qemu-e2k/hw/arm/raspi.c
Peter Maydell 33c20e3caf raspi: Use error_fatal for SoC realize errors, not error_abort
The SoC realize can fail for legitimate reasons, because it propagates
errors up from CPU realize, which in turn can be provoked by user
error in setting commandline options. Use error_fatal so we report
the error message to the user and exit, rather than asserting
via error_abort.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20210816135842.25302-2-peter.maydell@linaro.org
2021-08-26 17:02:01 +01:00

402 lines
14 KiB
C

/*
* Raspberry Pi emulation (c) 2012 Gregory Estrade
* Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
*
* Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
* Written by Andrew Baumann
*
* Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
* Upstream code cleanup (c) 2018 Pekka Enberg
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/arm/bcm2836.h"
#include "hw/registerfields.h"
#include "qemu/error-report.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/arm/boot.h"
#include "qom/object.h"
#define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */
#define MVBAR_ADDR 0x400 /* secure vectors */
#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
#define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
/* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
#define MACH_TYPE_BCM2708 3138
struct RaspiMachineState {
/*< private >*/
MachineState parent_obj;
/*< public >*/
BCM283XState soc;
struct arm_boot_info binfo;
};
typedef struct RaspiMachineState RaspiMachineState;
struct RaspiMachineClass {
/*< private >*/
MachineClass parent_obj;
/*< public >*/
uint32_t board_rev;
};
typedef struct RaspiMachineClass RaspiMachineClass;
#define TYPE_RASPI_MACHINE MACHINE_TYPE_NAME("raspi-common")
DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
RASPI_MACHINE, TYPE_RASPI_MACHINE)
/*
* Board revision codes:
* www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
*/
FIELD(REV_CODE, REVISION, 0, 4);
FIELD(REV_CODE, TYPE, 4, 8);
FIELD(REV_CODE, PROCESSOR, 12, 4);
FIELD(REV_CODE, MANUFACTURER, 16, 4);
FIELD(REV_CODE, MEMORY_SIZE, 20, 3);
FIELD(REV_CODE, STYLE, 23, 1);
typedef enum RaspiProcessorId {
PROCESSOR_ID_BCM2835 = 0,
PROCESSOR_ID_BCM2836 = 1,
PROCESSOR_ID_BCM2837 = 2,
} RaspiProcessorId;
static const struct {
const char *type;
int cores_count;
} soc_property[] = {
[PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
[PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
[PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
};
static uint64_t board_ram_size(uint32_t board_rev)
{
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
}
static RaspiProcessorId board_processor_id(uint32_t board_rev)
{
int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
return proc_id;
}
static const char *board_soc_type(uint32_t board_rev)
{
return soc_property[board_processor_id(board_rev)].type;
}
static int cores_count(uint32_t board_rev)
{
return soc_property[board_processor_id(board_rev)].cores_count;
}
static const char *board_type(uint32_t board_rev)
{
static const char *types[] = {
"A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
"CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
};
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
if (bt >= ARRAY_SIZE(types) || !types[bt]) {
return "Unknown";
}
return types[bt];
}
static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
{
static const uint32_t smpboot[] = {
0xe1a0e00f, /* mov lr, pc */
0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */
0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */
0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */
0xe320f001, /* 1: yield */
0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/
0xe3530000, /* cmp r3, #0 ;spin while zero */
0x0afffffb, /* beq 1b */
0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */
0xe12fff13, /* bx r3 ;jump to target */
0x400000cc, /* (constant: mailbox 3 read/clear base) */
};
/* check that we don't overrun board setup vectors */
QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
/* check that board setup address is correctly relocated */
QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
|| (BOARDSETUP_ADDR >> 4) >= 0x100);
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start,
arm_boot_address_space(cpu, info));
}
static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
{
AddressSpace *as = arm_boot_address_space(cpu, info);
/* Unlike the AArch32 version we don't need to call the board setup hook.
* The mechanism for doing the spin-table is also entirely different.
* We must have four 64-bit fields at absolute addresses
* 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
* our CPUs, and which we must ensure are zero initialized before
* the primary CPU goes into the kernel. We put these variables inside
* a rom blob, so that the reset for ROM contents zeroes them for us.
*/
static const uint32_t smpboot[] = {
0xd2801b05, /* mov x5, 0xd8 */
0xd53800a6, /* mrs x6, mpidr_el1 */
0x924004c6, /* and x6, x6, #0x3 */
0xd503205f, /* spin: wfe */
0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
0xb4ffffc4, /* cbz x4, spin */
0xd2800000, /* mov x0, #0x0 */
0xd2800001, /* mov x1, #0x0 */
0xd2800002, /* mov x2, #0x0 */
0xd2800003, /* mov x3, #0x0 */
0xd61f0080, /* br x4 */
};
static const uint64_t spintables[] = {
0, 0, 0, 0
};
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start, as);
rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
SPINTABLE_ADDR, as);
}
static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
{
arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
}
static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
{
CPUState *cs = CPU(cpu);
cpu_set_pc(cs, info->smp_loader_start);
}
static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
size_t ram_size)
{
RaspiMachineState *s = RASPI_MACHINE(machine);
int r;
s->binfo.board_id = MACH_TYPE_BCM2708;
s->binfo.ram_size = ram_size;
s->binfo.nb_cpus = machine->smp.cpus;
if (processor_id <= PROCESSOR_ID_BCM2836) {
/*
* The BCM2835 and BCM2836 require some custom setup code to run
* in Secure mode before booting a kernel (to set up the SMC vectors
* so that we get a no-op SMC; this is used by Linux to call the
* firmware for some cache maintenance operations.
* The BCM2837 doesn't need this.
*/
s->binfo.board_setup_addr = BOARDSETUP_ADDR;
s->binfo.write_board_setup = write_board_setup;
s->binfo.secure_board_setup = true;
s->binfo.secure_boot = true;
}
/* BCM2836 and BCM2837 requires SMP setup */
if (processor_id >= PROCESSOR_ID_BCM2836) {
s->binfo.smp_loader_start = SMPBOOT_ADDR;
if (processor_id == PROCESSOR_ID_BCM2836) {
s->binfo.write_secondary_boot = write_smpboot;
} else {
s->binfo.write_secondary_boot = write_smpboot64;
}
s->binfo.secondary_cpu_reset_hook = reset_secondary;
}
/* If the user specified a "firmware" image (e.g. UEFI), we bypass
* the normal Linux boot process
*/
if (machine->firmware) {
hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
/* load the firmware image (typically kernel.img) */
r = load_image_targphys(machine->firmware, firmware_addr,
ram_size - firmware_addr);
if (r < 0) {
error_report("Failed to load firmware from %s", machine->firmware);
exit(1);
}
s->binfo.entry = firmware_addr;
s->binfo.firmware_loaded = true;
}
arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
}
static void raspi_machine_init(MachineState *machine)
{
RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
RaspiMachineState *s = RASPI_MACHINE(machine);
uint32_t board_rev = mc->board_rev;
uint64_t ram_size = board_ram_size(board_rev);
uint32_t vcram_size;
DriveInfo *di;
BlockBackend *blk;
BusState *bus;
DeviceState *carddev;
if (machine->ram_size != ram_size) {
char *size_str = size_to_str(ram_size);
error_report("Invalid RAM size, should be %s", size_str);
g_free(size_str);
exit(1);
}
/* FIXME: Remove when we have custom CPU address space support */
memory_region_add_subregion_overlap(get_system_memory(), 0,
machine->ram, 0);
/* Setup the SOC */
object_initialize_child(OBJECT(machine), "soc", &s->soc,
board_soc_type(board_rev));
object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
&error_abort);
qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
/* Create and plug in the SD cards */
di = drive_get_next(IF_SD);
blk = di ? blk_by_legacy_dinfo(di) : NULL;
bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
if (bus == NULL) {
error_report("No SD bus found in SOC object");
exit(1);
}
carddev = qdev_new(TYPE_SD_CARD);
qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
qdev_realize_and_unref(carddev, bus, &error_fatal);
vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
&error_abort);
setup_boot(machine, board_processor_id(mc->board_rev),
machine->ram_size - vcram_size);
}
static void raspi_machine_class_common_init(MachineClass *mc,
uint32_t board_rev)
{
mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
board_type(board_rev),
FIELD_EX32(board_rev, REV_CODE, REVISION));
mc->init = raspi_machine_init;
mc->block_default_type = IF_SD;
mc->no_parallel = 1;
mc->no_floppy = 1;
mc->no_cdrom = 1;
mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
mc->default_ram_size = board_ram_size(board_rev);
mc->default_ram_id = "ram";
};
static void raspi0_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0x920092; /* Revision 1.2 */
raspi_machine_class_common_init(mc, rmc->board_rev);
};
static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0x900021; /* Revision 1.1 */
raspi_machine_class_common_init(mc, rmc->board_rev);
};
static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
mc->alias = "raspi2";
rmc->board_rev = 0xa21041;
raspi_machine_class_common_init(mc, rmc->board_rev);
};
#ifdef TARGET_AARCH64
static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
rmc->board_rev = 0x9020e0; /* Revision 1.0 */
raspi_machine_class_common_init(mc, rmc->board_rev);
};
static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
mc->alias = "raspi3";
rmc->board_rev = 0xa02082;
raspi_machine_class_common_init(mc, rmc->board_rev);
};
#endif /* TARGET_AARCH64 */
static const TypeInfo raspi_machine_types[] = {
{
.name = MACHINE_TYPE_NAME("raspi0"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi0_machine_class_init,
}, {
.name = MACHINE_TYPE_NAME("raspi1ap"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi1ap_machine_class_init,
}, {
.name = MACHINE_TYPE_NAME("raspi2b"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi2b_machine_class_init,
#ifdef TARGET_AARCH64
}, {
.name = MACHINE_TYPE_NAME("raspi3ap"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi3ap_machine_class_init,
}, {
.name = MACHINE_TYPE_NAME("raspi3b"),
.parent = TYPE_RASPI_MACHINE,
.class_init = raspi3b_machine_class_init,
#endif
}, {
.name = TYPE_RASPI_MACHINE,
.parent = TYPE_MACHINE,
.instance_size = sizeof(RaspiMachineState),
.class_size = sizeof(RaspiMachineClass),
.abstract = true,
}
};
DEFINE_TYPES(raspi_machine_types)