249b5309c4
Implement the MVE instructions VREV16, VREV32 and VREV64. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20210617121628.20116-6-peter.maydell@linaro.org
280 lines
10 KiB
C
280 lines
10 KiB
C
/*
|
|
* M-profile MVE Operations
|
|
*
|
|
* Copyright (c) 2021 Linaro, Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "vec_internal.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/exec-all.h"
|
|
|
|
static uint16_t mve_element_mask(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Return the mask of which elements in the MVE vector should be
|
|
* updated. This is a combination of multiple things:
|
|
* (1) by default, we update every lane in the vector
|
|
* (2) VPT predication stores its state in the VPR register;
|
|
* (3) low-overhead-branch tail predication will mask out part
|
|
* the vector on the final iteration of the loop
|
|
* (4) if EPSR.ECI is set then we must execute only some beats
|
|
* of the insn
|
|
* We combine all these into a 16-bit result with the same semantics
|
|
* as VPR.P0: 0 to mask the lane, 1 if it is active.
|
|
* 8-bit vector ops will look at all bits of the result;
|
|
* 16-bit ops will look at bits 0, 2, 4, ...;
|
|
* 32-bit ops will look at bits 0, 4, 8 and 12.
|
|
* Compare pseudocode GetCurInstrBeat(), though that only returns
|
|
* the 4-bit slice of the mask corresponding to a single beat.
|
|
*/
|
|
uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
|
|
|
|
if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
|
|
mask |= 0xff;
|
|
}
|
|
if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
|
|
mask |= 0xff00;
|
|
}
|
|
|
|
if (env->v7m.ltpsize < 4 &&
|
|
env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
|
|
/*
|
|
* Tail predication active, and this is the last loop iteration.
|
|
* The element size is (1 << ltpsize), and we only want to process
|
|
* loopcount elements, so we want to retain the least significant
|
|
* (loopcount * esize) predicate bits and zero out bits above that.
|
|
*/
|
|
int masklen = env->regs[14] << env->v7m.ltpsize;
|
|
assert(masklen <= 16);
|
|
mask &= MAKE_64BIT_MASK(0, masklen);
|
|
}
|
|
|
|
if ((env->condexec_bits & 0xf) == 0) {
|
|
/*
|
|
* ECI bits indicate which beats are already executed;
|
|
* we handle this by effectively predicating them out.
|
|
*/
|
|
int eci = env->condexec_bits >> 4;
|
|
switch (eci) {
|
|
case ECI_NONE:
|
|
break;
|
|
case ECI_A0:
|
|
mask &= 0xfff0;
|
|
break;
|
|
case ECI_A0A1:
|
|
mask &= 0xff00;
|
|
break;
|
|
case ECI_A0A1A2:
|
|
case ECI_A0A1A2B0:
|
|
mask &= 0xf000;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void mve_advance_vpt(CPUARMState *env)
|
|
{
|
|
/* Advance the VPT and ECI state if necessary */
|
|
uint32_t vpr = env->v7m.vpr;
|
|
unsigned mask01, mask23;
|
|
|
|
if ((env->condexec_bits & 0xf) == 0) {
|
|
env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
|
|
(ECI_A0 << 4) : (ECI_NONE << 4);
|
|
}
|
|
|
|
if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
|
|
/* VPT not enabled, nothing to do */
|
|
return;
|
|
}
|
|
|
|
mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
|
|
mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
|
|
if (mask01 > 8) {
|
|
/* high bit set, but not 0b1000: invert the relevant half of P0 */
|
|
vpr ^= 0xff;
|
|
}
|
|
if (mask23 > 8) {
|
|
/* high bit set, but not 0b1000: invert the relevant half of P0 */
|
|
vpr ^= 0xff00;
|
|
}
|
|
vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
|
|
vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
|
|
env->v7m.vpr = vpr;
|
|
}
|
|
|
|
|
|
#define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \
|
|
void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
|
|
{ \
|
|
TYPE *d = vd; \
|
|
uint16_t mask = mve_element_mask(env); \
|
|
unsigned b, e; \
|
|
/* \
|
|
* R_SXTM allows the dest reg to become UNKNOWN for abandoned \
|
|
* beats so we don't care if we update part of the dest and \
|
|
* then take an exception. \
|
|
*/ \
|
|
for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
|
|
if (mask & (1 << b)) { \
|
|
d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
|
|
} \
|
|
addr += MSIZE; \
|
|
} \
|
|
mve_advance_vpt(env); \
|
|
}
|
|
|
|
#define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \
|
|
void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
|
|
{ \
|
|
TYPE *d = vd; \
|
|
uint16_t mask = mve_element_mask(env); \
|
|
unsigned b, e; \
|
|
for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
|
|
if (mask & (1 << b)) { \
|
|
cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
|
|
} \
|
|
addr += MSIZE; \
|
|
} \
|
|
mve_advance_vpt(env); \
|
|
}
|
|
|
|
DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
|
|
DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
|
|
DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
|
|
|
|
DO_VSTR(vstrb, 1, stb, 1, uint8_t)
|
|
DO_VSTR(vstrh, 2, stw, 2, uint16_t)
|
|
DO_VSTR(vstrw, 4, stl, 4, uint32_t)
|
|
|
|
DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
|
|
DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
|
|
DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
|
|
DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
|
|
DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
|
|
DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
|
|
|
|
DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
|
|
DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
|
|
DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
|
|
|
|
#undef DO_VLDR
|
|
#undef DO_VSTR
|
|
|
|
/*
|
|
* The mergemask(D, R, M) macro performs the operation "*D = R" but
|
|
* storing only the bytes which correspond to 1 bits in M,
|
|
* leaving other bytes in *D unchanged. We use _Generic
|
|
* to select the correct implementation based on the type of D.
|
|
*/
|
|
|
|
static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
|
|
{
|
|
if (mask & 1) {
|
|
*d = r;
|
|
}
|
|
}
|
|
|
|
static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
|
|
{
|
|
mergemask_ub((uint8_t *)d, r, mask);
|
|
}
|
|
|
|
static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
|
|
{
|
|
uint16_t bmask = expand_pred_b_data[mask & 3];
|
|
*d = (*d & ~bmask) | (r & bmask);
|
|
}
|
|
|
|
static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
|
|
{
|
|
mergemask_uh((uint16_t *)d, r, mask);
|
|
}
|
|
|
|
static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
|
|
{
|
|
uint32_t bmask = expand_pred_b_data[mask & 0xf];
|
|
*d = (*d & ~bmask) | (r & bmask);
|
|
}
|
|
|
|
static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
|
|
{
|
|
mergemask_uw((uint32_t *)d, r, mask);
|
|
}
|
|
|
|
static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
|
|
{
|
|
uint64_t bmask = expand_pred_b_data[mask & 0xff];
|
|
*d = (*d & ~bmask) | (r & bmask);
|
|
}
|
|
|
|
static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
|
|
{
|
|
mergemask_uq((uint64_t *)d, r, mask);
|
|
}
|
|
|
|
#define mergemask(D, R, M) \
|
|
_Generic(D, \
|
|
uint8_t *: mergemask_ub, \
|
|
int8_t *: mergemask_sb, \
|
|
uint16_t *: mergemask_uh, \
|
|
int16_t *: mergemask_sh, \
|
|
uint32_t *: mergemask_uw, \
|
|
int32_t *: mergemask_sw, \
|
|
uint64_t *: mergemask_uq, \
|
|
int64_t *: mergemask_sq)(D, R, M)
|
|
|
|
#define DO_1OP(OP, ESIZE, TYPE, FN) \
|
|
void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
|
|
{ \
|
|
TYPE *d = vd, *m = vm; \
|
|
uint16_t mask = mve_element_mask(env); \
|
|
unsigned e; \
|
|
for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
|
|
mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \
|
|
} \
|
|
mve_advance_vpt(env); \
|
|
}
|
|
|
|
#define DO_CLS_B(N) (clrsb32(N) - 24)
|
|
#define DO_CLS_H(N) (clrsb32(N) - 16)
|
|
|
|
DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
|
|
DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
|
|
DO_1OP(vclsw, 4, int32_t, clrsb32)
|
|
|
|
#define DO_CLZ_B(N) (clz32(N) - 24)
|
|
#define DO_CLZ_H(N) (clz32(N) - 16)
|
|
|
|
DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
|
|
DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
|
|
DO_1OP(vclzw, 4, uint32_t, clz32)
|
|
|
|
DO_1OP(vrev16b, 2, uint16_t, bswap16)
|
|
DO_1OP(vrev32b, 4, uint32_t, bswap32)
|
|
DO_1OP(vrev32h, 4, uint32_t, hswap32)
|
|
DO_1OP(vrev64b, 8, uint64_t, bswap64)
|
|
DO_1OP(vrev64h, 8, uint64_t, hswap64)
|
|
DO_1OP(vrev64w, 8, uint64_t, wswap64)
|