3bbf572345
__atomic_thread_fence does not include a compiler barrier; in the C++11 memory model, fences take effect in combination with other atomic operations. GCC implements this by making __atomic_load and __atomic_store access memory as if the pointer was volatile, and leaves no trace whatsoever of acquire and release fences in the compiler's intermediate representation. In QEMU, we want memory barriers to act on all memory, but at the same time we would like to use __atomic_thread_fence for portability reasons. Add compiler barriers manually around the __atomic_thread_fence. Message-Id: <1433334080-14912-1-git-send-email-pbonzini@redhat.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
270 lines
9.3 KiB
C
270 lines
9.3 KiB
C
/*
|
|
* Simple interface for atomic operations.
|
|
*
|
|
* Copyright (C) 2013 Red Hat, Inc.
|
|
*
|
|
* Author: Paolo Bonzini <pbonzini@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#ifndef __QEMU_ATOMIC_H
|
|
#define __QEMU_ATOMIC_H 1
|
|
|
|
#include "qemu/compiler.h"
|
|
|
|
/* For C11 atomic ops */
|
|
|
|
/* Compiler barrier */
|
|
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
|
|
|
|
#ifndef __ATOMIC_RELAXED
|
|
|
|
/*
|
|
* We use GCC builtin if it's available, as that can use mfence on
|
|
* 32-bit as well, e.g. if built with -march=pentium-m. However, on
|
|
* i386 the spec is buggy, and the implementation followed it until
|
|
* 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
|
|
*/
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
#if !QEMU_GNUC_PREREQ(4, 4)
|
|
#if defined __x86_64__
|
|
#define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
|
|
#else
|
|
#define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifdef __alpha__
|
|
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
|
|
#endif
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
|
|
|
|
/*
|
|
* Because of the strongly ordered storage model, wmb() and rmb() are nops
|
|
* here (a compiler barrier only). QEMU doesn't do accesses to write-combining
|
|
* qemu memory or non-temporal load/stores from C code.
|
|
*/
|
|
#define smp_wmb() barrier()
|
|
#define smp_rmb() barrier()
|
|
|
|
/*
|
|
* __sync_lock_test_and_set() is documented to be an acquire barrier only,
|
|
* but it is a full barrier at the hardware level. Add a compiler barrier
|
|
* to make it a full barrier also at the compiler level.
|
|
*/
|
|
#define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
|
|
|
|
/*
|
|
* Load/store with Java volatile semantics.
|
|
*/
|
|
#define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
|
|
|
|
#elif defined(_ARCH_PPC)
|
|
|
|
/*
|
|
* We use an eieio() for wmb() on powerpc. This assumes we don't
|
|
* need to order cacheable and non-cacheable stores with respect to
|
|
* each other.
|
|
*
|
|
* smp_mb has the same problem as on x86 for not-very-new GCC
|
|
* (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
|
|
*/
|
|
#define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
|
|
#if defined(__powerpc64__)
|
|
#define smp_rmb() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
|
|
#else
|
|
#define smp_rmb() ({ asm volatile("sync" ::: "memory"); (void)0; })
|
|
#endif
|
|
#define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
|
|
|
|
#endif /* _ARCH_PPC */
|
|
|
|
#endif /* C11 atomics */
|
|
|
|
/*
|
|
* For (host) platforms we don't have explicit barrier definitions
|
|
* for, we use the gcc __sync_synchronize() primitive to generate a
|
|
* full barrier. This should be safe on all platforms, though it may
|
|
* be overkill for smp_wmb() and smp_rmb().
|
|
*/
|
|
#ifndef smp_mb
|
|
#define smp_mb() __sync_synchronize()
|
|
#endif
|
|
|
|
#ifndef smp_wmb
|
|
#ifdef __ATOMIC_RELEASE
|
|
/* __atomic_thread_fence does not include a compiler barrier; instead,
|
|
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
|
|
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
|
|
* the compiler is free to reorder stores on each side of the barrier.
|
|
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
|
|
*/
|
|
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
|
|
#else
|
|
#define smp_wmb() __sync_synchronize()
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef smp_rmb
|
|
#ifdef __ATOMIC_ACQUIRE
|
|
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
|
|
#else
|
|
#define smp_rmb() __sync_synchronize()
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef smp_read_barrier_depends
|
|
#ifdef __ATOMIC_CONSUME
|
|
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
|
|
#else
|
|
#define smp_read_barrier_depends() barrier()
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef atomic_read
|
|
#define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr))
|
|
#endif
|
|
|
|
#ifndef atomic_set
|
|
#define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
|
|
#endif
|
|
|
|
/**
|
|
* atomic_rcu_read - reads a RCU-protected pointer to a local variable
|
|
* into a RCU read-side critical section. The pointer can later be safely
|
|
* dereferenced within the critical section.
|
|
*
|
|
* This ensures that the pointer copy is invariant thorough the whole critical
|
|
* section.
|
|
*
|
|
* Inserts memory barriers on architectures that require them (currently only
|
|
* Alpha) and documents which pointers are protected by RCU.
|
|
*
|
|
* Unless the __ATOMIC_CONSUME memory order is available, atomic_rcu_read also
|
|
* includes a compiler barrier to ensure that value-speculative optimizations
|
|
* (e.g. VSS: Value Speculation Scheduling) does not perform the data read
|
|
* before the pointer read by speculating the value of the pointer. On new
|
|
* enough compilers, atomic_load takes care of such concern about
|
|
* dependency-breaking optimizations.
|
|
*
|
|
* Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
|
|
*/
|
|
#ifndef atomic_rcu_read
|
|
#ifdef __ATOMIC_CONSUME
|
|
#define atomic_rcu_read(ptr) ({ \
|
|
typeof(*ptr) _val; \
|
|
__atomic_load(ptr, &_val, __ATOMIC_CONSUME); \
|
|
_val; \
|
|
})
|
|
#else
|
|
#define atomic_rcu_read(ptr) ({ \
|
|
typeof(*ptr) _val = atomic_read(ptr); \
|
|
smp_read_barrier_depends(); \
|
|
_val; \
|
|
})
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
|
|
* meant to be read by RCU read-side critical sections.
|
|
*
|
|
* Documents which pointers will be dereferenced by RCU read-side critical
|
|
* sections and adds the required memory barriers on architectures requiring
|
|
* them. It also makes sure the compiler does not reorder code initializing the
|
|
* data structure before its publication.
|
|
*
|
|
* Should match atomic_rcu_read().
|
|
*/
|
|
#ifndef atomic_rcu_set
|
|
#ifdef __ATOMIC_RELEASE
|
|
#define atomic_rcu_set(ptr, i) do { \
|
|
typeof(*ptr) _val = (i); \
|
|
__atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
|
|
} while(0)
|
|
#else
|
|
#define atomic_rcu_set(ptr, i) do { \
|
|
smp_wmb(); \
|
|
atomic_set(ptr, i); \
|
|
} while (0)
|
|
#endif
|
|
#endif
|
|
|
|
/* These have the same semantics as Java volatile variables.
|
|
* See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
|
|
* "1. Issue a StoreStore barrier (wmb) before each volatile store."
|
|
* 2. Issue a StoreLoad barrier after each volatile store.
|
|
* Note that you could instead issue one before each volatile load, but
|
|
* this would be slower for typical programs using volatiles in which
|
|
* reads greatly outnumber writes. Alternatively, if available, you
|
|
* can implement volatile store as an atomic instruction (for example
|
|
* XCHG on x86) and omit the barrier. This may be more efficient if
|
|
* atomic instructions are cheaper than StoreLoad barriers.
|
|
* 3. Issue LoadLoad and LoadStore barriers after each volatile load."
|
|
*
|
|
* If you prefer to think in terms of "pairing" of memory barriers,
|
|
* an atomic_mb_read pairs with an atomic_mb_set.
|
|
*
|
|
* And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq,
|
|
* while an atomic_mb_set is a st.rel followed by a memory barrier.
|
|
*
|
|
* These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST
|
|
* (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
|
|
* Just always use the barriers manually by the rules above.
|
|
*/
|
|
#ifndef atomic_mb_read
|
|
#define atomic_mb_read(ptr) ({ \
|
|
typeof(*ptr) _val = atomic_read(ptr); \
|
|
smp_rmb(); \
|
|
_val; \
|
|
})
|
|
#endif
|
|
|
|
#ifndef atomic_mb_set
|
|
#define atomic_mb_set(ptr, i) do { \
|
|
smp_wmb(); \
|
|
atomic_set(ptr, i); \
|
|
smp_mb(); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#ifndef atomic_xchg
|
|
#if defined(__clang__)
|
|
#define atomic_xchg(ptr, i) __sync_swap(ptr, i)
|
|
#elif defined(__ATOMIC_SEQ_CST)
|
|
#define atomic_xchg(ptr, i) ({ \
|
|
typeof(*ptr) _new = (i), _old; \
|
|
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
|
|
_old; \
|
|
})
|
|
#else
|
|
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
|
|
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
|
|
#endif
|
|
#endif
|
|
|
|
/* Provide shorter names for GCC atomic builtins. */
|
|
#define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
|
|
#define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
|
|
#define atomic_fetch_add __sync_fetch_and_add
|
|
#define atomic_fetch_sub __sync_fetch_and_sub
|
|
#define atomic_fetch_and __sync_fetch_and_and
|
|
#define atomic_fetch_or __sync_fetch_and_or
|
|
#define atomic_cmpxchg __sync_val_compare_and_swap
|
|
|
|
/* And even shorter names that return void. */
|
|
#define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
|
|
#define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
|
|
#define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
|
|
#define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
|
|
#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
|
|
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
|
|
|
|
#endif
|