245f7b51c0
For the same reason that we don't use vnc-authentication-sasl.c but vnc-auth-sals.c. Because it's tooooo long. Signed-off-by: Corentin Chary <corentincj@iksaif.net> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
1521 lines
59 KiB
C
1521 lines
59 KiB
C
/*
|
|
* QEMU VNC display driver: tight encoding
|
|
*
|
|
* From libvncserver/libvncserver/tight.c
|
|
* Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved.
|
|
* Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
|
|
*
|
|
* Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu-common.h"
|
|
|
|
#ifdef CONFIG_VNC_JPEG
|
|
#include <stdio.h>
|
|
#include <jpeglib.h>
|
|
#endif
|
|
|
|
#include "bswap.h"
|
|
#include "qdict.h"
|
|
#include "qint.h"
|
|
#include "vnc.h"
|
|
#include "vnc-enc-tight.h"
|
|
|
|
/* Compression level stuff. The following array contains various
|
|
encoder parameters for each of 10 compression levels (0..9).
|
|
Last three parameters correspond to JPEG quality levels (0..9). */
|
|
|
|
static const struct {
|
|
int max_rect_size, max_rect_width;
|
|
int mono_min_rect_size, gradient_min_rect_size;
|
|
int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level;
|
|
int gradient_threshold, gradient_threshold24;
|
|
int idx_max_colors_divisor;
|
|
int jpeg_quality, jpeg_threshold, jpeg_threshold24;
|
|
} tight_conf[] = {
|
|
{ 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 },
|
|
{ 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 },
|
|
{ 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 },
|
|
{ 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 },
|
|
{ 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 },
|
|
{ 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 },
|
|
{ 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 },
|
|
{ 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 },
|
|
{ 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 },
|
|
{ 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 }
|
|
};
|
|
|
|
/*
|
|
* Code to guess if given rectangle is suitable for smooth image
|
|
* compression (by applying "gradient" filter or JPEG coder).
|
|
*/
|
|
|
|
static uint
|
|
tight_detect_smooth_image24(VncState *vs, int w, int h)
|
|
{
|
|
int off;
|
|
int x, y, d, dx;
|
|
uint c;
|
|
uint stats[256];
|
|
int pixels = 0;
|
|
int pix, left[3];
|
|
uint errors;
|
|
unsigned char *buf = vs->tight.buffer;
|
|
|
|
/*
|
|
* If client is big-endian, color samples begin from the second
|
|
* byte (offset 1) of a 32-bit pixel value.
|
|
*/
|
|
off = !!(vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG);
|
|
|
|
memset(stats, 0, sizeof (stats));
|
|
|
|
for (y = 0, x = 0; y < h && x < w;) {
|
|
for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH;
|
|
d++) {
|
|
for (c = 0; c < 3; c++) {
|
|
left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF;
|
|
}
|
|
for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) {
|
|
for (c = 0; c < 3; c++) {
|
|
pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF;
|
|
stats[abs(pix - left[c])]++;
|
|
left[c] = pix;
|
|
}
|
|
pixels++;
|
|
}
|
|
}
|
|
if (w > h) {
|
|
x += h;
|
|
y = 0;
|
|
} else {
|
|
x = 0;
|
|
y += w;
|
|
}
|
|
}
|
|
|
|
/* 95% smooth or more ... */
|
|
if (stats[0] * 33 / pixels >= 95) {
|
|
return 0;
|
|
}
|
|
|
|
errors = 0;
|
|
for (c = 1; c < 8; c++) {
|
|
errors += stats[c] * (c * c);
|
|
if (stats[c] == 0 || stats[c] > stats[c-1] * 2) {
|
|
return 0;
|
|
}
|
|
}
|
|
for (; c < 256; c++) {
|
|
errors += stats[c] * (c * c);
|
|
}
|
|
errors /= (pixels * 3 - stats[0]);
|
|
|
|
return errors;
|
|
}
|
|
|
|
#define DEFINE_DETECT_FUNCTION(bpp) \
|
|
\
|
|
static uint \
|
|
tight_detect_smooth_image##bpp(VncState *vs, int w, int h) { \
|
|
bool endian; \
|
|
uint##bpp##_t pix; \
|
|
int max[3], shift[3]; \
|
|
int x, y, d, dx; \
|
|
uint c; \
|
|
uint stats[256]; \
|
|
int pixels = 0; \
|
|
int sample, sum, left[3]; \
|
|
uint errors; \
|
|
unsigned char *buf = vs->tight.buffer; \
|
|
\
|
|
endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
|
|
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
|
|
\
|
|
\
|
|
max[0] = vs->clientds.pf.rmax; \
|
|
max[1] = vs->clientds.pf.gmax; \
|
|
max[2] = vs->clientds.pf.bmax; \
|
|
shift[0] = vs->clientds.pf.rshift; \
|
|
shift[1] = vs->clientds.pf.gshift; \
|
|
shift[2] = vs->clientds.pf.bshift; \
|
|
\
|
|
memset(stats, 0, sizeof(stats)); \
|
|
\
|
|
y = 0, x = 0; \
|
|
while (y < h && x < w) { \
|
|
for (d = 0; d < h - y && \
|
|
d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; d++) { \
|
|
pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d]; \
|
|
if (endian) { \
|
|
pix = bswap_##bpp(pix); \
|
|
} \
|
|
for (c = 0; c < 3; c++) { \
|
|
left[c] = (int)(pix >> shift[c] & max[c]); \
|
|
} \
|
|
for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; \
|
|
dx++) { \
|
|
pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d+dx]; \
|
|
if (endian) { \
|
|
pix = bswap_##bpp(pix); \
|
|
} \
|
|
sum = 0; \
|
|
for (c = 0; c < 3; c++) { \
|
|
sample = (int)(pix >> shift[c] & max[c]); \
|
|
sum += abs(sample - left[c]); \
|
|
left[c] = sample; \
|
|
} \
|
|
if (sum > 255) { \
|
|
sum = 255; \
|
|
} \
|
|
stats[sum]++; \
|
|
pixels++; \
|
|
} \
|
|
} \
|
|
if (w > h) { \
|
|
x += h; \
|
|
y = 0; \
|
|
} else { \
|
|
x = 0; \
|
|
y += w; \
|
|
} \
|
|
} \
|
|
\
|
|
if ((stats[0] + stats[1]) * 100 / pixels >= 90) { \
|
|
return 0; \
|
|
} \
|
|
\
|
|
errors = 0; \
|
|
for (c = 1; c < 8; c++) { \
|
|
errors += stats[c] * (c * c); \
|
|
if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { \
|
|
return 0; \
|
|
} \
|
|
} \
|
|
for (; c < 256; c++) { \
|
|
errors += stats[c] * (c * c); \
|
|
} \
|
|
errors /= (pixels - stats[0]); \
|
|
\
|
|
return errors; \
|
|
}
|
|
|
|
DEFINE_DETECT_FUNCTION(16)
|
|
DEFINE_DETECT_FUNCTION(32)
|
|
|
|
static int
|
|
tight_detect_smooth_image(VncState *vs, int w, int h)
|
|
{
|
|
uint errors;
|
|
int compression = vs->tight_compression;
|
|
int quality = vs->tight_quality;
|
|
|
|
if (!vs->vd->lossy) {
|
|
return 0;
|
|
}
|
|
|
|
if (ds_get_bytes_per_pixel(vs->ds) == 1 ||
|
|
vs->clientds.pf.bytes_per_pixel == 1 ||
|
|
w < VNC_TIGHT_DETECT_MIN_WIDTH || h < VNC_TIGHT_DETECT_MIN_HEIGHT) {
|
|
return 0;
|
|
}
|
|
|
|
if (vs->tight_quality != -1) {
|
|
if (w * h < VNC_TIGHT_JPEG_MIN_RECT_SIZE) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (w * h < tight_conf[compression].gradient_min_rect_size) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (vs->clientds.pf.bytes_per_pixel == 4) {
|
|
if (vs->tight_pixel24) {
|
|
errors = tight_detect_smooth_image24(vs, w, h);
|
|
if (vs->tight_quality != -1) {
|
|
return (errors < tight_conf[quality].jpeg_threshold24);
|
|
}
|
|
return (errors < tight_conf[compression].gradient_threshold24);
|
|
} else {
|
|
errors = tight_detect_smooth_image32(vs, w, h);
|
|
}
|
|
} else {
|
|
errors = tight_detect_smooth_image16(vs, w, h);
|
|
}
|
|
if (quality != -1) {
|
|
return (errors < tight_conf[quality].jpeg_threshold);
|
|
}
|
|
return (errors < tight_conf[compression].gradient_threshold);
|
|
}
|
|
|
|
/*
|
|
* Code to determine how many different colors used in rectangle.
|
|
*/
|
|
|
|
static void tight_palette_rgb2buf(uint32_t rgb, int bpp, uint8_t buf[6])
|
|
{
|
|
memset(buf, 0, 6);
|
|
|
|
if (bpp == 32) {
|
|
buf[0] = ((rgb >> 24) & 0xFF);
|
|
buf[1] = ((rgb >> 16) & 0xFF);
|
|
buf[2] = ((rgb >> 8) & 0xFF);
|
|
buf[3] = ((rgb >> 0) & 0xFF);
|
|
buf[4] = ((buf[0] & 1) == 0) << 3 | ((buf[1] & 1) == 0) << 2;
|
|
buf[4]|= ((buf[2] & 1) == 0) << 1 | ((buf[3] & 1) == 0) << 0;
|
|
buf[0] |= 1;
|
|
buf[1] |= 1;
|
|
buf[2] |= 1;
|
|
buf[3] |= 1;
|
|
}
|
|
if (bpp == 16) {
|
|
buf[0] = ((rgb >> 8) & 0xFF);
|
|
buf[1] = ((rgb >> 0) & 0xFF);
|
|
buf[2] = ((buf[0] & 1) == 0) << 1 | ((buf[1] & 1) == 0) << 0;
|
|
buf[0] |= 1;
|
|
buf[1] |= 1;
|
|
}
|
|
}
|
|
|
|
static uint32_t tight_palette_buf2rgb(int bpp, const uint8_t *buf)
|
|
{
|
|
uint32_t rgb = 0;
|
|
|
|
if (bpp == 32) {
|
|
rgb |= ((buf[0] & ~1) | !((buf[4] >> 3) & 1)) << 24;
|
|
rgb |= ((buf[1] & ~1) | !((buf[4] >> 2) & 1)) << 16;
|
|
rgb |= ((buf[2] & ~1) | !((buf[4] >> 1) & 1)) << 8;
|
|
rgb |= ((buf[3] & ~1) | !((buf[4] >> 0) & 1)) << 0;
|
|
}
|
|
if (bpp == 16) {
|
|
rgb |= ((buf[0] & ~1) | !((buf[2] >> 1) & 1)) << 8;
|
|
rgb |= ((buf[1] & ~1) | !((buf[2] >> 0) & 1)) << 0;
|
|
}
|
|
return rgb;
|
|
}
|
|
|
|
|
|
static int tight_palette_insert(QDict *palette, uint32_t rgb, int bpp, int max)
|
|
{
|
|
uint8_t key[6];
|
|
int idx = qdict_size(palette);
|
|
bool present;
|
|
|
|
tight_palette_rgb2buf(rgb, bpp, key);
|
|
present = qdict_haskey(palette, (char *)key);
|
|
if (idx >= max && !present) {
|
|
return 0;
|
|
}
|
|
if (!present) {
|
|
qdict_put(palette, (char *)key, qint_from_int(idx));
|
|
}
|
|
return qdict_size(palette);
|
|
}
|
|
|
|
#define DEFINE_FILL_PALETTE_FUNCTION(bpp) \
|
|
\
|
|
static int \
|
|
tight_fill_palette##bpp(VncState *vs, int x, int y, \
|
|
int max, size_t count, \
|
|
uint32_t *bg, uint32_t *fg, \
|
|
struct QDict **palette) { \
|
|
uint##bpp##_t *data; \
|
|
uint##bpp##_t c0, c1, ci; \
|
|
int i, n0, n1; \
|
|
\
|
|
data = (uint##bpp##_t *)vs->tight.buffer; \
|
|
\
|
|
c0 = data[0]; \
|
|
i = 1; \
|
|
while (i < count && data[i] == c0) \
|
|
i++; \
|
|
if (i >= count) { \
|
|
*bg = *fg = c0; \
|
|
return 1; \
|
|
} \
|
|
\
|
|
if (max < 2) { \
|
|
return 0; \
|
|
} \
|
|
\
|
|
n0 = i; \
|
|
c1 = data[i]; \
|
|
n1 = 0; \
|
|
for (i++; i < count; i++) { \
|
|
ci = data[i]; \
|
|
if (ci == c0) { \
|
|
n0++; \
|
|
} else if (ci == c1) { \
|
|
n1++; \
|
|
} else \
|
|
break; \
|
|
} \
|
|
if (i >= count) { \
|
|
if (n0 > n1) { \
|
|
*bg = (uint32_t)c0; \
|
|
*fg = (uint32_t)c1; \
|
|
} else { \
|
|
*bg = (uint32_t)c1; \
|
|
*fg = (uint32_t)c0; \
|
|
} \
|
|
return 2; \
|
|
} \
|
|
\
|
|
if (max == 2) { \
|
|
return 0; \
|
|
} \
|
|
\
|
|
*palette = qdict_new(); \
|
|
tight_palette_insert(*palette, c0, bpp, max); \
|
|
tight_palette_insert(*palette, c1, bpp, max); \
|
|
tight_palette_insert(*palette, ci, bpp, max); \
|
|
\
|
|
for (i++; i < count; i++) { \
|
|
if (data[i] == ci) { \
|
|
continue; \
|
|
} else { \
|
|
if (!tight_palette_insert(*palette, (uint32_t)ci, \
|
|
bpp, max)) { \
|
|
return 0; \
|
|
} \
|
|
ci = data[i]; \
|
|
} \
|
|
} \
|
|
\
|
|
return qdict_size(*palette); \
|
|
}
|
|
|
|
DEFINE_FILL_PALETTE_FUNCTION(8)
|
|
DEFINE_FILL_PALETTE_FUNCTION(16)
|
|
DEFINE_FILL_PALETTE_FUNCTION(32)
|
|
|
|
static int tight_fill_palette(VncState *vs, int x, int y,
|
|
size_t count, uint32_t *bg, uint32_t *fg,
|
|
struct QDict **palette)
|
|
{
|
|
int max;
|
|
|
|
max = count / tight_conf[vs->tight_compression].idx_max_colors_divisor;
|
|
if (max < 2 &&
|
|
count >= tight_conf[vs->tight_compression].mono_min_rect_size) {
|
|
max = 2;
|
|
}
|
|
if (max >= 256) {
|
|
max = 256;
|
|
}
|
|
|
|
switch(vs->clientds.pf.bytes_per_pixel) {
|
|
case 4:
|
|
return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette);
|
|
case 2:
|
|
return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette);
|
|
default:
|
|
max = 2;
|
|
return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Callback to dump a palette with qdict_iter
|
|
static void print_palette(const char *key, QObject *obj, void *opaque)
|
|
{
|
|
uint8_t idx = qint_get_int(qobject_to_qint(obj));
|
|
uint32_t rgb = tight_palette_buf2rgb(32, (uint8_t *)key);
|
|
|
|
fprintf(stderr, "%.2x ", (unsigned char)*key);
|
|
while (*key++)
|
|
fprintf(stderr, "%.2x ", (unsigned char)*key);
|
|
|
|
fprintf(stderr, ": idx: %x rgb: %x\n", idx, rgb);
|
|
}
|
|
*/
|
|
|
|
/*
|
|
* Converting truecolor samples into palette indices.
|
|
*/
|
|
#define DEFINE_IDX_ENCODE_FUNCTION(bpp) \
|
|
\
|
|
static void \
|
|
tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \
|
|
struct QDict *palette) { \
|
|
uint##bpp##_t *src; \
|
|
uint##bpp##_t rgb; \
|
|
uint8_t key[6]; \
|
|
int i, rep; \
|
|
uint8_t idx; \
|
|
\
|
|
src = (uint##bpp##_t *) buf; \
|
|
\
|
|
for (i = 0; i < count; i++) { \
|
|
rgb = *src++; \
|
|
rep = 0; \
|
|
while (i < count && *src == rgb) { \
|
|
rep++, src++, i++; \
|
|
} \
|
|
tight_palette_rgb2buf(rgb, bpp, key); \
|
|
if (!qdict_haskey(palette, (char *)key)) { \
|
|
/* \
|
|
* Should never happen, but don't break everything \
|
|
* if it does, use the first color instead \
|
|
*/ \
|
|
idx = 0; \
|
|
} else { \
|
|
idx = qdict_get_int(palette, (char *)key); \
|
|
} \
|
|
while (rep >= 0) { \
|
|
*buf++ = idx; \
|
|
rep--; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DEFINE_IDX_ENCODE_FUNCTION(16)
|
|
DEFINE_IDX_ENCODE_FUNCTION(32)
|
|
|
|
#define DEFINE_MONO_ENCODE_FUNCTION(bpp) \
|
|
\
|
|
static void \
|
|
tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \
|
|
uint##bpp##_t bg, uint##bpp##_t fg) { \
|
|
uint##bpp##_t *ptr; \
|
|
unsigned int value, mask; \
|
|
int aligned_width; \
|
|
int x, y, bg_bits; \
|
|
\
|
|
ptr = (uint##bpp##_t *) buf; \
|
|
aligned_width = w - w % 8; \
|
|
\
|
|
for (y = 0; y < h; y++) { \
|
|
for (x = 0; x < aligned_width; x += 8) { \
|
|
for (bg_bits = 0; bg_bits < 8; bg_bits++) { \
|
|
if (*ptr++ != bg) { \
|
|
break; \
|
|
} \
|
|
} \
|
|
if (bg_bits == 8) { \
|
|
*buf++ = 0; \
|
|
continue; \
|
|
} \
|
|
mask = 0x80 >> bg_bits; \
|
|
value = mask; \
|
|
for (bg_bits++; bg_bits < 8; bg_bits++) { \
|
|
mask >>= 1; \
|
|
if (*ptr++ != bg) { \
|
|
value |= mask; \
|
|
} \
|
|
} \
|
|
*buf++ = (uint8_t)value; \
|
|
} \
|
|
\
|
|
mask = 0x80; \
|
|
value = 0; \
|
|
if (x >= w) { \
|
|
continue; \
|
|
} \
|
|
\
|
|
for (; x < w; x++) { \
|
|
if (*ptr++ != bg) { \
|
|
value |= mask; \
|
|
} \
|
|
mask >>= 1; \
|
|
} \
|
|
*buf++ = (uint8_t)value; \
|
|
} \
|
|
}
|
|
|
|
DEFINE_MONO_ENCODE_FUNCTION(8)
|
|
DEFINE_MONO_ENCODE_FUNCTION(16)
|
|
DEFINE_MONO_ENCODE_FUNCTION(32)
|
|
|
|
/*
|
|
* ``Gradient'' filter for 24-bit color samples.
|
|
* Should be called only when redMax, greenMax and blueMax are 255.
|
|
* Color components assumed to be byte-aligned.
|
|
*/
|
|
|
|
static void
|
|
tight_filter_gradient24(VncState *vs, uint8_t *buf, int w, int h)
|
|
{
|
|
uint32_t *buf32;
|
|
uint32_t pix32;
|
|
int shift[3];
|
|
int *prev;
|
|
int here[3], upper[3], left[3], upperleft[3];
|
|
int prediction;
|
|
int x, y, c;
|
|
|
|
buf32 = (uint32_t *)buf;
|
|
memset(vs->tight_gradient.buffer, 0, w * 3 * sizeof(int));
|
|
|
|
if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
|
|
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
|
|
shift[0] = vs->clientds.pf.rshift;
|
|
shift[1] = vs->clientds.pf.gshift;
|
|
shift[2] = vs->clientds.pf.bshift;
|
|
} else {
|
|
shift[0] = 24 - vs->clientds.pf.rshift;
|
|
shift[1] = 24 - vs->clientds.pf.gshift;
|
|
shift[2] = 24 - vs->clientds.pf.bshift;
|
|
}
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (c = 0; c < 3; c++) {
|
|
upper[c] = 0;
|
|
here[c] = 0;
|
|
}
|
|
prev = (int *)vs->tight_gradient.buffer;
|
|
for (x = 0; x < w; x++) {
|
|
pix32 = *buf32++;
|
|
for (c = 0; c < 3; c++) {
|
|
upperleft[c] = upper[c];
|
|
left[c] = here[c];
|
|
upper[c] = *prev;
|
|
here[c] = (int)(pix32 >> shift[c] & 0xFF);
|
|
*prev++ = here[c];
|
|
|
|
prediction = left[c] + upper[c] - upperleft[c];
|
|
if (prediction < 0) {
|
|
prediction = 0;
|
|
} else if (prediction > 0xFF) {
|
|
prediction = 0xFF;
|
|
}
|
|
*buf++ = (char)(here[c] - prediction);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ``Gradient'' filter for other color depths.
|
|
*/
|
|
|
|
#define DEFINE_GRADIENT_FILTER_FUNCTION(bpp) \
|
|
\
|
|
static void \
|
|
tight_filter_gradient##bpp(VncState *vs, uint##bpp##_t *buf, \
|
|
int w, int h) { \
|
|
uint##bpp##_t pix, diff; \
|
|
bool endian; \
|
|
int *prev; \
|
|
int max[3], shift[3]; \
|
|
int here[3], upper[3], left[3], upperleft[3]; \
|
|
int prediction; \
|
|
int x, y, c; \
|
|
\
|
|
memset (vs->tight_gradient.buffer, 0, w * 3 * sizeof(int)); \
|
|
\
|
|
endian = ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) != \
|
|
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)); \
|
|
\
|
|
max[0] = vs->clientds.pf.rmax; \
|
|
max[1] = vs->clientds.pf.gmax; \
|
|
max[2] = vs->clientds.pf.bmax; \
|
|
shift[0] = vs->clientds.pf.rshift; \
|
|
shift[1] = vs->clientds.pf.gshift; \
|
|
shift[2] = vs->clientds.pf.bshift; \
|
|
\
|
|
for (y = 0; y < h; y++) { \
|
|
for (c = 0; c < 3; c++) { \
|
|
upper[c] = 0; \
|
|
here[c] = 0; \
|
|
} \
|
|
prev = (int *)vs->tight_gradient.buffer; \
|
|
for (x = 0; x < w; x++) { \
|
|
pix = *buf; \
|
|
if (endian) { \
|
|
pix = bswap_##bpp(pix); \
|
|
} \
|
|
diff = 0; \
|
|
for (c = 0; c < 3; c++) { \
|
|
upperleft[c] = upper[c]; \
|
|
left[c] = here[c]; \
|
|
upper[c] = *prev; \
|
|
here[c] = (int)(pix >> shift[c] & max[c]); \
|
|
*prev++ = here[c]; \
|
|
\
|
|
prediction = left[c] + upper[c] - upperleft[c]; \
|
|
if (prediction < 0) { \
|
|
prediction = 0; \
|
|
} else if (prediction > max[c]) { \
|
|
prediction = max[c]; \
|
|
} \
|
|
diff |= ((here[c] - prediction) & max[c]) \
|
|
<< shift[c]; \
|
|
} \
|
|
if (endian) { \
|
|
diff = bswap_##bpp(diff); \
|
|
} \
|
|
*buf++ = diff; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
DEFINE_GRADIENT_FILTER_FUNCTION(16)
|
|
DEFINE_GRADIENT_FILTER_FUNCTION(32)
|
|
|
|
/*
|
|
* Check if a rectangle is all of the same color. If needSameColor is
|
|
* set to non-zero, then also check that its color equals to the
|
|
* *colorPtr value. The result is 1 if the test is successfull, and in
|
|
* that case new color will be stored in *colorPtr.
|
|
*/
|
|
|
|
#define DEFINE_CHECK_SOLID_FUNCTION(bpp) \
|
|
\
|
|
static bool \
|
|
check_solid_tile##bpp(VncState *vs, int x, int y, int w, int h, \
|
|
uint32_t* color, bool samecolor) \
|
|
{ \
|
|
VncDisplay *vd = vs->vd; \
|
|
uint##bpp##_t *fbptr; \
|
|
uint##bpp##_t c; \
|
|
int dx, dy; \
|
|
\
|
|
fbptr = (uint##bpp##_t *) \
|
|
(vd->server->data + y * ds_get_linesize(vs->ds) + \
|
|
x * ds_get_bytes_per_pixel(vs->ds)); \
|
|
\
|
|
c = *fbptr; \
|
|
if (samecolor && (uint32_t)c != *color) { \
|
|
return false; \
|
|
} \
|
|
\
|
|
for (dy = 0; dy < h; dy++) { \
|
|
for (dx = 0; dx < w; dx++) { \
|
|
if (c != fbptr[dx]) { \
|
|
return false; \
|
|
} \
|
|
} \
|
|
fbptr = (uint##bpp##_t *) \
|
|
((uint8_t *)fbptr + ds_get_linesize(vs->ds)); \
|
|
} \
|
|
\
|
|
*color = (uint32_t)c; \
|
|
return true; \
|
|
}
|
|
|
|
DEFINE_CHECK_SOLID_FUNCTION(32)
|
|
DEFINE_CHECK_SOLID_FUNCTION(16)
|
|
DEFINE_CHECK_SOLID_FUNCTION(8)
|
|
|
|
static bool check_solid_tile(VncState *vs, int x, int y, int w, int h,
|
|
uint32_t* color, bool samecolor)
|
|
{
|
|
VncDisplay *vd = vs->vd;
|
|
|
|
switch(vd->server->pf.bytes_per_pixel) {
|
|
case 4:
|
|
return check_solid_tile32(vs, x, y, w, h, color, samecolor);
|
|
case 2:
|
|
return check_solid_tile16(vs, x, y, w, h, color, samecolor);
|
|
default:
|
|
return check_solid_tile8(vs, x, y, w, h, color, samecolor);
|
|
}
|
|
}
|
|
|
|
static void find_best_solid_area(VncState *vs, int x, int y, int w, int h,
|
|
uint32_t color, int *w_ptr, int *h_ptr)
|
|
{
|
|
int dx, dy, dw, dh;
|
|
int w_prev;
|
|
int w_best = 0, h_best = 0;
|
|
|
|
w_prev = w;
|
|
|
|
for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
|
|
|
|
dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy);
|
|
dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev);
|
|
|
|
if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) {
|
|
break;
|
|
}
|
|
|
|
for (dx = x + dw; dx < x + w_prev;) {
|
|
dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx);
|
|
|
|
if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) {
|
|
break;
|
|
}
|
|
dx += dw;
|
|
}
|
|
|
|
w_prev = dx - x;
|
|
if (w_prev * (dy + dh - y) > w_best * h_best) {
|
|
w_best = w_prev;
|
|
h_best = dy + dh - y;
|
|
}
|
|
}
|
|
|
|
*w_ptr = w_best;
|
|
*h_ptr = h_best;
|
|
}
|
|
|
|
static void extend_solid_area(VncState *vs, int x, int y, int w, int h,
|
|
uint32_t color, int *x_ptr, int *y_ptr,
|
|
int *w_ptr, int *h_ptr)
|
|
{
|
|
int cx, cy;
|
|
|
|
/* Try to extend the area upwards. */
|
|
for ( cy = *y_ptr - 1;
|
|
cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
|
|
cy-- );
|
|
*h_ptr += *y_ptr - (cy + 1);
|
|
*y_ptr = cy + 1;
|
|
|
|
/* ... downwards. */
|
|
for ( cy = *y_ptr + *h_ptr;
|
|
cy < y + h &&
|
|
check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true);
|
|
cy++ );
|
|
*h_ptr += cy - (*y_ptr + *h_ptr);
|
|
|
|
/* ... to the left. */
|
|
for ( cx = *x_ptr - 1;
|
|
cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
|
|
cx-- );
|
|
*w_ptr += *x_ptr - (cx + 1);
|
|
*x_ptr = cx + 1;
|
|
|
|
/* ... to the right. */
|
|
for ( cx = *x_ptr + *w_ptr;
|
|
cx < x + w &&
|
|
check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true);
|
|
cx++ );
|
|
*w_ptr += cx - (*x_ptr + *w_ptr);
|
|
}
|
|
|
|
static int tight_init_stream(VncState *vs, int stream_id,
|
|
int level, int strategy)
|
|
{
|
|
z_streamp zstream = &vs->tight_stream[stream_id];
|
|
|
|
if (zstream->opaque == NULL) {
|
|
int err;
|
|
|
|
VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id);
|
|
VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs);
|
|
zstream->zalloc = vnc_zlib_zalloc;
|
|
zstream->zfree = vnc_zlib_zfree;
|
|
|
|
err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS,
|
|
MAX_MEM_LEVEL, strategy);
|
|
|
|
if (err != Z_OK) {
|
|
fprintf(stderr, "VNC: error initializing zlib\n");
|
|
return -1;
|
|
}
|
|
|
|
vs->tight_levels[stream_id] = level;
|
|
zstream->opaque = vs;
|
|
}
|
|
|
|
if (vs->tight_levels[stream_id] != level) {
|
|
if (deflateParams(zstream, level, strategy) != Z_OK) {
|
|
return -1;
|
|
}
|
|
vs->tight_levels[stream_id] = level;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void tight_send_compact_size(VncState *vs, size_t len)
|
|
{
|
|
int lpc = 0;
|
|
int bytes = 0;
|
|
char buf[3] = {0, 0, 0};
|
|
|
|
buf[bytes++] = len & 0x7F;
|
|
if (len > 0x7F) {
|
|
buf[bytes-1] |= 0x80;
|
|
buf[bytes++] = (len >> 7) & 0x7F;
|
|
if (len > 0x3FFF) {
|
|
buf[bytes-1] |= 0x80;
|
|
buf[bytes++] = (len >> 14) & 0xFF;
|
|
}
|
|
}
|
|
for (lpc = 0; lpc < bytes; lpc++) {
|
|
vnc_write_u8(vs, buf[lpc]);
|
|
}
|
|
}
|
|
|
|
static int tight_compress_data(VncState *vs, int stream_id, size_t bytes,
|
|
int level, int strategy)
|
|
{
|
|
z_streamp zstream = &vs->tight_stream[stream_id];
|
|
int previous_out;
|
|
|
|
if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) {
|
|
vnc_write(vs, vs->tight.buffer, vs->tight.offset);
|
|
return bytes;
|
|
}
|
|
|
|
if (tight_init_stream(vs, stream_id, level, strategy)) {
|
|
return -1;
|
|
}
|
|
|
|
/* reserve memory in output buffer */
|
|
buffer_reserve(&vs->tight_zlib, bytes + 64);
|
|
|
|
/* set pointers */
|
|
zstream->next_in = vs->tight.buffer;
|
|
zstream->avail_in = vs->tight.offset;
|
|
zstream->next_out = vs->tight_zlib.buffer + vs->tight_zlib.offset;
|
|
zstream->avail_out = vs->tight_zlib.capacity - vs->tight_zlib.offset;
|
|
zstream->data_type = Z_BINARY;
|
|
previous_out = zstream->total_out;
|
|
|
|
/* start encoding */
|
|
if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) {
|
|
fprintf(stderr, "VNC: error during tight compression\n");
|
|
return -1;
|
|
}
|
|
|
|
vs->tight_zlib.offset = vs->tight_zlib.capacity - zstream->avail_out;
|
|
bytes = zstream->total_out - previous_out;
|
|
|
|
tight_send_compact_size(vs, bytes);
|
|
vnc_write(vs, vs->tight_zlib.buffer, bytes);
|
|
|
|
buffer_reset(&vs->tight_zlib);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
/*
|
|
* Subencoding implementations.
|
|
*/
|
|
static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret)
|
|
{
|
|
uint32_t *buf32;
|
|
uint32_t pix;
|
|
int rshift, gshift, bshift;
|
|
|
|
buf32 = (uint32_t *)buf;
|
|
|
|
if ((vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG) ==
|
|
(vs->ds->surface->flags & QEMU_BIG_ENDIAN_FLAG)) {
|
|
rshift = vs->clientds.pf.rshift;
|
|
gshift = vs->clientds.pf.gshift;
|
|
bshift = vs->clientds.pf.bshift;
|
|
} else {
|
|
rshift = 24 - vs->clientds.pf.rshift;
|
|
gshift = 24 - vs->clientds.pf.gshift;
|
|
bshift = 24 - vs->clientds.pf.bshift;
|
|
}
|
|
|
|
if (ret) {
|
|
*ret = count * 3;
|
|
}
|
|
|
|
while (count--) {
|
|
pix = *buf32++;
|
|
*buf++ = (char)(pix >> rshift);
|
|
*buf++ = (char)(pix >> gshift);
|
|
*buf++ = (char)(pix >> bshift);
|
|
}
|
|
}
|
|
|
|
static int send_full_color_rect(VncState *vs, int w, int h)
|
|
{
|
|
int stream = 0;
|
|
size_t bytes;
|
|
|
|
vnc_write_u8(vs, stream << 4); /* no flushing, no filter */
|
|
|
|
if (vs->tight_pixel24) {
|
|
tight_pack24(vs, vs->tight.buffer, w * h, &vs->tight.offset);
|
|
bytes = 3;
|
|
} else {
|
|
bytes = vs->clientds.pf.bytes_per_pixel;
|
|
}
|
|
|
|
bytes = tight_compress_data(vs, stream, w * h * bytes,
|
|
tight_conf[vs->tight_compression].raw_zlib_level,
|
|
Z_DEFAULT_STRATEGY);
|
|
|
|
return (bytes >= 0);
|
|
}
|
|
|
|
static int send_solid_rect(VncState *vs)
|
|
{
|
|
size_t bytes;
|
|
|
|
vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */
|
|
|
|
if (vs->tight_pixel24) {
|
|
tight_pack24(vs, vs->tight.buffer, 1, &vs->tight.offset);
|
|
bytes = 3;
|
|
} else {
|
|
bytes = vs->clientds.pf.bytes_per_pixel;
|
|
}
|
|
|
|
vnc_write(vs, vs->tight.buffer, bytes);
|
|
return 1;
|
|
}
|
|
|
|
static int send_mono_rect(VncState *vs, int w, int h, uint32_t bg, uint32_t fg)
|
|
{
|
|
size_t bytes;
|
|
int stream = 1;
|
|
int level = tight_conf[vs->tight_compression].mono_zlib_level;
|
|
|
|
bytes = ((w + 7) / 8) * h;
|
|
|
|
vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
|
|
vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
|
|
vnc_write_u8(vs, 1);
|
|
|
|
switch(vs->clientds.pf.bytes_per_pixel) {
|
|
case 4:
|
|
{
|
|
uint32_t buf[2] = {bg, fg};
|
|
size_t ret = sizeof (buf);
|
|
|
|
if (vs->tight_pixel24) {
|
|
tight_pack24(vs, (unsigned char*)buf, 2, &ret);
|
|
}
|
|
vnc_write(vs, buf, ret);
|
|
|
|
tight_encode_mono_rect32(vs->tight.buffer, w, h, bg, fg);
|
|
break;
|
|
}
|
|
case 2:
|
|
vnc_write(vs, &bg, 2);
|
|
vnc_write(vs, &fg, 2);
|
|
tight_encode_mono_rect16(vs->tight.buffer, w, h, bg, fg);
|
|
break;
|
|
default:
|
|
vnc_write_u8(vs, bg);
|
|
vnc_write_u8(vs, fg);
|
|
tight_encode_mono_rect8(vs->tight.buffer, w, h, bg, fg);
|
|
break;
|
|
}
|
|
vs->tight.offset = bytes;
|
|
|
|
bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY);
|
|
return (bytes >= 0);
|
|
}
|
|
|
|
struct palette_cb_priv {
|
|
VncState *vs;
|
|
uint8_t *header;
|
|
};
|
|
|
|
static void write_palette(const char *key, QObject *obj, void *opaque)
|
|
{
|
|
struct palette_cb_priv *priv = opaque;
|
|
VncState *vs = priv->vs;
|
|
uint32_t bytes = vs->clientds.pf.bytes_per_pixel;
|
|
uint8_t idx = qint_get_int(qobject_to_qint(obj));
|
|
|
|
if (bytes == 4) {
|
|
uint32_t color = tight_palette_buf2rgb(32, (uint8_t *)key);
|
|
|
|
((uint32_t*)priv->header)[idx] = color;
|
|
} else {
|
|
uint16_t color = tight_palette_buf2rgb(16, (uint8_t *)key);
|
|
|
|
((uint16_t*)priv->header)[idx] = color;
|
|
}
|
|
}
|
|
|
|
static bool send_gradient_rect(VncState *vs, int w, int h)
|
|
{
|
|
int stream = 3;
|
|
int level = tight_conf[vs->tight_compression].gradient_zlib_level;
|
|
size_t bytes;
|
|
|
|
if (vs->clientds.pf.bytes_per_pixel == 1)
|
|
return send_full_color_rect(vs, w, h);
|
|
|
|
vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
|
|
vnc_write_u8(vs, VNC_TIGHT_FILTER_GRADIENT);
|
|
|
|
buffer_reserve(&vs->tight_gradient, w * 3 * sizeof (int));
|
|
|
|
if (vs->tight_pixel24) {
|
|
tight_filter_gradient24(vs, vs->tight.buffer, w, h);
|
|
bytes = 3;
|
|
} else if (vs->clientds.pf.bytes_per_pixel == 4) {
|
|
tight_filter_gradient32(vs, (uint32_t *)vs->tight.buffer, w, h);
|
|
bytes = 4;
|
|
} else {
|
|
tight_filter_gradient16(vs, (uint16_t *)vs->tight.buffer, w, h);
|
|
bytes = 2;
|
|
}
|
|
|
|
buffer_reset(&vs->tight_gradient);
|
|
|
|
bytes = w * h * bytes;
|
|
vs->tight.offset = bytes;
|
|
|
|
bytes = tight_compress_data(vs, stream, bytes,
|
|
level, Z_FILTERED);
|
|
return (bytes >= 0);
|
|
}
|
|
|
|
static int send_palette_rect(VncState *vs, int w, int h, struct QDict *palette)
|
|
{
|
|
int stream = 2;
|
|
int level = tight_conf[vs->tight_compression].idx_zlib_level;
|
|
int colors;
|
|
size_t bytes;
|
|
|
|
colors = qdict_size(palette);
|
|
|
|
vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4);
|
|
vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE);
|
|
vnc_write_u8(vs, colors - 1);
|
|
|
|
switch(vs->clientds.pf.bytes_per_pixel) {
|
|
case 4:
|
|
{
|
|
size_t old_offset, offset;
|
|
uint32_t header[qdict_size(palette)];
|
|
struct palette_cb_priv priv = { vs, (uint8_t *)header };
|
|
|
|
old_offset = vs->output.offset;
|
|
qdict_iter(palette, write_palette, &priv);
|
|
vnc_write(vs, header, sizeof(header));
|
|
|
|
if (vs->tight_pixel24) {
|
|
tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset);
|
|
vs->output.offset = old_offset + offset;
|
|
}
|
|
|
|
tight_encode_indexed_rect32(vs->tight.buffer, w * h, palette);
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
uint16_t header[qdict_size(palette)];
|
|
struct palette_cb_priv priv = { vs, (uint8_t *)header };
|
|
|
|
qdict_iter(palette, write_palette, &priv);
|
|
vnc_write(vs, header, sizeof(header));
|
|
tight_encode_indexed_rect16(vs->tight.buffer, w * h, palette);
|
|
break;
|
|
}
|
|
default:
|
|
return -1; /* No palette for 8bits colors */
|
|
break;
|
|
}
|
|
bytes = w * h;
|
|
vs->tight.offset = bytes;
|
|
|
|
bytes = tight_compress_data(vs, stream, bytes,
|
|
level, Z_DEFAULT_STRATEGY);
|
|
return (bytes >= 0);
|
|
}
|
|
|
|
/*
|
|
* JPEG compression stuff.
|
|
*/
|
|
#ifdef CONFIG_VNC_JPEG
|
|
static void jpeg_prepare_row24(VncState *vs, uint8_t *dst, int x, int y,
|
|
int count)
|
|
{
|
|
VncDisplay *vd = vs->vd;
|
|
uint32_t *fbptr;
|
|
uint32_t pix;
|
|
|
|
fbptr = (uint32_t *)(vd->server->data + y * ds_get_linesize(vs->ds) +
|
|
x * ds_get_bytes_per_pixel(vs->ds));
|
|
|
|
while (count--) {
|
|
pix = *fbptr++;
|
|
*dst++ = (uint8_t)(pix >> vs->ds->surface->pf.rshift);
|
|
*dst++ = (uint8_t)(pix >> vs->ds->surface->pf.gshift);
|
|
*dst++ = (uint8_t)(pix >> vs->ds->surface->pf.bshift);
|
|
}
|
|
}
|
|
|
|
#define DEFINE_JPEG_GET_ROW_FUNCTION(bpp) \
|
|
\
|
|
static void \
|
|
jpeg_prepare_row##bpp(VncState *vs, uint8_t *dst, \
|
|
int x, int y, int count) \
|
|
{ \
|
|
VncDisplay *vd = vs->vd; \
|
|
uint##bpp##_t *fbptr; \
|
|
uint##bpp##_t pix; \
|
|
int r, g, b; \
|
|
\
|
|
fbptr = (uint##bpp##_t *) \
|
|
(vd->server->data + y * ds_get_linesize(vs->ds) + \
|
|
x * ds_get_bytes_per_pixel(vs->ds)); \
|
|
\
|
|
while (count--) { \
|
|
pix = *fbptr++; \
|
|
\
|
|
r = (int)((pix >> vs->ds->surface->pf.rshift) \
|
|
& vs->ds->surface->pf.rmax); \
|
|
g = (int)((pix >> vs->ds->surface->pf.gshift) \
|
|
& vs->ds->surface->pf.gmax); \
|
|
b = (int)((pix >> vs->ds->surface->pf.bshift) \
|
|
& vs->ds->surface->pf.bmax); \
|
|
\
|
|
*dst++ = (uint8_t)((r * 255 + vs->ds->surface->pf.rmax / 2) \
|
|
/ vs->ds->surface->pf.rmax); \
|
|
*dst++ = (uint8_t)((g * 255 + vs->ds->surface->pf.gmax / 2) \
|
|
/ vs->ds->surface->pf.gmax); \
|
|
*dst++ = (uint8_t)((b * 255 + vs->ds->surface->pf.bmax / 2) \
|
|
/ vs->ds->surface->pf.bmax); \
|
|
} \
|
|
}
|
|
|
|
DEFINE_JPEG_GET_ROW_FUNCTION(16)
|
|
DEFINE_JPEG_GET_ROW_FUNCTION(32)
|
|
|
|
static void jpeg_prepare_row(VncState *vs, uint8_t *dst, int x, int y,
|
|
int count)
|
|
{
|
|
if (vs->tight_pixel24)
|
|
jpeg_prepare_row24(vs, dst, x, y, count);
|
|
else if (ds_get_bytes_per_pixel(vs->ds) == 4)
|
|
jpeg_prepare_row32(vs, dst, x, y, count);
|
|
else
|
|
jpeg_prepare_row16(vs, dst, x, y, count);
|
|
}
|
|
|
|
/*
|
|
* Destination manager implementation for JPEG library.
|
|
*/
|
|
|
|
/* This is called once per encoding */
|
|
static void jpeg_init_destination(j_compress_ptr cinfo)
|
|
{
|
|
VncState *vs = cinfo->client_data;
|
|
Buffer *buffer = &vs->tight_jpeg;
|
|
|
|
cinfo->dest->next_output_byte = (JOCTET *)buffer->buffer + buffer->offset;
|
|
cinfo->dest->free_in_buffer = (size_t)(buffer->capacity - buffer->offset);
|
|
}
|
|
|
|
/* This is called when we ran out of buffer (shouldn't happen!) */
|
|
static boolean jpeg_empty_output_buffer(j_compress_ptr cinfo)
|
|
{
|
|
VncState *vs = cinfo->client_data;
|
|
Buffer *buffer = &vs->tight_jpeg;
|
|
|
|
buffer->offset = buffer->capacity;
|
|
buffer_reserve(buffer, 2048);
|
|
jpeg_init_destination(cinfo);
|
|
return TRUE;
|
|
}
|
|
|
|
/* This is called when we are done processing data */
|
|
static void jpeg_term_destination(j_compress_ptr cinfo)
|
|
{
|
|
VncState *vs = cinfo->client_data;
|
|
Buffer *buffer = &vs->tight_jpeg;
|
|
|
|
buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer;
|
|
}
|
|
|
|
static int send_jpeg_rect(VncState *vs, int x, int y, int w, int h, int quality)
|
|
{
|
|
struct jpeg_compress_struct cinfo;
|
|
struct jpeg_error_mgr jerr;
|
|
struct jpeg_destination_mgr manager;
|
|
JSAMPROW row[1];
|
|
uint8_t *buf;
|
|
int dy;
|
|
|
|
if (ds_get_bytes_per_pixel(vs->ds) == 1)
|
|
return send_full_color_rect(vs, w, h);
|
|
|
|
buf = qemu_malloc(w * 3);
|
|
row[0] = buf;
|
|
buffer_reserve(&vs->tight_jpeg, 2048);
|
|
|
|
cinfo.err = jpeg_std_error(&jerr);
|
|
jpeg_create_compress(&cinfo);
|
|
|
|
cinfo.client_data = vs;
|
|
cinfo.image_width = w;
|
|
cinfo.image_height = h;
|
|
cinfo.input_components = 3;
|
|
cinfo.in_color_space = JCS_RGB;
|
|
|
|
jpeg_set_defaults(&cinfo);
|
|
jpeg_set_quality(&cinfo, quality, true);
|
|
|
|
manager.init_destination = jpeg_init_destination;
|
|
manager.empty_output_buffer = jpeg_empty_output_buffer;
|
|
manager.term_destination = jpeg_term_destination;
|
|
cinfo.dest = &manager;
|
|
|
|
jpeg_start_compress(&cinfo, true);
|
|
|
|
for (dy = 0; dy < h; dy++) {
|
|
jpeg_prepare_row(vs, buf, x, y + dy, w);
|
|
jpeg_write_scanlines(&cinfo, row, 1);
|
|
}
|
|
|
|
jpeg_finish_compress(&cinfo);
|
|
jpeg_destroy_compress(&cinfo);
|
|
|
|
vnc_write_u8(vs, VNC_TIGHT_JPEG << 4);
|
|
|
|
tight_send_compact_size(vs, vs->tight_jpeg.offset);
|
|
vnc_write(vs, vs->tight_jpeg.buffer, vs->tight_jpeg.offset);
|
|
buffer_reset(&vs->tight_jpeg);
|
|
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_VNC_JPEG */
|
|
|
|
static void vnc_tight_start(VncState *vs)
|
|
{
|
|
buffer_reset(&vs->tight);
|
|
|
|
// make the output buffer be the zlib buffer, so we can compress it later
|
|
vs->tight_tmp = vs->output;
|
|
vs->output = vs->tight;
|
|
}
|
|
|
|
static void vnc_tight_stop(VncState *vs)
|
|
{
|
|
// switch back to normal output/zlib buffers
|
|
vs->tight = vs->output;
|
|
vs->output = vs->tight_tmp;
|
|
}
|
|
|
|
static int send_sub_rect(VncState *vs, int x, int y, int w, int h)
|
|
{
|
|
struct QDict *palette = NULL;
|
|
uint32_t bg = 0, fg = 0;
|
|
int colors;
|
|
int ret = 0;
|
|
|
|
vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_TIGHT);
|
|
|
|
vnc_tight_start(vs);
|
|
vnc_raw_send_framebuffer_update(vs, x, y, w, h);
|
|
vnc_tight_stop(vs);
|
|
|
|
colors = tight_fill_palette(vs, x, y, w * h, &fg, &bg, &palette);
|
|
|
|
if (colors == 0) {
|
|
if (tight_detect_smooth_image(vs, w, h)) {
|
|
if (vs->tight_quality == -1) {
|
|
ret = send_gradient_rect(vs, w, h);
|
|
} else {
|
|
#ifdef CONFIG_VNC_JPEG
|
|
int quality = tight_conf[vs->tight_quality].jpeg_quality;
|
|
|
|
ret = send_jpeg_rect(vs, x, y, w, h, quality);
|
|
#else
|
|
ret = send_full_color_rect(vs, w, h);
|
|
#endif
|
|
}
|
|
} else {
|
|
ret = send_full_color_rect(vs, w, h);
|
|
}
|
|
} else if (colors == 1) {
|
|
ret = send_solid_rect(vs);
|
|
} else if (colors == 2) {
|
|
ret = send_mono_rect(vs, w, h, bg, fg);
|
|
} else if (colors <= 256) {
|
|
#ifdef CONFIG_VNC_JPEG
|
|
if (colors > 96 && vs->tight_quality != -1 && vs->tight_quality <= 3 &&
|
|
tight_detect_smooth_image(vs, w, h)) {
|
|
int quality = tight_conf[vs->tight_quality].jpeg_quality;
|
|
|
|
ret = send_jpeg_rect(vs, x, y, w, h, quality);
|
|
} else {
|
|
ret = send_palette_rect(vs, w, h, palette);
|
|
}
|
|
#else
|
|
ret = send_palette_rect(vs, w, h, palette);
|
|
#endif
|
|
}
|
|
QDECREF(palette);
|
|
return ret;
|
|
}
|
|
|
|
static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h)
|
|
{
|
|
vnc_framebuffer_update(vs, x, y, w, h, VNC_ENCODING_TIGHT);
|
|
|
|
vnc_tight_start(vs);
|
|
vnc_raw_send_framebuffer_update(vs, x, y, w, h);
|
|
vnc_tight_stop(vs);
|
|
|
|
return send_solid_rect(vs);
|
|
}
|
|
|
|
static int send_rect_simple(VncState *vs, int x, int y, int w, int h)
|
|
{
|
|
int max_size, max_width;
|
|
int max_sub_width, max_sub_height;
|
|
int dx, dy;
|
|
int rw, rh;
|
|
int n = 0;
|
|
|
|
max_size = tight_conf[vs->tight_compression].max_rect_size;
|
|
max_width = tight_conf[vs->tight_compression].max_rect_width;
|
|
|
|
if (w > max_width || w * h > max_size) {
|
|
max_sub_width = (w > max_width) ? max_width : w;
|
|
max_sub_height = max_size / max_sub_width;
|
|
|
|
for (dy = 0; dy < h; dy += max_sub_height) {
|
|
for (dx = 0; dx < w; dx += max_width) {
|
|
rw = MIN(max_sub_width, w - dx);
|
|
rh = MIN(max_sub_height, h - dy);
|
|
n += send_sub_rect(vs, x+dx, y+dy, rw, rh);
|
|
}
|
|
}
|
|
} else {
|
|
n += send_sub_rect(vs, x, y, w, h);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static int find_large_solid_color_rect(VncState *vs, int x, int y,
|
|
int w, int h, int max_rows)
|
|
{
|
|
int dx, dy, dw, dh;
|
|
int n = 0;
|
|
|
|
/* Try to find large solid-color areas and send them separately. */
|
|
|
|
for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
|
|
|
|
/* If a rectangle becomes too large, send its upper part now. */
|
|
|
|
if (dy - y >= max_rows) {
|
|
n += send_rect_simple(vs, x, y, w, max_rows);
|
|
y += max_rows;
|
|
h -= max_rows;
|
|
}
|
|
|
|
dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy));
|
|
|
|
for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) {
|
|
uint32_t color_value;
|
|
int x_best, y_best, w_best, h_best;
|
|
|
|
dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx));
|
|
|
|
if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) {
|
|
continue ;
|
|
}
|
|
|
|
/* Get dimensions of solid-color area. */
|
|
|
|
find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y),
|
|
color_value, &w_best, &h_best);
|
|
|
|
/* Make sure a solid rectangle is large enough
|
|
(or the whole rectangle is of the same color). */
|
|
|
|
if (w_best * h_best != w * h &&
|
|
w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) {
|
|
continue;
|
|
}
|
|
|
|
/* Try to extend solid rectangle to maximum size. */
|
|
|
|
x_best = dx; y_best = dy;
|
|
extend_solid_area(vs, x, y, w, h, color_value,
|
|
&x_best, &y_best, &w_best, &h_best);
|
|
|
|
/* Send rectangles at top and left to solid-color area. */
|
|
|
|
if (y_best != y) {
|
|
n += send_rect_simple(vs, x, y, w, y_best-y);
|
|
}
|
|
if (x_best != x) {
|
|
n += vnc_tight_send_framebuffer_update(vs, x, y_best,
|
|
x_best-x, h_best);
|
|
}
|
|
|
|
/* Send solid-color rectangle. */
|
|
n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best);
|
|
|
|
/* Send remaining rectangles (at right and bottom). */
|
|
|
|
if (x_best + w_best != x + w) {
|
|
n += vnc_tight_send_framebuffer_update(vs, x_best+w_best,
|
|
y_best,
|
|
w-(x_best-x)-w_best,
|
|
h_best);
|
|
}
|
|
if (y_best + h_best != y + h) {
|
|
n += vnc_tight_send_framebuffer_update(vs, x, y_best+h_best,
|
|
w, h-(y_best-y)-h_best);
|
|
}
|
|
|
|
/* Return after all recursive calls are done. */
|
|
return n;
|
|
}
|
|
}
|
|
return n + send_rect_simple(vs, x, y, w, h);
|
|
}
|
|
|
|
int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y,
|
|
int w, int h)
|
|
{
|
|
int max_rows;
|
|
|
|
if (vs->clientds.pf.bytes_per_pixel == 4 && vs->clientds.pf.rmax == 0xFF &&
|
|
vs->clientds.pf.bmax == 0xFF && vs->clientds.pf.gmax == 0xFF) {
|
|
vs->tight_pixel24 = true;
|
|
} else {
|
|
vs->tight_pixel24 = false;
|
|
}
|
|
|
|
if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE)
|
|
return send_rect_simple(vs, x, y, w, h);
|
|
|
|
/* Calculate maximum number of rows in one non-solid rectangle. */
|
|
|
|
max_rows = tight_conf[vs->tight_compression].max_rect_size;
|
|
max_rows /= MIN(tight_conf[vs->tight_compression].max_rect_width, w);
|
|
|
|
return find_large_solid_color_rect(vs, x, y, w, h, max_rows);
|
|
}
|
|
|
|
void vnc_tight_clear(VncState *vs)
|
|
{
|
|
int i;
|
|
for (i=0; i<ARRAY_SIZE(vs->tight_stream); i++) {
|
|
if (vs->tight_stream[i].opaque) {
|
|
deflateEnd(&vs->tight_stream[i]);
|
|
}
|
|
}
|
|
|
|
buffer_free(&vs->tight);
|
|
buffer_free(&vs->tight_zlib);
|
|
buffer_free(&vs->tight_gradient);
|
|
#ifdef CONFIG_VNC_JPEG
|
|
buffer_free(&vs->tight_jpeg);
|
|
#endif
|
|
}
|