1485ef1c45
The firmware of the pseries machine, SLOF, is able to load files via IPv6 networking, too. So to test both, network bootloading on ppc64 and IPv6 (via Slirp) , let's add some PXE tests for this environment, too. Since we can not use the normal x86 boot sector for network boot loading, we use a simple Forth script on ppc64 instead. Signed-off-by: Thomas Huth <thuth@redhat.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
128 lines
3.4 KiB
C
128 lines
3.4 KiB
C
/*
|
|
* QEMU boot sector testing helpers.
|
|
*
|
|
* Copyright (c) 2016 Red Hat Inc.
|
|
*
|
|
* Authors:
|
|
* Michael S. Tsirkin <mst@redhat.com>
|
|
* Victor Kaplansky <victork@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "boot-sector.h"
|
|
#include "qemu-common.h"
|
|
#include "libqtest.h"
|
|
|
|
#define LOW(x) ((x) & 0xff)
|
|
#define HIGH(x) ((x) >> 8)
|
|
|
|
#define SIGNATURE 0xdead
|
|
#define SIGNATURE_OFFSET 0x10
|
|
#define BOOT_SECTOR_ADDRESS 0x7c00
|
|
|
|
/* Boot sector code: write SIGNATURE into memory,
|
|
* then halt.
|
|
* Q35 machine requires a minimum 0x7e000 bytes disk.
|
|
* (bug or feature?)
|
|
*/
|
|
static uint8_t boot_sector[0x7e000] = {
|
|
/* The first sector will be placed at RAM address 00007C00, and
|
|
* the BIOS transfers control to 00007C00
|
|
*/
|
|
|
|
/* Data Segment register should be initialized, since pxe
|
|
* boot loader can leave it dirty.
|
|
*/
|
|
|
|
/* 7c00: move $0000,%ax */
|
|
[0x00] = 0xb8,
|
|
[0x01] = 0x00,
|
|
[0x02] = 0x00,
|
|
/* 7c03: move %ax,%ds */
|
|
[0x03] = 0x8e,
|
|
[0x04] = 0xd8,
|
|
|
|
/* 7c05: mov $0xdead,%ax */
|
|
[0x05] = 0xb8,
|
|
[0x06] = LOW(SIGNATURE),
|
|
[0x07] = HIGH(SIGNATURE),
|
|
/* 7c08: mov %ax,0x7c10 */
|
|
[0x08] = 0xa3,
|
|
[0x09] = LOW(BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET),
|
|
[0x0a] = HIGH(BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET),
|
|
|
|
/* 7c0b cli */
|
|
[0x0b] = 0xfa,
|
|
/* 7c0c: hlt */
|
|
[0x0c] = 0xf4,
|
|
/* 7c0e: jmp 0x7c07=0x7c0f-3 */
|
|
[0x0d] = 0xeb,
|
|
[0x0e] = LOW(-3),
|
|
/* We mov 0xdead here: set value to make debugging easier */
|
|
[SIGNATURE_OFFSET] = LOW(0xface),
|
|
[SIGNATURE_OFFSET + 1] = HIGH(0xface),
|
|
/* End of boot sector marker */
|
|
[0x1FE] = 0x55,
|
|
[0x1FF] = 0xAA,
|
|
};
|
|
|
|
/* Create boot disk file. */
|
|
int boot_sector_init(const char *fname)
|
|
{
|
|
FILE *f = fopen(fname, "w");
|
|
|
|
if (!f) {
|
|
fprintf(stderr, "Couldn't open \"%s\": %s", fname, strerror(errno));
|
|
return 1;
|
|
}
|
|
|
|
/* For Open Firmware based system, we can use a Forth script instead */
|
|
if (strcmp(qtest_get_arch(), "ppc64") == 0) {
|
|
memset(boot_sector, ' ', sizeof boot_sector);
|
|
sprintf((char *)boot_sector, "\\ Bootscript\n%x %x c! %x %x c!\n",
|
|
LOW(SIGNATURE), BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET,
|
|
HIGH(SIGNATURE), BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET + 1);
|
|
}
|
|
|
|
fwrite(boot_sector, 1, sizeof boot_sector, f);
|
|
fclose(f);
|
|
return 0;
|
|
}
|
|
|
|
/* Loop until signature in memory is OK. */
|
|
void boot_sector_test(void)
|
|
{
|
|
uint8_t signature_low;
|
|
uint8_t signature_high;
|
|
uint16_t signature;
|
|
int i;
|
|
|
|
/* Wait at most 1 minute */
|
|
#define TEST_DELAY (1 * G_USEC_PER_SEC / 10)
|
|
#define TEST_CYCLES MAX((60 * G_USEC_PER_SEC / TEST_DELAY), 1)
|
|
|
|
/* Poll until code has run and modified memory. Once it has we know BIOS
|
|
* initialization is done. TODO: check that IP reached the halt
|
|
* instruction.
|
|
*/
|
|
for (i = 0; i < TEST_CYCLES; ++i) {
|
|
signature_low = readb(BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET);
|
|
signature_high = readb(BOOT_SECTOR_ADDRESS + SIGNATURE_OFFSET + 1);
|
|
signature = (signature_high << 8) | signature_low;
|
|
if (signature == SIGNATURE) {
|
|
break;
|
|
}
|
|
g_usleep(TEST_DELAY);
|
|
}
|
|
|
|
g_assert_cmphex(signature, ==, SIGNATURE);
|
|
}
|
|
|
|
/* unlink boot disk file. */
|
|
void boot_sector_cleanup(const char *fname)
|
|
{
|
|
unlink(fname);
|
|
}
|