qemu-e2k/hw/sb16.c
bellard 202a456a2b safer sb16 code
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@728 c046a42c-6fe2-441c-8c8c-71466251a162
2004-04-16 22:09:02 +00:00

729 lines
16 KiB
C

/*
* QEMU Soundblaster 16 emulation
*
* Copyright (c) 2003 Vassili Karpov (malc)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#define MIN(a, b) ((a)>(b)?(b):(a))
#define LENOFA(a) ((int) (sizeof(a)/sizeof(a[0])))
#define log(...) fprintf (stderr, "sb16: " __VA_ARGS__)
/* #define DEBUG_SB16 */
#ifdef DEBUG_SB16
#define lwarn(...) fprintf (stderr, "sb16: " __VA_ARGS__)
#define linfo(...) fprintf (stderr, "sb16: " __VA_ARGS__)
#define ldebug(...) fprintf (stderr, "sb16: " __VA_ARGS__)
#else
#define lwarn(...)
#define linfo(...)
#define ldebug(...)
#endif
#define IO_READ_PROTO(name) \
uint32_t name (void *opaque, uint32_t nport)
#define IO_WRITE_PROTO(name) \
void name (void *opaque, uint32_t nport, uint32_t val)
static struct {
int ver_lo;
int ver_hi;
int irq;
int dma;
int hdma;
int port;
int mix_block;
} sb = {5, 4, 5, 1, 5, 0x220, -1};
static int mix_block, noirq;
typedef struct SB16State {
int in_index;
int out_data_len;
int fmt_stereo;
int fmt_signed;
int fmt_bits;
int dma_auto;
int dma_buffer_size;
int fifo;
int freq;
int time_const;
int speaker;
int needed_bytes;
int cmd;
int dma_pos;
int use_hdma;
int v2x6;
uint8_t in_data[10];
uint8_t out_data[10];
int left_till_irq;
/* mixer state */
int mixer_nreg;
uint8_t mixer_regs[256];
} SB16State;
/* XXX: suppress that and use a context */
static struct SB16State dsp;
static void log_dsp (SB16State *dsp)
{
linfo ("%c:%c:%d:%c:dmabuf=%d:pos=%d:freq=%d:timeconst=%d:speaker=%d\n",
dsp->fmt_stereo ? 'S' : 'M',
dsp->fmt_signed ? 'S' : 'U',
dsp->fmt_bits,
dsp->dma_auto ? 'a' : 's',
dsp->dma_buffer_size,
dsp->dma_pos,
dsp->freq,
dsp->time_const,
dsp->speaker);
}
static void control (int hold)
{
linfo ("%d high %d\n", hold, dsp.use_hdma);
if (hold) {
if (dsp.use_hdma)
DMA_hold_DREQ (sb.hdma);
else
DMA_hold_DREQ (sb.dma);
}
else {
if (dsp.use_hdma)
DMA_release_DREQ (sb.hdma);
else
DMA_release_DREQ (sb.dma);
}
}
static void dma_cmd (uint8_t cmd, uint8_t d0, int dma_len)
{
int bps;
audfmt_e fmt;
dsp.use_hdma = cmd < 0xc0;
dsp.fifo = (cmd >> 1) & 1;
dsp.dma_auto = (cmd >> 2) & 1;
switch (cmd >> 4) {
case 11:
dsp.fmt_bits = 16;
break;
case 12:
dsp.fmt_bits = 8;
break;
}
dsp.fmt_signed = (d0 >> 4) & 1;
dsp.fmt_stereo = (d0 >> 5) & 1;
if (-1 != dsp.time_const) {
int tmp;
tmp = 256 - dsp.time_const;
dsp.freq = (1000000 + (tmp / 2)) / tmp;
}
bps = 1 << (16 == dsp.fmt_bits);
if (-1 != dma_len)
dsp.dma_buffer_size = (dma_len + 1) * bps;
linfo ("frequency %d, stereo %d, signed %d, bits %d, size %d, auto %d\n",
dsp.freq, dsp.fmt_stereo, dsp.fmt_signed, dsp.fmt_bits,
dsp.dma_buffer_size, dsp.dma_auto);
if (16 == dsp.fmt_bits) {
if (dsp.fmt_signed) {
fmt = AUD_FMT_S16;
}
else {
fmt = AUD_FMT_U16;
}
}
else {
if (dsp.fmt_signed) {
fmt = AUD_FMT_S8;
}
else {
fmt = AUD_FMT_U8;
}
}
dsp.dma_pos = 0;
dsp.left_till_irq = dsp.dma_buffer_size;
if (sb.mix_block) {
mix_block = sb.mix_block;
}
else {
int align;
align = bps << dsp.fmt_stereo;
mix_block = ((dsp.freq * align) / 100) & ~(align - 1);
}
AUD_reset (dsp.freq, 1 << dsp.fmt_stereo, fmt);
control (1);
dsp.speaker = 1;
}
static inline void dsp_out_data(SB16State *dsp, int val)
{
if (dsp->out_data_len < sizeof(dsp->out_data))
dsp->out_data[dsp->out_data_len++] = val;
}
static void command (SB16State *dsp, uint8_t cmd)
{
linfo ("%#x\n", cmd);
if (cmd > 0xaf && cmd < 0xd0) {
if (cmd & 8)
goto error;
switch (cmd >> 4) {
case 11:
case 12:
break;
default:
log("%#x wrong bits", cmd);
goto error;
}
dsp->needed_bytes = 3;
}
else {
switch (cmd) {
case 0x00:
case 0x03:
case 0xe7:
/* IMS uses those when probing for sound devices */
return;
case 0x10:
dsp->needed_bytes = 1;
break;
case 0x14:
dsp->needed_bytes = 2;
dsp->dma_buffer_size = 0;
break;
case 0x20:
dsp_out_data(dsp, 0xff);
break;
case 0x35:
lwarn ("MIDI commands not implemented\n");
break;
case 0x40:
dsp->freq = -1;
dsp->time_const = -1;
dsp->needed_bytes = 1;
break;
case 0x41:
case 0x42:
dsp->freq = -1;
dsp->time_const = -1;
dsp->needed_bytes = 2;
break;
case 0x47: /* Continue Auto-Initialize DMA 16bit */
break;
case 0x48:
dsp->needed_bytes = 2;
break;
case 0x27: /* ????????? */
case 0x4e:
return;
case 0x80:
cmd = -1;
break;
case 0x90:
case 0x91:
{
uint8_t d0;
d0 = 4;
if (dsp->fmt_signed) d0 |= 16;
if (dsp->fmt_stereo) d0 |= 32;
dma_cmd (cmd == 0x90 ? 0xc4 : 0xc0, d0, -1);
cmd = -1;
break;
}
case 0xd0: /* XXX */
control (0);
return;
case 0xd1:
dsp->speaker = 1;
break;
case 0xd3:
dsp->speaker = 0;
return;
case 0xd4:
control (1);
break;
case 0xd5:
control (0);
break;
case 0xd6:
control (1);
break;
case 0xd9:
control (0);
dsp->dma_auto = 0;
return;
case 0xda:
control (0);
dsp->dma_auto = 0;
break;
case 0xe0:
dsp->needed_bytes = 1;
break;
case 0xe1:
dsp_out_data(dsp, sb.ver_lo);
dsp_out_data(dsp, sb.ver_hi);
return;
case 0xf2:
dsp_out_data(dsp, 0xaa);
dsp->mixer_regs[0x82] |= dsp->mixer_regs[0x80];
pic_set_irq (sb.irq, 1);
return;
default:
log("%#x is unknown", cmd);
goto error;
}
}
dsp->cmd = cmd;
return;
error:
return;
}
static void complete (SB16State *dsp)
{
linfo ("complete command %#x, in_index %d, needed_bytes %d\n",
dsp->cmd, dsp->in_index, dsp->needed_bytes);
if (dsp->cmd > 0xaf && dsp->cmd < 0xd0) {
int d0, d1, d2;
d0 = dsp->in_data[0];
d1 = dsp->in_data[1];
d2 = dsp->in_data[2];
ldebug ("d0 = %d, d1 = %d, d2 = %d\n",
d0, d1, d2);
dma_cmd (dsp->cmd, d0, d1 + (d2 << 8));
}
else {
switch (dsp->cmd) {
case 0x10:
break;
case 0x14:
{
int d0, d1;
int save_left;
int save_pos;
d0 = dsp->in_data[0];
d1 = dsp->in_data[1];
save_left = dsp->left_till_irq;
save_pos = dsp->dma_pos;
dma_cmd (0xc0, 0, d0 + (d1 << 8));
dsp->left_till_irq = save_left;
dsp->dma_pos = save_pos;
linfo ("set buffer size data[%d, %d] %d pos %d\n",
d0, d1, dsp->dma_buffer_size, dsp->dma_pos);
break;
}
case 0x40:
dsp->time_const = dsp->in_data[0];
linfo ("set time const %d\n", dsp->time_const);
break;
case 0x41:
case 0x42:
dsp->freq = dsp->in_data[1] + (dsp->in_data[0] << 8);
linfo ("set freq %#x, %#x = %d\n",
dsp->in_data[1], dsp->in_data[0], dsp->freq);
break;
case 0x48:
dsp->dma_buffer_size = dsp->in_data[1] + (dsp->in_data[0] << 8);
linfo ("set dma len %#x, %#x = %d\n",
dsp->in_data[1], dsp->in_data[0], dsp->dma_buffer_size);
break;
case 0xe0:
dsp->out_data_len = 0;
linfo ("data = %#x\n", dsp->in_data[0]);
dsp_out_data(dsp, dsp->in_data[0] ^ 0xff);
break;
default:
log ("unrecognized command %#x", dsp->cmd);
return;
}
}
dsp->cmd = -1;
return;
}
static IO_WRITE_PROTO (dsp_write)
{
SB16State *dsp = opaque;
int iport;
iport = nport - sb.port;
switch (iport) {
case 0x6:
if (0 == val)
dsp->v2x6 = 0;
else if ((1 == val) && (0 == dsp->v2x6)) {
dsp->v2x6 = 1;
dsp_out_data(dsp, 0xaa);
}
else
dsp->v2x6 = ~0;
break;
case 0xc: /* write data or command | write status */
if (0 == dsp->needed_bytes) {
command (dsp, val);
if (0 == dsp->needed_bytes) {
log_dsp (dsp);
}
}
else {
dsp->in_data[dsp->in_index++] = val;
if (dsp->in_index == dsp->needed_bytes) {
dsp->needed_bytes = 0;
dsp->in_index = 0;
complete (dsp);
log_dsp (dsp);
}
}
break;
default:
log ("(nport=%#x, val=%#x)", nport, val);
break;
}
}
static IO_READ_PROTO (dsp_read)
{
SB16State *dsp = opaque;
int iport, retval;
iport = nport - sb.port;
switch (iport) {
case 0x6: /* reset */
return 0;
case 0xa: /* read data */
if (dsp->out_data_len) {
retval = dsp->out_data[--dsp->out_data_len];
} else {
log("empty output buffer\n");
goto error;
}
break;
case 0xc: /* 0 can write */
retval = 0;
break;
case 0xd: /* timer interrupt clear */
log("timer interrupt clear\n");
goto error;
case 0xe: /* data available status | irq 8 ack */
/* XXX drop pic irq line here? */
ldebug ("8 ack\n");
retval = (0 == dsp->out_data_len) ? 0 : 0x80;
dsp->mixer_regs[0x82] &= ~dsp->mixer_regs[0x80];
pic_set_irq (sb.irq, 0);
break;
case 0xf: /* irq 16 ack */
/* XXX drop pic irq line here? */
ldebug ("16 ack\n");
retval = 0xff;
dsp->mixer_regs[0x82] &= ~dsp->mixer_regs[0x80];
pic_set_irq (sb.irq, 0);
break;
default:
goto error;
}
if ((0xc != iport) && (0xe != iport)) {
ldebug ("nport=%#x iport %#x = %#x\n",
nport, iport, retval);
}
return retval;
error:
return 0;
}
static IO_WRITE_PROTO(mixer_write_indexb)
{
SB16State *dsp = opaque;
dsp->mixer_nreg = val;
}
static IO_WRITE_PROTO(mixer_write_datab)
{
SB16State *dsp = opaque;
if (dsp->mixer_nreg > 0x83)
return;
dsp->mixer_regs[dsp->mixer_nreg] = val;
}
static IO_WRITE_PROTO(mixer_write_indexw)
{
mixer_write_indexb (opaque, nport, val & 0xff);
mixer_write_datab (opaque, nport, (val >> 8) & 0xff);
}
static IO_READ_PROTO(mixer_read)
{
SB16State *dsp = opaque;
return dsp->mixer_regs[dsp->mixer_nreg];
}
void SB16_run (void)
{
if (0 == dsp.speaker)
return;
AUD_run ();
}
static int write_audio (uint32_t addr, int len, int size)
{
int temp, net;
uint8_t tmpbuf[4096];
temp = size;
net = 0;
while (temp) {
int left_till_end;
int to_copy;
int copied;
left_till_end = len - dsp.dma_pos;
to_copy = MIN (temp, left_till_end);
if (to_copy > sizeof(tmpbuf))
to_copy = sizeof(tmpbuf);
cpu_physical_memory_read(addr + dsp.dma_pos, tmpbuf, to_copy);
copied = AUD_write (tmpbuf, to_copy);
temp -= copied;
dsp.dma_pos += copied;
if (dsp.dma_pos == len) {
dsp.dma_pos = 0;
}
net += copied;
if (copied != to_copy)
return net;
}
return net;
}
static int SB_read_DMA (void *opaque, target_ulong addr, int size)
{
SB16State *dsp = opaque;
int free, till, copy, written;
if (0 == dsp->speaker)
return 0;
if (dsp->left_till_irq < 0) {
dsp->left_till_irq += dsp->dma_buffer_size;
return dsp->dma_pos;
}
free = AUD_get_free ();
if ((free <= 0) || (0 == size)) {
return dsp->dma_pos;
}
if (mix_block > 0) {
copy = MIN (free, mix_block);
}
else {
copy = free;
}
till = dsp->left_till_irq;
ldebug ("addr:%#010x free:%d till:%d size:%d\n",
addr, free, till, size);
if (till <= copy) {
if (0 == dsp->dma_auto) {
copy = till;
}
}
written = write_audio (addr, size, copy);
dsp->left_till_irq -= written;
AUD_adjust_estimate (free - written);
if (dsp->left_till_irq <= 0) {
dsp->mixer_regs[0x82] |= dsp->mixer_regs[0x80];
if (0 == noirq) {
ldebug ("request irq\n");
pic_set_irq(sb.irq, 1);
}
if (0 == dsp->dma_auto) {
control (0);
}
}
ldebug ("pos %5d free %5d size %5d till % 5d copy %5d dma size %5d\n",
dsp->dma_pos, free, size, dsp->left_till_irq, copy,
dsp->dma_buffer_size);
if (dsp->left_till_irq <= 0) {
dsp->left_till_irq += dsp->dma_buffer_size;
}
return dsp->dma_pos;
}
static int magic_of_irq (int irq)
{
switch (irq) {
case 2:
return 1;
case 5:
return 2;
case 7:
return 4;
case 10:
return 8;
default:
log ("bad irq %d\n", irq);
return 2;
}
}
#if 0
static int irq_of_magic (int magic)
{
switch (magic) {
case 1:
return 2;
case 2:
return 5;
case 4:
return 7;
case 8:
return 10;
default:
log ("bad irq magic %d\n", magic);
return 2;
}
}
#endif
void SB16_init (void)
{
SB16State *s = &dsp;
int i;
static const uint8_t dsp_write_ports[] = {0x6, 0xc};
static const uint8_t dsp_read_ports[] = {0x6, 0xa, 0xc, 0xd, 0xe, 0xf};
memset(s->mixer_regs, 0xff, sizeof(s->mixer_regs));
s->mixer_regs[0x0e] = ~0;
s->mixer_regs[0x80] = magic_of_irq (sb.irq);
s->mixer_regs[0x81] = 0x20 | (sb.dma << 1);
for (i = 0x30; i < 0x48; i++) {
s->mixer_regs[i] = 0x20;
}
for (i = 0; i < LENOFA (dsp_write_ports); i++) {
register_ioport_write (sb.port + dsp_write_ports[i], 1, 1, dsp_write, s);
}
for (i = 0; i < LENOFA (dsp_read_ports); i++) {
register_ioport_read (sb.port + dsp_read_ports[i], 1, 1, dsp_read, s);
}
register_ioport_write (sb.port + 0x4, 1, 1, mixer_write_indexb, s);
register_ioport_write (sb.port + 0x4, 1, 2, mixer_write_indexw, s);
register_ioport_read (sb.port + 0x5, 1, 1, mixer_read, s);
register_ioport_write (sb.port + 0x5, 1, 1, mixer_write_datab, s);
DMA_register_channel (sb.hdma, SB_read_DMA, s);
DMA_register_channel (sb.dma, SB_read_DMA, s);
}