qemu-e2k/hw/intc/arm_gicv3_common.c
Peter Maydell ce187c3c15 hw/intc/arm_gicv3: Implement functions to identify next pending irq
Implement the GICv3 logic to recalculate the highest priority pending
interrupt for each CPU after some part of the GIC state has changed.
We avoid unnecessary full recalculation where possible.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Message-id: 1465915112-29272-11-git-send-email-peter.maydell@linaro.org
2016-06-17 15:23:51 +01:00

352 lines
12 KiB
C

/*
* ARM GICv3 support - common bits of emulated and KVM kernel model
*
* Copyright (c) 2012 Linaro Limited
* Copyright (c) 2015 Huawei.
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* Written by Peter Maydell
* Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qom/cpu.h"
#include "hw/intc/arm_gicv3_common.h"
#include "gicv3_internal.h"
#include "hw/arm/linux-boot-if.h"
static void gicv3_pre_save(void *opaque)
{
GICv3State *s = (GICv3State *)opaque;
ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
if (c->pre_save) {
c->pre_save(s);
}
}
static int gicv3_post_load(void *opaque, int version_id)
{
GICv3State *s = (GICv3State *)opaque;
ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
if (c->post_load) {
c->post_load(s);
}
return 0;
}
static const VMStateDescription vmstate_gicv3_cpu = {
.name = "arm_gicv3_cpu",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(level, GICv3CPUState),
VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
VMSTATE_UINT32(gicr_waker, GICv3CPUState),
VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
VMSTATE_UINT32(edge_trigger, GICv3CPUState),
VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_gicv3 = {
.name = "arm_gicv3",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = gicv3_pre_save,
.post_load = gicv3_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(gicd_ctlr, GICv3State),
VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
vmstate_gicv3_cpu, GICv3CPUState),
VMSTATE_END_OF_LIST()
}
};
void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
const MemoryRegionOps *ops)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(s);
int i;
/* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
* GPIO array layout is thus:
* [0..N-1] spi
* [N..N+31] PPIs for CPU 0
* [N+32..N+63] PPIs for CPU 1
* ...
*/
i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
qdev_init_gpio_in(DEVICE(s), handler, i);
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
}
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
}
memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
"gicv3_dist", 0x10000);
memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
"gicv3_redist", 0x20000 * s->num_cpu);
sysbus_init_mmio(sbd, &s->iomem_dist);
sysbus_init_mmio(sbd, &s->iomem_redist);
}
static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
{
GICv3State *s = ARM_GICV3_COMMON(dev);
int i;
/* revision property is actually reserved and currently used only in order
* to keep the interface compatible with GICv2 code, avoiding extra
* conditions. However, in future it could be used, for example, if we
* implement GICv4.
*/
if (s->revision != 3) {
error_setg(errp, "unsupported GIC revision %d", s->revision);
return;
}
if (s->num_irq > GICV3_MAXIRQ) {
error_setg(errp,
"requested %u interrupt lines exceeds GIC maximum %d",
s->num_irq, GICV3_MAXIRQ);
return;
}
if (s->num_irq < GIC_INTERNAL) {
error_setg(errp,
"requested %u interrupt lines is below GIC minimum %d",
s->num_irq, GIC_INTERNAL);
return;
}
/* ITLinesNumber is represented as (N / 32) - 1, so this is an
* implementation imposed restriction, not an architectural one,
* so we don't have to deal with bitfields where only some of the
* bits in a 32-bit word should be valid.
*/
if (s->num_irq % 32) {
error_setg(errp,
"%d interrupt lines unsupported: not divisible by 32",
s->num_irq);
return;
}
s->cpu = g_new0(GICv3CPUState, s->num_cpu);
for (i = 0; i < s->num_cpu; i++) {
CPUState *cpu = qemu_get_cpu(i);
uint64_t cpu_affid;
int last;
s->cpu[i].cpu = cpu;
s->cpu[i].gic = s;
/* Pre-construct the GICR_TYPER:
* For our implementation:
* Top 32 bits are the affinity value of the associated CPU
* CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
* Processor_Number == CPU index starting from 0
* DPGS == 0 (GICR_CTLR.DPG* not supported)
* Last == 1 if this is the last redistributor in a series of
* contiguous redistributor pages
* DirectLPI == 0 (direct injection of LPIs not supported)
* VLPIS == 0 (virtual LPIs not supported)
* PLPIS == 0 (physical LPIs not supported)
*/
cpu_affid = object_property_get_int(OBJECT(cpu), "mp-affinity", NULL);
last = (i == s->num_cpu - 1);
/* The CPU mp-affinity property is in MPIDR register format; squash
* the affinity bytes into 32 bits as the GICR_TYPER has them.
*/
cpu_affid = (cpu_affid & 0xFF00000000ULL >> 8) | (cpu_affid & 0xFFFFFF);
s->cpu[i].gicr_typer = (cpu_affid << 32) |
(1 << 24) |
(i << 8) |
(last << 4);
}
}
static void arm_gicv3_common_reset(DeviceState *dev)
{
GICv3State *s = ARM_GICV3_COMMON(dev);
int i;
for (i = 0; i < s->num_cpu; i++) {
GICv3CPUState *cs = &s->cpu[i];
cs->level = 0;
cs->gicr_ctlr = 0;
cs->gicr_statusr[GICV3_S] = 0;
cs->gicr_statusr[GICV3_NS] = 0;
cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
cs->gicr_propbaser = 0;
cs->gicr_pendbaser = 0;
/* If we're resetting a TZ-aware GIC as if secure firmware
* had set it up ready to start a kernel in non-secure, we
* need to set interrupts to group 1 so the kernel can use them.
* Otherwise they reset to group 0 like the hardware.
*/
if (s->irq_reset_nonsecure) {
cs->gicr_igroupr0 = 0xffffffff;
} else {
cs->gicr_igroupr0 = 0;
}
cs->gicr_ienabler0 = 0;
cs->gicr_ipendr0 = 0;
cs->gicr_iactiver0 = 0;
cs->edge_trigger = 0xffff;
cs->gicr_igrpmodr0 = 0;
cs->gicr_nsacr = 0;
memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
cs->hppi.prio = 0xff;
/* State in the CPU interface must *not* be reset here, because it
* is part of the CPU's reset domain, not the GIC device's.
*/
}
/* For our implementation affinity routing is always enabled */
if (s->security_extn) {
s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
} else {
s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
}
s->gicd_statusr[GICV3_S] = 0;
s->gicd_statusr[GICV3_NS] = 0;
memset(s->group, 0, sizeof(s->group));
memset(s->grpmod, 0, sizeof(s->grpmod));
memset(s->enabled, 0, sizeof(s->enabled));
memset(s->pending, 0, sizeof(s->pending));
memset(s->active, 0, sizeof(s->active));
memset(s->level, 0, sizeof(s->level));
memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
/* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
* write these to get sane behaviour and we need not populate the
* pointer cache here; however having the cache be different for
* "happened to be 0 from reset" and "guest wrote 0" would be
* too confusing.
*/
gicv3_cache_all_target_cpustates(s);
if (s->irq_reset_nonsecure) {
/* If we're resetting a TZ-aware GIC as if secure firmware
* had set it up ready to start a kernel in non-secure, we
* need to set interrupts to group 1 so the kernel can use them.
* Otherwise they reset to group 0 like the hardware.
*/
for (i = GIC_INTERNAL; i < s->num_irq; i++) {
gicv3_gicd_group_set(s, i);
}
}
}
static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
bool secure_boot)
{
GICv3State *s = ARM_GICV3_COMMON(obj);
if (s->security_extn && !secure_boot) {
/* We're directly booting a kernel into NonSecure. If this GIC
* implements the security extensions then we must configure it
* to have all the interrupts be NonSecure (this is a job that
* is done by the Secure boot firmware in real hardware, and in
* this mode QEMU is acting as a minimalist firmware-and-bootloader
* equivalent).
*/
s->irq_reset_nonsecure = true;
}
}
static Property arm_gicv3_common_properties[] = {
DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
dc->reset = arm_gicv3_common_reset;
dc->realize = arm_gicv3_common_realize;
dc->props = arm_gicv3_common_properties;
dc->vmsd = &vmstate_gicv3;
albifc->arm_linux_init = arm_gic_common_linux_init;
}
static const TypeInfo arm_gicv3_common_type = {
.name = TYPE_ARM_GICV3_COMMON,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(GICv3State),
.class_size = sizeof(ARMGICv3CommonClass),
.class_init = arm_gicv3_common_class_init,
.abstract = true,
.interfaces = (InterfaceInfo []) {
{ TYPE_ARM_LINUX_BOOT_IF },
{ },
},
};
static void register_types(void)
{
type_register_static(&arm_gicv3_common_type);
}
type_init(register_types)