qemu-e2k/hw/bt-hci-csr.c
Paolo Bonzini 927d4878b0 softmmu: move remaining include files to include/ subdirectories
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2012-12-19 08:32:46 +01:00

454 lines
12 KiB
C

/*
* Bluetooth serial HCI transport.
* CSR41814 HCI with H4p vendor extensions.
*
* Copyright (C) 2008 Andrzej Zaborowski <balrog@zabor.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-common.h"
#include "char/char.h"
#include "qemu/timer.h"
#include "irq.h"
#include "bt/bt.h"
#include "bt.h"
struct csrhci_s {
int enable;
qemu_irq *pins;
int pin_state;
int modem_state;
CharDriverState chr;
#define FIFO_LEN 4096
int out_start;
int out_len;
int out_size;
uint8_t outfifo[FIFO_LEN * 2];
uint8_t inpkt[FIFO_LEN];
int in_len;
int in_hdr;
int in_data;
QEMUTimer *out_tm;
int64_t baud_delay;
bdaddr_t bd_addr;
struct HCIInfo *hci;
};
/* H4+ packet types */
enum {
H4_CMD_PKT = 1,
H4_ACL_PKT = 2,
H4_SCO_PKT = 3,
H4_EVT_PKT = 4,
H4_NEG_PKT = 6,
H4_ALIVE_PKT = 7,
};
/* CSR41814 negotiation start magic packet */
static const uint8_t csrhci_neg_packet[] = {
H4_NEG_PKT, 10,
0x00, 0xa0, 0x01, 0x00, 0x00,
0x4c, 0x00, 0x96, 0x00, 0x00,
};
/* CSR41814 vendor-specific command OCFs */
enum {
OCF_CSR_SEND_FIRMWARE = 0x000,
};
static inline void csrhci_fifo_wake(struct csrhci_s *s)
{
if (!s->enable || !s->out_len)
return;
/* XXX: Should wait for s->modem_state & CHR_TIOCM_RTS? */
if (s->chr.chr_can_read && s->chr.chr_can_read(s->chr.handler_opaque) &&
s->chr.chr_read) {
s->chr.chr_read(s->chr.handler_opaque,
s->outfifo + s->out_start ++, 1);
s->out_len --;
if (s->out_start >= s->out_size) {
s->out_start = 0;
s->out_size = FIFO_LEN;
}
}
if (s->out_len)
qemu_mod_timer(s->out_tm, qemu_get_clock_ns(vm_clock) + s->baud_delay);
}
#define csrhci_out_packetz(s, len) memset(csrhci_out_packet(s, len), 0, len)
static uint8_t *csrhci_out_packet(struct csrhci_s *s, int len)
{
int off = s->out_start + s->out_len;
/* TODO: do the padding here, i.e. align len */
s->out_len += len;
if (off < FIFO_LEN) {
if (off + len > FIFO_LEN && (s->out_size = off + len) > FIFO_LEN * 2) {
fprintf(stderr, "%s: can't alloc %i bytes\n", __FUNCTION__, len);
exit(-1);
}
return s->outfifo + off;
}
if (s->out_len > s->out_size) {
fprintf(stderr, "%s: can't alloc %i bytes\n", __FUNCTION__, len);
exit(-1);
}
return s->outfifo + off - s->out_size;
}
static inline uint8_t *csrhci_out_packet_csr(struct csrhci_s *s,
int type, int len)
{
uint8_t *ret = csrhci_out_packetz(s, len + 2);
*ret ++ = type;
*ret ++ = len;
return ret;
}
static inline uint8_t *csrhci_out_packet_event(struct csrhci_s *s,
int evt, int len)
{
uint8_t *ret = csrhci_out_packetz(s,
len + 1 + sizeof(struct hci_event_hdr));
*ret ++ = H4_EVT_PKT;
((struct hci_event_hdr *) ret)->evt = evt;
((struct hci_event_hdr *) ret)->plen = len;
return ret + sizeof(struct hci_event_hdr);
}
static void csrhci_in_packet_vendor(struct csrhci_s *s, int ocf,
uint8_t *data, int len)
{
int offset;
uint8_t *rpkt;
switch (ocf) {
case OCF_CSR_SEND_FIRMWARE:
/* Check if this is the bd_address packet */
if (len >= 18 + 8 && data[12] == 0x01 && data[13] == 0x00) {
offset = 18;
s->bd_addr.b[0] = data[offset + 7]; /* Beyond cmd packet end(!?) */
s->bd_addr.b[1] = data[offset + 6];
s->bd_addr.b[2] = data[offset + 4];
s->bd_addr.b[3] = data[offset + 0];
s->bd_addr.b[4] = data[offset + 3];
s->bd_addr.b[5] = data[offset + 2];
s->hci->bdaddr_set(s->hci, s->bd_addr.b);
fprintf(stderr, "%s: bd_address loaded from firmware: "
"%02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
s->bd_addr.b[0], s->bd_addr.b[1], s->bd_addr.b[2],
s->bd_addr.b[3], s->bd_addr.b[4], s->bd_addr.b[5]);
}
rpkt = csrhci_out_packet_event(s, EVT_VENDOR, 11);
/* Status bytes: no error */
rpkt[9] = 0x00;
rpkt[10] = 0x00;
break;
default:
fprintf(stderr, "%s: got a bad CMD packet\n", __FUNCTION__);
return;
}
csrhci_fifo_wake(s);
}
static void csrhci_in_packet(struct csrhci_s *s, uint8_t *pkt)
{
uint8_t *rpkt;
int opc;
switch (*pkt ++) {
case H4_CMD_PKT:
opc = le16_to_cpu(((struct hci_command_hdr *) pkt)->opcode);
if (cmd_opcode_ogf(opc) == OGF_VENDOR_CMD) {
csrhci_in_packet_vendor(s, cmd_opcode_ocf(opc),
pkt + sizeof(struct hci_command_hdr),
s->in_len - sizeof(struct hci_command_hdr) - 1);
return;
}
/* TODO: if the command is OCF_READ_LOCAL_COMMANDS or the likes,
* we need to send it to the HCI layer and then add our supported
* commands to the returned mask (such as OGF_VENDOR_CMD). With
* bt-hci.c we could just have hooks for this kind of commands but
* we can't with bt-host.c. */
s->hci->cmd_send(s->hci, pkt, s->in_len - 1);
break;
case H4_EVT_PKT:
goto bad_pkt;
case H4_ACL_PKT:
s->hci->acl_send(s->hci, pkt, s->in_len - 1);
break;
case H4_SCO_PKT:
s->hci->sco_send(s->hci, pkt, s->in_len - 1);
break;
case H4_NEG_PKT:
if (s->in_hdr != sizeof(csrhci_neg_packet) ||
memcmp(pkt - 1, csrhci_neg_packet, s->in_hdr)) {
fprintf(stderr, "%s: got a bad NEG packet\n", __FUNCTION__);
return;
}
pkt += 2;
rpkt = csrhci_out_packet_csr(s, H4_NEG_PKT, 10);
*rpkt ++ = 0x20; /* Operational settings negotiation Ok */
memcpy(rpkt, pkt, 7); rpkt += 7;
*rpkt ++ = 0xff;
*rpkt = 0xff;
break;
case H4_ALIVE_PKT:
if (s->in_hdr != 4 || pkt[1] != 0x55 || pkt[2] != 0x00) {
fprintf(stderr, "%s: got a bad ALIVE packet\n", __FUNCTION__);
return;
}
rpkt = csrhci_out_packet_csr(s, H4_ALIVE_PKT, 2);
*rpkt ++ = 0xcc;
*rpkt = 0x00;
break;
default:
bad_pkt:
/* TODO: error out */
fprintf(stderr, "%s: got a bad packet\n", __FUNCTION__);
break;
}
csrhci_fifo_wake(s);
}
static int csrhci_header_len(const uint8_t *pkt)
{
switch (pkt[0]) {
case H4_CMD_PKT:
return HCI_COMMAND_HDR_SIZE;
case H4_EVT_PKT:
return HCI_EVENT_HDR_SIZE;
case H4_ACL_PKT:
return HCI_ACL_HDR_SIZE;
case H4_SCO_PKT:
return HCI_SCO_HDR_SIZE;
case H4_NEG_PKT:
return pkt[1] + 1;
case H4_ALIVE_PKT:
return 3;
}
exit(-1);
}
static int csrhci_data_len(const uint8_t *pkt)
{
switch (*pkt ++) {
case H4_CMD_PKT:
/* It seems that vendor-specific command packets for H4+ are all
* one byte longer than indicated in the standard header. */
if (le16_to_cpu(((struct hci_command_hdr *) pkt)->opcode) == 0xfc00)
return (((struct hci_command_hdr *) pkt)->plen + 1) & ~1;
return ((struct hci_command_hdr *) pkt)->plen;
case H4_EVT_PKT:
return ((struct hci_event_hdr *) pkt)->plen;
case H4_ACL_PKT:
return le16_to_cpu(((struct hci_acl_hdr *) pkt)->dlen);
case H4_SCO_PKT:
return ((struct hci_sco_hdr *) pkt)->dlen;
case H4_NEG_PKT:
case H4_ALIVE_PKT:
return 0;
}
exit(-1);
}
static int csrhci_write(struct CharDriverState *chr,
const uint8_t *buf, int len)
{
struct csrhci_s *s = (struct csrhci_s *) chr->opaque;
int plen = s->in_len;
if (!s->enable)
return 0;
s->in_len += len;
memcpy(s->inpkt + plen, buf, len);
while (1) {
if (s->in_len >= 2 && plen < 2)
s->in_hdr = csrhci_header_len(s->inpkt) + 1;
if (s->in_len >= s->in_hdr && plen < s->in_hdr)
s->in_data = csrhci_data_len(s->inpkt) + s->in_hdr;
if (s->in_len >= s->in_data) {
csrhci_in_packet(s, s->inpkt);
memmove(s->inpkt, s->inpkt + s->in_len, s->in_len - s->in_data);
s->in_len -= s->in_data;
s->in_hdr = INT_MAX;
s->in_data = INT_MAX;
plen = 0;
} else
break;
}
return len;
}
static void csrhci_out_hci_packet_event(void *opaque,
const uint8_t *data, int len)
{
struct csrhci_s *s = (struct csrhci_s *) opaque;
uint8_t *pkt = csrhci_out_packet(s, (len + 2) & ~1); /* Align */
*pkt ++ = H4_EVT_PKT;
memcpy(pkt, data, len);
csrhci_fifo_wake(s);
}
static void csrhci_out_hci_packet_acl(void *opaque,
const uint8_t *data, int len)
{
struct csrhci_s *s = (struct csrhci_s *) opaque;
uint8_t *pkt = csrhci_out_packet(s, (len + 2) & ~1); /* Align */
*pkt ++ = H4_ACL_PKT;
pkt[len & ~1] = 0;
memcpy(pkt, data, len);
csrhci_fifo_wake(s);
}
static int csrhci_ioctl(struct CharDriverState *chr, int cmd, void *arg)
{
QEMUSerialSetParams *ssp;
struct csrhci_s *s = (struct csrhci_s *) chr->opaque;
int prev_state = s->modem_state;
switch (cmd) {
case CHR_IOCTL_SERIAL_SET_PARAMS:
ssp = (QEMUSerialSetParams *) arg;
s->baud_delay = get_ticks_per_sec() / ssp->speed;
/* Moments later... (but shorter than 100ms) */
s->modem_state |= CHR_TIOCM_CTS;
break;
case CHR_IOCTL_SERIAL_GET_TIOCM:
*(int *) arg = s->modem_state;
break;
case CHR_IOCTL_SERIAL_SET_TIOCM:
s->modem_state = *(int *) arg;
if (~s->modem_state & prev_state & CHR_TIOCM_RTS)
s->modem_state &= ~CHR_TIOCM_CTS;
break;
default:
return -ENOTSUP;
}
return 0;
}
static void csrhci_reset(struct csrhci_s *s)
{
s->out_len = 0;
s->out_size = FIFO_LEN;
s->in_len = 0;
s->baud_delay = get_ticks_per_sec();
s->enable = 0;
s->in_hdr = INT_MAX;
s->in_data = INT_MAX;
s->modem_state = 0;
/* After a while... (but sooner than 10ms) */
s->modem_state |= CHR_TIOCM_CTS;
memset(&s->bd_addr, 0, sizeof(bdaddr_t));
}
static void csrhci_out_tick(void *opaque)
{
csrhci_fifo_wake((struct csrhci_s *) opaque);
}
static void csrhci_pins(void *opaque, int line, int level)
{
struct csrhci_s *s = (struct csrhci_s *) opaque;
int state = s->pin_state;
s->pin_state &= ~(1 << line);
s->pin_state |= (!!level) << line;
if ((state & ~s->pin_state) & (1 << csrhci_pin_reset)) {
/* TODO: Disappear from lower layers */
csrhci_reset(s);
}
if (s->pin_state == 3 && state != 3) {
s->enable = 1;
/* TODO: Wake lower layers up */
}
}
qemu_irq *csrhci_pins_get(CharDriverState *chr)
{
struct csrhci_s *s = (struct csrhci_s *) chr->opaque;
return s->pins;
}
CharDriverState *uart_hci_init(qemu_irq wakeup)
{
struct csrhci_s *s = (struct csrhci_s *)
g_malloc0(sizeof(struct csrhci_s));
s->chr.opaque = s;
s->chr.chr_write = csrhci_write;
s->chr.chr_ioctl = csrhci_ioctl;
s->hci = qemu_next_hci();
s->hci->opaque = s;
s->hci->evt_recv = csrhci_out_hci_packet_event;
s->hci->acl_recv = csrhci_out_hci_packet_acl;
s->out_tm = qemu_new_timer_ns(vm_clock, csrhci_out_tick, s);
s->pins = qemu_allocate_irqs(csrhci_pins, s, __csrhci_pins);
csrhci_reset(s);
return &s->chr;
}