qemu-e2k/accel/tcg/user-exec.c
Richard Henderson 297368c74d accel/tcg: Unlock mmap_lock after longjmp
The mmap_lock is held around tb_gen_code.  While the comment
is correct that the lock is dropped when tb_gen_code runs out
of memory, the lock is *not* dropped when an exception is
raised reading code for translation.

Acked-by: Alistair Francis <alistair.francis@wdc.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2022-09-06 08:04:25 +01:00

539 lines
15 KiB
C

/*
* User emulator execution
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/core/tcg-cpu-ops.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"
#include "qemu/bitops.h"
#include "exec/cpu_ldst.h"
#include "exec/translate-all.h"
#include "exec/helper-proto.h"
#include "qemu/atomic128.h"
#include "trace/trace-root.h"
#include "tcg/tcg-ldst.h"
#include "internal.h"
__thread uintptr_t helper_retaddr;
//#define DEBUG_SIGNAL
/*
* Adjust the pc to pass to cpu_restore_state; return the memop type.
*/
MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
{
switch (helper_retaddr) {
default:
/*
* Fault during host memory operation within a helper function.
* The helper's host return address, saved here, gives us a
* pointer into the generated code that will unwind to the
* correct guest pc.
*/
*pc = helper_retaddr;
break;
case 0:
/*
* Fault during host memory operation within generated code.
* (Or, a unrelated bug within qemu, but we can't tell from here).
*
* We take the host pc from the signal frame. However, we cannot
* use that value directly. Within cpu_restore_state_from_tb, we
* assume PC comes from GETPC(), as used by the helper functions,
* so we adjust the address by -GETPC_ADJ to form an address that
* is within the call insn, so that the address does not accidentally
* match the beginning of the next guest insn. However, when the
* pc comes from the signal frame it points to the actual faulting
* host memory insn and not the return from a call insn.
*
* Therefore, adjust to compensate for what will be done later
* by cpu_restore_state_from_tb.
*/
*pc += GETPC_ADJ;
break;
case 1:
/*
* Fault during host read for translation, or loosely, "execution".
*
* The guest pc is already pointing to the start of the TB for which
* code is being generated. If the guest translator manages the
* page crossings correctly, this is exactly the correct address
* (and if the translator doesn't handle page boundaries correctly
* there's little we can do about that here). Therefore, do not
* trigger the unwinder.
*/
*pc = 0;
return MMU_INST_FETCH;
}
return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
}
/**
* handle_sigsegv_accerr_write:
* @cpu: the cpu context
* @old_set: the sigset_t from the signal ucontext_t
* @host_pc: the host pc, adjusted for the signal
* @guest_addr: the guest address of the fault
*
* Return true if the write fault has been handled, and should be re-tried.
*
* Note that it is important that we don't call page_unprotect() unless
* this is really a "write to nonwritable page" fault, because
* page_unprotect() assumes that if it is called for an access to
* a page that's writable this means we had two threads racing and
* another thread got there first and already made the page writable;
* so we will retry the access. If we were to call page_unprotect()
* for some other kind of fault that should really be passed to the
* guest, we'd end up in an infinite loop of retrying the faulting access.
*/
bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
uintptr_t host_pc, abi_ptr guest_addr)
{
switch (page_unprotect(guest_addr, host_pc)) {
case 0:
/*
* Fault not caused by a page marked unwritable to protect
* cached translations, must be the guest binary's problem.
*/
return false;
case 1:
/*
* Fault caused by protection of cached translation; TBs
* invalidated, so resume execution.
*/
return true;
case 2:
/*
* Fault caused by protection of cached translation, and the
* currently executing TB was modified and must be exited immediately.
*/
sigprocmask(SIG_SETMASK, old_set, NULL);
cpu_loop_exit_noexc(cpu);
/* NORETURN */
default:
g_assert_not_reached();
}
}
static int probe_access_internal(CPUArchState *env, target_ulong addr,
int fault_size, MMUAccessType access_type,
bool nonfault, uintptr_t ra)
{
int acc_flag;
bool maperr;
switch (access_type) {
case MMU_DATA_STORE:
acc_flag = PAGE_WRITE_ORG;
break;
case MMU_DATA_LOAD:
acc_flag = PAGE_READ;
break;
case MMU_INST_FETCH:
acc_flag = PAGE_EXEC;
break;
default:
g_assert_not_reached();
}
if (guest_addr_valid_untagged(addr)) {
int page_flags = page_get_flags(addr);
if (page_flags & acc_flag) {
return 0; /* success */
}
maperr = !(page_flags & PAGE_VALID);
} else {
maperr = true;
}
if (nonfault) {
return TLB_INVALID_MASK;
}
cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
}
int probe_access_flags(CPUArchState *env, target_ulong addr,
MMUAccessType access_type, int mmu_idx,
bool nonfault, void **phost, uintptr_t ra)
{
int flags;
flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
*phost = flags ? NULL : g2h(env_cpu(env), addr);
return flags;
}
void *probe_access(CPUArchState *env, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t ra)
{
int flags;
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
flags = probe_access_internal(env, addr, size, access_type, false, ra);
g_assert(flags == 0);
return size ? g2h(env_cpu(env), addr) : NULL;
}
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
void **hostp)
{
int flags;
flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
g_assert(flags == 0);
if (hostp) {
*hostp = g2h_untagged(addr);
}
return addr;
}
/* The softmmu versions of these helpers are in cputlb.c. */
/*
* Verify that we have passed the correct MemOp to the correct function.
*
* We could present one function to target code, and dispatch based on
* the MemOp, but so far we have worked hard to avoid an indirect function
* call along the memory path.
*/
static void validate_memop(MemOpIdx oi, MemOp expected)
{
#ifdef CONFIG_DEBUG_TCG
MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
assert(have == expected);
#endif
}
void helper_unaligned_ld(CPUArchState *env, target_ulong addr)
{
cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC());
}
void helper_unaligned_st(CPUArchState *env, target_ulong addr)
{
cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC());
}
static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
MemOpIdx oi, uintptr_t ra, MMUAccessType type)
{
MemOp mop = get_memop(oi);
int a_bits = get_alignment_bits(mop);
void *ret;
/* Enforce guest required alignment. */
if (unlikely(addr & ((1 << a_bits) - 1))) {
cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
}
ret = g2h(env_cpu(env), addr);
set_helper_retaddr(ra);
return ret;
}
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint8_t ret;
validate_memop(oi, MO_UB);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldub_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint16_t ret;
validate_memop(oi, MO_BEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = lduw_be_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint32_t ret;
validate_memop(oi, MO_BEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldl_be_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint64_t ret;
validate_memop(oi, MO_BEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldq_be_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint16_t ret;
validate_memop(oi, MO_LEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = lduw_le_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint32_t ret;
validate_memop(oi, MO_LEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldl_le_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint64_t ret;
validate_memop(oi, MO_LEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldq_le_p(haddr);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_UB);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stb_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_BEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stw_be_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_BEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stl_be_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_BEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stq_be_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_LEUW);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stw_le_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_LEUL);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stl_le_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
validate_memop(oi, MO_LEUQ);
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
stq_le_p(haddr, val);
clear_helper_retaddr();
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
{
uint32_t ret;
set_helper_retaddr(1);
ret = ldub_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
{
uint32_t ret;
set_helper_retaddr(1);
ret = lduw_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
{
uint32_t ret;
set_helper_retaddr(1);
ret = ldl_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
{
uint64_t ret;
set_helper_retaddr(1);
ret = ldq_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
#include "ldst_common.c.inc"
/*
* Do not allow unaligned operations to proceed. Return the host address.
*
* @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
*/
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
MemOpIdx oi, int size, int prot,
uintptr_t retaddr)
{
MemOp mop = get_memop(oi);
int a_bits = get_alignment_bits(mop);
void *ret;
/* Enforce guest required alignment. */
if (unlikely(addr & ((1 << a_bits) - 1))) {
MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
}
/* Enforce qemu required alignment. */
if (unlikely(addr & (size - 1))) {
cpu_loop_exit_atomic(env_cpu(env), retaddr);
}
ret = g2h(env_cpu(env), addr);
set_helper_retaddr(retaddr);
return ret;
}
#include "atomic_common.c.inc"
/*
* First set of functions passes in OI and RETADDR.
* This makes them callable from other helpers.
*/
#define ATOMIC_NAME(X) \
glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
#define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
#define DATA_SIZE 1
#include "atomic_template.h"
#define DATA_SIZE 2
#include "atomic_template.h"
#define DATA_SIZE 4
#include "atomic_template.h"
#ifdef CONFIG_ATOMIC64
#define DATA_SIZE 8
#include "atomic_template.h"
#endif
#if HAVE_ATOMIC128 || HAVE_CMPXCHG128
#define DATA_SIZE 16
#include "atomic_template.h"
#endif