eb035b48d5
When using an in-kernel GIC with KVM, we need to tell the kernel where the GIC's memory mapped registers live. Do this by registering a MemoryListener which tracks where the board model maps the A15's private peripherals, so we can finish the GIC initialisation when the GIC is actually mapped. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
494 lines
14 KiB
C
494 lines
14 KiB
C
/*
|
|
* ARM implementation of KVM hooks
|
|
*
|
|
* Copyright Christoffer Dall 2009-2010
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_arm.h"
|
|
#include "cpu.h"
|
|
#include "hw/arm-misc.h"
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
int kvm_arch_init(KVMState *s)
|
|
{
|
|
/* For ARM interrupt delivery is always asynchronous,
|
|
* whether we are using an in-kernel VGIC or not.
|
|
*/
|
|
kvm_async_interrupts_allowed = true;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
|
|
{
|
|
return cpu->cpu_index;
|
|
}
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
{
|
|
struct kvm_vcpu_init init;
|
|
int ret;
|
|
uint64_t v;
|
|
struct kvm_one_reg r;
|
|
|
|
init.target = KVM_ARM_TARGET_CORTEX_A15;
|
|
memset(init.features, 0, sizeof(init.features));
|
|
ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
/* Query the kernel to make sure it supports 32 VFP
|
|
* registers: QEMU's "cortex-a15" CPU is always a
|
|
* VFP-D32 core. The simplest way to do this is just
|
|
* to attempt to read register d31.
|
|
*/
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
|
|
r.addr = (uintptr_t)(&v);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret == ENOENT) {
|
|
return EINVAL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* We track all the KVM devices which need their memory addresses
|
|
* passing to the kernel in a list of these structures.
|
|
* When board init is complete we run through the list and
|
|
* tell the kernel the base addresses of the memory regions.
|
|
* We use a MemoryListener to track mapping and unmapping of
|
|
* the regions during board creation, so the board models don't
|
|
* need to do anything special for the KVM case.
|
|
*/
|
|
typedef struct KVMDevice {
|
|
struct kvm_arm_device_addr kda;
|
|
MemoryRegion *mr;
|
|
QSLIST_ENTRY(KVMDevice) entries;
|
|
} KVMDevice;
|
|
|
|
static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
|
|
|
|
static void kvm_arm_devlistener_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMDevice *kd;
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
if (section->mr == kd->mr) {
|
|
kd->kda.addr = section->offset_within_address_space;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_arm_devlistener_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
KVMDevice *kd;
|
|
|
|
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
|
|
if (section->mr == kd->mr) {
|
|
kd->kda.addr = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static MemoryListener devlistener = {
|
|
.region_add = kvm_arm_devlistener_add,
|
|
.region_del = kvm_arm_devlistener_del,
|
|
};
|
|
|
|
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
|
|
{
|
|
KVMDevice *kd, *tkd;
|
|
|
|
memory_listener_unregister(&devlistener);
|
|
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
|
|
if (kd->kda.addr != -1) {
|
|
if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
|
|
&kd->kda) < 0) {
|
|
fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
|
|
strerror(errno));
|
|
abort();
|
|
}
|
|
}
|
|
g_free(kd);
|
|
}
|
|
}
|
|
|
|
static Notifier notify = {
|
|
.notify = kvm_arm_machine_init_done,
|
|
};
|
|
|
|
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
|
|
{
|
|
KVMDevice *kd;
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
return;
|
|
}
|
|
|
|
if (QSLIST_EMPTY(&kvm_devices_head)) {
|
|
memory_listener_register(&devlistener, NULL);
|
|
qemu_add_machine_init_done_notifier(¬ify);
|
|
}
|
|
kd = g_new0(KVMDevice, 1);
|
|
kd->mr = mr;
|
|
kd->kda.id = devid;
|
|
kd->kda.addr = -1;
|
|
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
|
|
}
|
|
|
|
typedef struct Reg {
|
|
uint64_t id;
|
|
int offset;
|
|
} Reg;
|
|
|
|
#define COREREG(KERNELNAME, QEMUFIELD) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
|
|
offsetof(CPUARMState, QEMUFIELD) \
|
|
}
|
|
|
|
#define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
(15 << KVM_REG_ARM_COPROC_SHIFT) | \
|
|
((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
|
|
((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
|
|
((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
|
|
((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
|
|
offsetof(CPUARMState, QEMUFIELD) \
|
|
}
|
|
|
|
#define VFPSYSREG(R) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
|
|
KVM_REG_ARM_VFP_##R, \
|
|
offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
|
|
}
|
|
|
|
static const Reg regs[] = {
|
|
/* R0_usr .. R14_usr */
|
|
COREREG(usr_regs.uregs[0], regs[0]),
|
|
COREREG(usr_regs.uregs[1], regs[1]),
|
|
COREREG(usr_regs.uregs[2], regs[2]),
|
|
COREREG(usr_regs.uregs[3], regs[3]),
|
|
COREREG(usr_regs.uregs[4], regs[4]),
|
|
COREREG(usr_regs.uregs[5], regs[5]),
|
|
COREREG(usr_regs.uregs[6], regs[6]),
|
|
COREREG(usr_regs.uregs[7], regs[7]),
|
|
COREREG(usr_regs.uregs[8], usr_regs[0]),
|
|
COREREG(usr_regs.uregs[9], usr_regs[1]),
|
|
COREREG(usr_regs.uregs[10], usr_regs[2]),
|
|
COREREG(usr_regs.uregs[11], usr_regs[3]),
|
|
COREREG(usr_regs.uregs[12], usr_regs[4]),
|
|
COREREG(usr_regs.uregs[13], banked_r13[0]),
|
|
COREREG(usr_regs.uregs[14], banked_r14[0]),
|
|
/* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
|
|
COREREG(svc_regs[0], banked_r13[1]),
|
|
COREREG(svc_regs[1], banked_r14[1]),
|
|
COREREG(svc_regs[2], banked_spsr[1]),
|
|
COREREG(abt_regs[0], banked_r13[2]),
|
|
COREREG(abt_regs[1], banked_r14[2]),
|
|
COREREG(abt_regs[2], banked_spsr[2]),
|
|
COREREG(und_regs[0], banked_r13[3]),
|
|
COREREG(und_regs[1], banked_r14[3]),
|
|
COREREG(und_regs[2], banked_spsr[3]),
|
|
COREREG(irq_regs[0], banked_r13[4]),
|
|
COREREG(irq_regs[1], banked_r14[4]),
|
|
COREREG(irq_regs[2], banked_spsr[4]),
|
|
/* R8_fiq .. R14_fiq and SPSR_fiq */
|
|
COREREG(fiq_regs[0], fiq_regs[0]),
|
|
COREREG(fiq_regs[1], fiq_regs[1]),
|
|
COREREG(fiq_regs[2], fiq_regs[2]),
|
|
COREREG(fiq_regs[3], fiq_regs[3]),
|
|
COREREG(fiq_regs[4], fiq_regs[4]),
|
|
COREREG(fiq_regs[5], banked_r13[5]),
|
|
COREREG(fiq_regs[6], banked_r14[5]),
|
|
COREREG(fiq_regs[7], banked_spsr[5]),
|
|
/* R15 */
|
|
COREREG(usr_regs.uregs[15], regs[15]),
|
|
/* A non-comprehensive set of cp15 registers.
|
|
* TODO: drive this from the cp_regs hashtable instead.
|
|
*/
|
|
CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
|
|
CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
|
|
CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
|
|
/* VFP system registers */
|
|
VFPSYSREG(FPSID),
|
|
VFPSYSREG(MVFR1),
|
|
VFPSYSREG(MVFR0),
|
|
VFPSYSREG(FPEXC),
|
|
VFPSYSREG(FPINST),
|
|
VFPSYSREG(FPINST2),
|
|
};
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg r;
|
|
int mode, bn;
|
|
int ret, i;
|
|
uint32_t cpsr, fpscr;
|
|
uint64_t ttbr;
|
|
|
|
/* Make sure the banked regs are properly set */
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
bn = bank_number(mode);
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
} else {
|
|
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
}
|
|
env->banked_r13[bn] = env->regs[13];
|
|
env->banked_r14[bn] = env->regs[14];
|
|
env->banked_spsr[bn] = env->spsr;
|
|
|
|
/* Now we can safely copy stuff down to the kernel */
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r.id = regs[i].id;
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
cpsr = cpsr_read(env);
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* TTBR0: cp15 crm=2 opc1=0 */
|
|
ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
|
(2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
|
|
r.addr = (uintptr_t)(&ttbr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* TTBR1: cp15 crm=2 opc1=1 */
|
|
ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
|
(2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
|
|
r.addr = (uintptr_t)(&ttbr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* VFP registers */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
for (i = 0; i < 32; i++) {
|
|
r.addr = (uintptr_t)(&env->vfp.regs[i]);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
r.id++;
|
|
}
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
fpscr = vfp_get_fpscr(env);
|
|
r.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg r;
|
|
int mode, bn;
|
|
int ret, i;
|
|
uint32_t cpsr, fpscr;
|
|
uint64_t ttbr;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r.id = regs[i].id;
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
cpsr_write(env, cpsr, 0xffffffff);
|
|
|
|
/* TTBR0: cp15 crm=2 opc1=0 */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
|
(2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
|
|
r.addr = (uintptr_t)(&ttbr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
env->cp15.c2_base0_hi = ttbr >> 32;
|
|
env->cp15.c2_base0 = ttbr;
|
|
|
|
/* TTBR1: cp15 crm=2 opc1=1 */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
|
|
(2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
|
|
r.addr = (uintptr_t)(&ttbr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
env->cp15.c2_base1_hi = ttbr >> 32;
|
|
env->cp15.c2_base1 = ttbr;
|
|
|
|
/* Make sure the current mode regs are properly set */
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
bn = bank_number(mode);
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
} else {
|
|
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
env->regs[13] = env->banked_r13[bn];
|
|
env->regs[14] = env->banked_r14[bn];
|
|
env->spsr = env->banked_spsr[bn];
|
|
|
|
/* The main GET_ONE_REG loop above set c2_control, but we need to
|
|
* update some extra cached precomputed values too.
|
|
* When this is driven from the cp_regs hashtable then this ugliness
|
|
* can disappear because we'll use the access function which sets
|
|
* these values automatically.
|
|
*/
|
|
env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
|
|
env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
|
|
|
|
/* VFP registers */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
for (i = 0; i < 32; i++) {
|
|
r.addr = (uintptr_t)(&env->vfp.regs[i]);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
r.id++;
|
|
}
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
r.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
vfp_set_fpscr(env, fpscr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_reset_vcpu(CPUState *cs)
|
|
{
|
|
}
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUState *cs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs,
|
|
struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs,
|
|
struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|