_blocktime = true;
info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
}
static uint32_t get_postcopy_total_blocktime(void)
{
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
if (!bc) {
return 0;
}
return bc->total_blocktime;
}
/**
* receive_ufd_features: check userfault fd features, to request only supported
* features in the future.
*
* Returns: true on success
*
* __NR_userfaultfd - should be checked before
* @features: out parameter will contain uffdio_api.features provided by kernel
* in case of success
*/
static bool receive_ufd_features(uint64_t *features)
{
struct uffdio_api api_struct = {0};
int ufd;
bool ret = true;
/* if we are here __NR_userfaultfd should exists */
ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
if (ufd == -1) {
error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
strerror(errno));
return false;
}
/* ask features */
api_struct.api = UFFD_API;
api_struct.features = 0;
if (ioctl(ufd, UFFDIO_API, &api_struct)) {
error_report("%s: UFFDIO_API failed: %s", __func__,
strerror(errno));
ret = false;
goto release_ufd;
}
*features = api_struct.features;
release_ufd:
close(ufd);
return ret;
}
/**
* request_ufd_features: this function should be called only once on a newly
* opened ufd, subsequent calls will lead to error.
*
* Returns: true on succes
*
* @ufd: fd obtained from userfaultfd syscall
* @features: bit mask see UFFD_API_FEATURES
*/
static bool request_ufd_features(int ufd, uint64_t features)
{
struct uffdio_api api_struct = {0};
uint64_t ioctl_mask;
api_struct.api = UFFD_API;
api_struct.features = features;
if (ioctl(ufd, UFFDIO_API, &api_struct)) {
error_report("%s failed: UFFDIO_API failed: %s", __func__,
strerror(errno));
return false;
}
ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
(__u64)1 << _UFFDIO_UNREGISTER;
if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
error_report("Missing userfault features: %" PRIx64,
(uint64_t)(~api_struct.ioctls & ioctl_mask));
return false;
}
return true;
}
static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
{
uint64_t asked_features = 0;
static uint64_t supported_features;
/*
* it's not possible to
* request UFFD_API twice per one fd
* userfault fd features is persistent
*/
if (!supported_features) {
if (!receive_ufd_features(&supported_features)) {
error_report("%s failed", __func__);
return false;
}
}
#ifdef UFFD_FEATURE_THREAD_ID
if (migrate_postcopy_blocktime() && mis &&
UFFD_FEATURE_THREAD_ID & supported_features) {
/* kernel supports that feature */
/* don't create blocktime_context if it exists */
if (!mis->blocktime_ctx) {
mis->blocktime_ctx = blocktime_context_new();
}
asked_features |= UFFD_FEATURE_THREAD_ID;
}
#endif
/*
* request features, even if asked_features is 0, due to
* kernel expects UFFD_API before UFFDIO_REGISTER, per
* userfault file descriptor
*/
if (!request_ufd_features(ufd, asked_features)) {
error_report("%s failed: features %" PRIu64, __func__,
asked_features);
return false;
}
if (qemu_real_host_page_size != ram_pagesize_summary()) {
bool have_hp = false;
/* We've got a huge page */
#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
#endif
if (!have_hp) {
error_report("Userfault on this host does not support huge pages");
return false;
}
}
return true;
}
/* Callback from postcopy_ram_supported_by_host block iterator.
*/
static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
size_t pagesize = qemu_ram_pagesize(rb);
if (length % pagesize) {
error_report("Postcopy requires RAM blocks to be a page size multiple,"
" block %s is 0x" RAM_ADDR_FMT " bytes with a "
"page size of 0x%zx", block_name, length, pagesize);
return 1;
}
return 0;
}
/*
* Note: This has the side effect of munlock'ing all of RAM, that's
* normally fine since if the postcopy succeeds it gets turned back on at the
* end.
*/
bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
long pagesize = qemu_real_host_page_size;
int ufd = -1;
bool ret = false; /* Error unless we change it */
void *testarea = NULL;
struct uffdio_register reg_struct;
struct uffdio_range range_struct;
uint64_t feature_mask;
Error *local_err = NULL;
if (qemu_target_page_size() > pagesize) {
error_report("Target page size bigger than host page size");
goto out;
}
ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
if (ufd == -1) {
error_report("%s: userfaultfd not available: %s", __func__,
strerror(errno));
goto out;
}
/* Give devices a chance to object */
if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
error_report_err(local_err);
goto out;
}
/* Version and features check */
if (!ufd_check_and_apply(ufd, mis)) {
goto out;
}
/* We don't support postcopy with shared RAM yet */
if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
goto out;
}
/*
* userfault and mlock don't go together; we'll put it back later if
* it was enabled.
*/
if (munlockall()) {
error_report("%s: munlockall: %s", __func__, strerror(errno));
goto out;
}
/*
* We need to check that the ops we need are supported on anon memory
* To do that we need to register a chunk and see the flags that
* are returned.
*/
testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);
if (testarea == MAP_FAILED) {
error_report("%s: Failed to map test area: %s", __func__,
strerror(errno));
goto out;
}
g_assert(((size_t)testarea & (pagesize-1)) == 0);
reg_struct.range.start = (uintptr_t)testarea;
reg_struct.range.len = pagesize;
reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
error_report("%s userfault register: %s", __func__, strerror(errno));
goto out;
}
range_struct.start = (uintptr_t)testarea;
range_struct.len = pagesize;
if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
error_report("%s userfault unregister: %s", __func__, strerror(errno));
goto out;
}
feature_mask = (__u64)1 << _UFFDIO_WAKE |
(__u64)1 << _UFFDIO_COPY |
(__u64)1 << _UFFDIO_ZEROPAGE;
if ((reg_struct.ioctls & feature_mask) != feature_mask) {
error_report("Missing userfault map features: %" PRIx64,
(uint64_t)(~reg_struct.ioctls & feature_mask));
goto out;
}
/* Success! */
ret = true;
out:
if (testarea) {
munmap(testarea, pagesize);
}
if (ufd != -1) {
close(ufd);
}
return ret;
}
/*
* Setup an area of RAM so that it *can* be used for postcopy later; this
* must be done right at the start prior to pre-copy.
* opaque should be the MIS.
*/
static int init_range(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
void *host_addr = qemu_ram_get_host_addr(rb);
ram_addr_t offset = qemu_ram_get_offset(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
trace_postcopy_init_range(block_name, host_addr, offset, length);
/*
* We need the whole of RAM to be truly empty for postcopy, so things
* like ROMs and any data tables built during init must be zero'd
* - we're going to get the copy from the source anyway.
* (Precopy will just overwrite this data, so doesn't need the discard)
*/
if (ram_discard_range(block_name, 0, length)) {
return -1;
}
return 0;
}
/*
* At the end of migration, undo the effects of init_range
* opaque should be the MIS.
*/
static int cleanup_range(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
void *host_addr = qemu_ram_get_host_addr(rb);
ram_addr_t offset = qemu_ram_get_offset(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
MigrationIncomingState *mis = opaque;
struct uffdio_range range_struct;
trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
/*
* We turned off hugepage for the precopy stage with postcopy enabled
* we can turn it back on now.
*/
qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
/*
* We can also turn off userfault now since we should have all the
* pages. It can be useful to leave it on to debug postcopy
* if you're not sure it's always getting every page.
*/
range_struct.start = (uintptr_t)host_addr;
range_struct.len = length;
if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
error_report("%s: userfault unregister %s", __func__, strerror(errno));
return -1;
}
return 0;
}
/*
* Initialise postcopy-ram, setting the RAM to a state where we can go into
* postcopy later; must be called prior to any precopy.
* called from arch_init's similarly named ram_postcopy_incoming_init
*/
int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
if (foreach_not_ignored_block(init_range, NULL)) {
return -1;
}
return 0;
}
/*
* At the end of a migration where postcopy_ram_incoming_init was called.
*/
int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
{
trace_postcopy_ram_incoming_cleanup_entry();
if (mis->have_fault_thread) {
Error *local_err = NULL;
/* Let the fault thread quit */
atomic_set(&mis->fault_thread_quit, 1);
postcopy_fault_thread_notify(mis);
trace_postcopy_ram_incoming_cleanup_join();
qemu_thread_join(&mis->fault_thread);
if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
error_report_err(local_err);
return -1;
}
if (foreach_not_ignored_block(cleanup_range, mis)) {
return -1;
}
trace_postcopy_ram_incoming_cleanup_closeuf();
close(mis->userfault_fd);
close(mis->userfault_event_fd);
mis->have_fault_thread = false;
}
if (enable_mlock) {
if (os_mlock() < 0) {
error_report("mlock: %s", strerror(errno));
/*
* It doesn't feel right to fail at this point, we have a valid
* VM state.
*/
}
}
if (mis->postcopy_tmp_page) {
munmap(mis->postcopy_tmp_page, mis->largest_page_size);
mis->postcopy_tmp_page = NULL;
}
if (mis->postcopy_tmp_zero_page) {
munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
mis->postcopy_tmp_zero_page = NULL;
}
trace_postcopy_ram_incoming_cleanup_blocktime(
get_postcopy_total_blocktime());
trace_postcopy_ram_incoming_cleanup_exit();
return 0;
}
/*
* Disable huge pages on an area
*/
static int nhp_range(RAMBlock *rb, void *opaque)
{
const char *block_name = qemu_ram_get_idstr(rb);
void *host_addr = qemu_ram_get_host_addr(rb);
ram_addr_t offset = qemu_ram_get_offset(rb);
ram_addr_t length = qemu_ram_get_used_length(rb);
trace_postcopy_nhp_range(block_name, host_addr, offset, length);
/*
* Before we do discards we need to ensure those discards really
* do delete areas of the page, even if THP thinks a hugepage would
* be a good idea, so force hugepages off.
*/
qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
return 0;
}
/*
* Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
* however leaving it until after precopy means that most of the precopy
* data is still THPd
*/
int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
if (foreach_not_ignored_block(nhp_range, mis)) {
return -1;
}
postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
return 0;
}
/*
* Mark the given area of RAM as requiring notification to unwritten areas
* Used as a callback on foreach_not_ignored_block.
* host_addr: Base of area to mark
* offset: Offset in the whole ram arena
* length: Length of the section
* opaque: MigrationIncomingState pointer
* Returns 0 on success
*/
static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
{
MigrationIncomingState *mis = opaque;
struct uffdio_register reg_struct;
reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
reg_struct.range.len = qemu_ram_get_used_length(rb);
reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
/* Now tell our userfault_fd that it's responsible for this area */
if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
error_report("%s userfault register: %s", __func__, strerror(errno));
return -1;
}
if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
error_report("%s userfault: Region doesn't support COPY", __func__);
return -1;
}
if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
qemu_ram_set_uf_zeroable(rb);
}
return 0;
}
int postcopy_wake_shared(struct PostCopyFD *pcfd,
uint64_t client_addr,
RAMBlock *rb)
{
size_t pagesize = qemu_ram_pagesize(rb);
struct uffdio_range range;
int ret;
trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
range.start = client_addr & ~(pagesize - 1);
range.len = pagesize;
ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
if (ret) {
error_report("%s: Failed to wake: %zx in %s (%s)",
__func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
strerror(errno));
}
return ret;
}
/*
* Callback from shared fault handlers to ask for a page,
* the page must be specified by a RAMBlock and an offset in that rb
* Note: Only for use by shared fault handlers (in fault thread)
*/
int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
uint64_t client_addr, uint64_t rb_offset)
{
size_t pagesize = qemu_ram_pagesize(rb);
uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
MigrationIncomingState *mis = migration_incoming_get_current();
trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
rb_offset);
if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
trace_postcopy_request_shared_page_present(pcfd->idstr,
qemu_ram_get_idstr(rb), rb_offset);
return postcopy_wake_shared(pcfd, client_addr, rb);
}
if (rb != mis->last_rb) {
mis->last_rb = rb;
migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
aligned_rbo, pagesize);
} else {
/* Save some space */
migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
}
return 0;
}
static int get_mem_fault_cpu_index(uint32_t pid)
{
CPUState *cpu_iter;
CPU_FOREACH(cpu_iter) {
if (cpu_iter->thread_id == pid) {
trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
return cpu_iter->cpu_index;
}
}
trace_get_mem_fault_cpu_index(-1, pid);
return -1;
}
static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
{
int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
dc->start_time;
return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
}
/*
* This function is being called when pagefault occurs. It
* tracks down vCPU blocking time.
*
* @addr: faulted host virtual address
* @ptid: faulted process thread id
* @rb: ramblock appropriate to addr
*/
static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
RAMBlock *rb)
{
int cpu, already_received;
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
uint32_t low_time_offset;
if (!dc || ptid == 0) {
return;
}
cpu = get_mem_fault_cpu_index(ptid);
if (cpu < 0) {
return;
}
low_time_offset = get_low_time_offset(dc);
if (dc->vcpu_addr[cpu] == 0) {
atomic_inc(&dc->smp_cpus_down);
}
atomic_xchg(&dc->last_begin, low_time_offset);
atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
atomic_xchg(&dc->vcpu_addr[cpu], addr);
/*
* check it here, not at the beginning of the function,
* due to, check could occur early than bitmap_set in
* qemu_ufd_copy_ioctl
*/
already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
if (already_received) {
atomic_xchg(&dc->vcpu_addr[cpu], 0);
atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
atomic_dec(&dc->smp_cpus_down);
}
trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
cpu, already_received);
}
/*
* This function just provide calculated blocktime per cpu and trace it.
* Total blocktime is calculated in mark_postcopy_blocktime_end.
*
*
* Assume we have 3 CPU
*
* S1 E1 S1 E1
* -----***********------------xxx***************------------------------> CPU1
*
* S2 E2
* ------------****************xxx---------------------------------------> CPU2
*
* S3 E3
* ------------------------****xxx********-------------------------------> CPU3
*
* We have sequence S1,S2,E1,S3,S1,E2,E3,E1
* S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
* S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
* it's a part of total blocktime.
* S1 - here is last_begin
* Legend of the picture is following:
* * - means blocktime per vCPU
* x - means overlapped blocktime (total blocktime)
*
* @addr: host virtual address
*/
static void mark_postcopy_blocktime_end(uintptr_t addr)
{
MigrationIncomingState *mis = migration_incoming_get_current();
PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
int i, affected_cpu = 0;
bool vcpu_total_blocktime = false;
uint32_t read_vcpu_time, low_time_offset;
if (!dc) {
return;
}
low_time_offset = get_low_time_offset(dc);
/* lookup cpu, to clear it,
* that algorithm looks straighforward, but it's not
* optimal, more optimal algorithm is keeping tree or hash
* where key is address value is a list of */
for (i = 0; i < smp_cpus; i++) {
uint32_t vcpu_blocktime = 0;
read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
read_vcpu_time == 0) {
continue;
}
atomic_xchg(&dc->vcpu_addr[i], 0);
vcpu_blocktime = low_time_offset - read_vcpu_time;
affected_cpu += 1;
/* we need to know is that mark_postcopy_end was due to
* faulted page, another possible case it's prefetched
* page and in that case we shouldn't be here */
if (!vcpu_total_blocktime &&
atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
vcpu_total_blocktime = true;
}
/* continue cycle, due to one page could affect several vCPUs */
dc->vcpu_blocktime[i] += vcpu_blocktime;
}
atomic_sub(&dc->smp_cpus_down, affected_cpu);
if (vcpu_total_blocktime) {
dc->total_blocktime += low_time_offset - atomic_fetch_add(
&dc->last_begin, 0);
}
trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
affected_cpu);
}
static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
{
trace_postcopy_pause_fault_thread();
qemu_sem_wait(&mis->postcopy_pause_sem_fault);
trace_postcopy_pause_fault_thread_continued();
return true;
}
/*
* Handle faults detected by the USERFAULT markings
*/
static void *postcopy_ram_fault_thread(void *opaque)
{
MigrationIncomingState *mis = opaque;
struct uffd_msg msg;
int ret;
size_t index;
RAMBlock *rb = NULL;
trace_postcopy_ram_fault_thread_entry();
rcu_register_thread();
mis->last_rb = NULL; /* last RAMBlock we sent part of */
qemu_sem_post(&mis->fault_thread_sem);
struct pollfd *pfd;
size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
pfd = g_new0(struct pollfd, pfd_len);
pfd[0].fd = mis->userfault_fd;
pfd[0].events = POLLIN;
pfd[1].fd = mis->userfault_event_fd;
pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
struct PostCopyFD, index);
pfd[2 + index].fd = pcfd->fd;
pfd[2 + index].events = POLLIN;
trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
pcfd->fd);
}
while (true) {
ram_addr_t rb_offset;
int poll_result;
/*
* We're mainly waiting for the kernel to give us a faulting HVA,
* however we can be told to quit via userfault_quit_fd which is
* an eventfd
*/
poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
if (poll_result == -1) {
error_report("%s: userfault poll: %s", __func__, strerror(errno));
break;
}
if (!mis->to_src_file) {
/*
* Possibly someone tells us that the return path is
* broken already using the event. We should hold until
* the channel is rebuilt.
*/
if (postcopy_pause_fault_thread(mis)) {
mis->last_rb = NULL;
/* Continue to read the userfaultfd */
} else {
error_report("%s: paused but don't allow to continue",
__func__);
break;
}
}
if (pfd[1].revents) {
uint64_t tmp64 = 0;
/* Consume the signal */
if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
/* Nothing obviously nicer than posting this error. */
error_report("%s: read() failed", __func__);
}
if (atomic_read(&mis->fault_thread_quit)) {
trace_postcopy_ram_fault_thread_quit();
break;
}
}
if (pfd[0].revents) {
poll_result--;
ret = read(mis->userfault_fd, &msg, sizeof(msg));
if (ret != sizeof(msg)) {
if (errno == EAGAIN) {
/*
* if a wake up happens on the other thread just after
* the poll, there is nothing to read.
*/
continue;
}
if (ret < 0) {
error_report("%s: Failed to read full userfault "
"message: %s",
__func__, strerror(errno));
break;
} else {
error_report("%s: Read %d bytes from userfaultfd "
"expected %zd",
__func__, ret, sizeof(msg));
break; /* Lost alignment, don't know what we'd read next */
}
}
if (msg.event != UFFD_EVENT_PAGEFAULT) {
error_report("%s: Read unexpected event %ud from userfaultfd",
__func__, msg.event);
continue; /* It's not a page fault, shouldn't happen */
}
rb = qemu_ram_block_from_host(
(void *)(uintptr_t)msg.arg.pagefault.address,
true, &rb_offset);
if (!rb) {
error_report("postcopy_ram_fault_thread: Fault outside guest: %"
PRIx64, (uint64_t)msg.arg.pagefault.address);
break;
}
rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
qemu_ram_get_idstr(rb),
rb_offset,
msg.arg.pagefault.feat.ptid);
mark_postcopy_blocktime_begin(
(uintptr_t)(msg.arg.pagefault.address),
msg.arg.pagefault.feat.ptid, rb);
retry:
/*
* Send the request to the source - we want to request one
* of our host page sizes (which is >= TPS)
*/
if (rb != mis->last_rb) {
mis->last_rb = rb;
ret = migrate_send_rp_req_pages(mis,
qemu_ram_get_idstr(rb),
rb_offset,
qemu_ram_pagesize(rb));
} else {
/* Save some space */
ret = migrate_send_rp_req_pages(mis,
NULL,
rb_offset,
qemu_ram_pagesize(rb));
}
if (ret) {
/* May be network failure, try to wait for recovery */
if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
/* We got reconnected somehow, try to continue */
mis->last_rb = NULL;
goto retry;
} else {
/* This is a unavoidable fault */
error_report("%s: migrate_send_rp_req_pages() get %d",
__func__, ret);
break;
}
}
}
/* Now handle any requests from external processes on shared memory */
/* TODO: May need to handle devices deregistering during postcopy */
for (index = 2; index < pfd_len && poll_result; index++) {
if (pfd[index].revents) {
struct PostCopyFD *pcfd =
&g_array_index(mis->postcopy_remote_fds,
struct PostCopyFD, index - 2);
poll_result--;
if (pfd[index].revents & POLLERR) {
error_report("%s: POLLERR on poll %zd fd=%d",
__func__, index, pcfd->fd);
pfd[index].events = 0;
continue;
}
ret = read(pcfd->fd, &msg, sizeof(msg));
if (ret != sizeof(msg)) {
if (errno == EAGAIN) {
/*
* if a wake up happens on the other thread just after
* the poll, there is nothing to read.
*/
continue;
}
if (ret < 0) {
error_report("%s: Failed to read full userfault "
"message: %s (shared) revents=%d",
__func__, strerror(errno),
pfd[index].revents);
/*TODO: Could just disable this sharer */
break;
} else {
error_report("%s: Read %d bytes from userfaultfd "
"expected %zd (shared)",
__func__, ret, sizeof(msg));
/*TODO: Could just disable this sharer */
break; /*Lost alignment,don't know what we'd read next*/
}
}
if (msg.event != UFFD_EVENT_PAGEFAULT) {
error_report("%s: Read unexpected event %ud "
"from userfaultfd (shared)",
__func__, msg.event);
continue; /* It's not a page fault, shouldn't happen */
}
/* Call the device handler registered with us */
ret = pcfd->handler(pcfd, &msg);
if (ret) {
error_report("%s: Failed to resolve shared fault on %zd/%s",
__func__, index, pcfd->idstr);
/* TODO: Fail? Disable this sharer? */
}
}
}
}
rcu_unregister_thread();
trace_postcopy_ram_fault_thread_exit();
g_free(pfd);
return NULL;
}
int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
{
/* Open the fd for the kernel to give us userfaults */
mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
if (mis->userfault_fd == -1) {
error_report("%s: Failed to open userfault fd: %s", __func__,
strerror(errno));
return -1;
}
/*
* Although the host check already tested the API, we need to
* do the check again as an ABI handshake on the new fd.
*/
if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
return -1;
}
/* Now an eventfd we use to tell the fault-thread to quit */
mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
if (mis->userfault_event_fd == -1) {
error_report("%s: Opening userfault_event_fd: %s", __func__,
strerror(errno));
close(mis->userfault_fd);
return -1;
}
qemu_sem_init(&mis->fault_thread_sem, 0);
qemu_thread_create(&mis->fault_thread, "postcopy/fault",
postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
qemu_sem_wait(&mis->fault_thread_sem);
qemu_sem_destroy(&mis->fault_thread_sem);
mis->have_fault_thread = true;
/* Mark so that we get notified of accesses to unwritten areas */
if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
error_report("ram_block_enable_notify failed");
return -1;
}
mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);
if (mis->postcopy_tmp_page == MAP_FAILED) {
mis->postcopy_tmp_page = NULL;
error_report("%s: Failed to map postcopy_tmp_page %s",
__func__, strerror(errno));
return -1;
}
/*
* Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
*/
mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
int e = errno;
mis->postcopy_tmp_zero_page = NULL;
error_report("%s: Failed to map large zero page %s",
__func__, strerror(e));
return -e;
}
memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
trace_postcopy_ram_enable_notify();
return 0;
}
static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
void *from_addr, uint64_t pagesize, RAMBlock *rb)
{
int ret;
if (from_addr) {
struct uffdio_copy copy_struct;
copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
copy_struct.src = (uint64_t)(uintptr_t)from_addr;
copy_struct.len = pagesize;
copy_struct.mode = 0;
ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
} else {
struct uffdio_zeropage zero_struct;
zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
zero_struct.range.len = pagesize;
zero_struct.mode = 0;
ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
}
if (!ret) {
ramblock_recv_bitmap_set_range(rb, host_addr,
pagesize / qemu_target_page_size());
mark_postcopy_blocktime_end((uintptr_t)host_addr);
}
return ret;
}
int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
{
int i;
MigrationIncomingState *mis = migration_incoming_get_current();
GArray *pcrfds = mis->postcopy_remote_fds;
for (i = 0; i < pcrfds->len; i++) {
struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
int ret = cur->waker(cur, rb, offset);
if (ret) {
return ret;
}
}
return 0;
}
/*
* Place a host page (from) at (host) atomically
* returns 0 on success
*/
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
RAMBlock *rb)
{
size_t pagesize = qemu_ram_pagesize(rb);
/* copy also acks to the kernel waking the stalled thread up
* TODO: We can inhibit that ack and only do it if it was requested
* which would be slightly cheaper, but we'd have to be careful
* of the order of updating our page state.
*/
if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
int e = errno;
error_report("%s: %s copy host: %p from: %p (size: %zd)",
__func__, strerror(e), host, from, pagesize);
return -e;
}
trace_postcopy_place_page(host);
return postcopy_notify_shared_wake(rb,
qemu_ram_block_host_offset(rb, host));
}
/*
* Place a zero page at (host) atomically
* returns 0 on success
*/
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
RAMBlock *rb)
{
size_t pagesize = qemu_ram_pagesize(rb);
trace_postcopy_place_page_zero(host);
/* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
* but it's not available for everything (e.g. hugetlbpages)
*/
if (qemu_ram_is_uf_zeroable(rb)) {
if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
int e = errno;
error_report("%s: %s zero host: %p",
__func__, strerror(e), host);
return -e;
}
return postcopy_notify_shared_wake(rb,
qemu_ram_block_host_offset(rb,
host));
} else {
return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
}
}
#else
/* No target OS support, stubs just fail */
void fill_destination_postcopy_migration_info(MigrationInfo *info)
{
}
bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
error_report("%s: No OS support", __func__);
return false;
}
int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
error_report("postcopy_ram_incoming_init: No OS support");
return -1;
}
int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
{
assert(0);
return -1;
}
int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
assert(0);
return -1;
}
int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
uint64_t client_addr, uint64_t rb_offset)
{
assert(0);
return -1;
}
int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
{
assert(0);
return -1;
}
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
RAMBlock *rb)
{
assert(0);
return -1;
}
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
RAMBlock *rb)
{
assert(0);
return -1;
}
int postcopy_wake_shared(struct PostCopyFD *pcfd,
uint64_t client_addr,
RAMBlock *rb)
{
assert(0);
return -1;
}
#endif
/* ------------------------------------------------------------------------- */
void postcopy_fault_thread_notify(MigrationIncomingState *mis)
{
uint64_t tmp64 = 1;
/*
* Wakeup the fault_thread. It's an eventfd that should currently
* be at 0, we're going to increment it to 1
*/
if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
/* Not much we can do here, but may as well report it */
error_report("%s: incrementing failed: %s", __func__,
strerror(errno));
}
}
/**
* postcopy_discard_send_init: Called at the start of each RAMBlock before
* asking to discard individual ranges.
*
* @ms: The current migration state.
* @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
* @name: RAMBlock that discards will operate on.
*/
static PostcopyDiscardState pds = {0};
void postcopy_discard_send_init(MigrationState *ms, const char *name)
{
pds.ramblock_name = name;
pds.cur_entry = 0;
pds.nsentwords = 0;
pds.nsentcmds = 0;
}
/**
* postcopy_discard_send_range: Called by the bitmap code for each chunk to
* discard. May send a discard message, may just leave it queued to
* be sent later.
*
* @ms: Current migration state.
* @start,@length: a range of pages in the migration bitmap in the
* RAM block passed to postcopy_discard_send_init() (length=1 is one page)
*/
void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
unsigned long length)
{
size_t tp_size = qemu_target_page_size();
/* Convert to byte offsets within the RAM block */
pds.start_list[pds.cur_entry] = start * tp_size;
pds.length_list[pds.cur_entry] = length * tp_size;
trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
pds.cur_entry++;
pds.nsentwords++;
if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
/* Full set, ship it! */
qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
pds.ramblock_name,
pds.cur_entry,
pds.start_list,
pds.length_list);
pds.nsentcmds++;
pds.cur_entry = 0;
}
}
/**
* postcopy_discard_send_finish: Called at the end of each RAMBlock by the
* bitmap code. Sends any outstanding discard messages, frees the PDS
*
* @ms: Current migration state.
*/
void postcopy_discard_send_finish(MigrationState *ms)
{
/* Anything unsent? */
if (pds.cur_entry) {
qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
pds.ramblock_name,
pds.cur_entry,
pds.start_list,
pds.length_list);
pds.nsentcmds++;
}
trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
pds.nsentcmds);
}
/*
* Current state of incoming postcopy; note this is not part of
* MigrationIncomingState since it's state is used during cleanup
* at the end as MIS is being freed.
*/
static PostcopyState incoming_postcopy_state;
PostcopyState postcopy_state_get(void)
{
return atomic_mb_read(&incoming_postcopy_state);
}
/* Set the state and return the old state */
PostcopyState postcopy_state_set(PostcopyState new_state)
{
return atomic_xchg(&incoming_postcopy_state, new_state);
}
/* Register a handler for external shared memory postcopy
* called on the destination.
*/
void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
{
MigrationIncomingState *mis = migration_incoming_get_current();
mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
*pcfd);
}
/* Unregister a handler for external shared memory postcopy
*/
void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
{
guint i;
MigrationIncomingState *mis = migration_incoming_get_current();
GArray *pcrfds = mis->postcopy_remote_fds;
for (i = 0; i < pcrfds->len; i++) {
struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
if (cur->fd == pcfd->fd) {
mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
return;
}
}
}