qemu-e2k/hw/misc/macio/cuda.c

637 lines
19 KiB
C

/*
* QEMU PowerMac CUDA device support
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/ppc/mac.h"
#include "hw/input/adb.h"
#include "hw/misc/mos6522.h"
#include "hw/misc/macio/cuda.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "trace.h"
/* Bits in B data register: all active low */
#define TREQ 0x08 /* Transfer request (input) */
#define TACK 0x10 /* Transfer acknowledge (output) */
#define TIP 0x20 /* Transfer in progress (output) */
/* commands (1st byte) */
#define ADB_PACKET 0
#define CUDA_PACKET 1
#define ERROR_PACKET 2
#define TIMER_PACKET 3
#define POWER_PACKET 4
#define MACIIC_PACKET 5
#define PMU_PACKET 6
#define CUDA_TIMER_FREQ (4700000 / 6)
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET 2082844800
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len);
/* MacOS uses timer 1 for calibration on startup, so we use
* the timebase frequency and cuda_get_counter_value() with
* cuda_get_load_time() to steer MacOS to calculate calibrate its timers
* correctly for both TCG and KVM (see commit b981289c49 "PPC: Cuda: Use cuda
* timer to expose tbfreq to guest" for more information) */
static uint64_t cuda_get_counter_value(MOS6522State *s, MOS6522Timer *ti)
{
MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj);
CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda);
/* Reverse of the tb calculation algorithm that Mac OS X uses on bootup */
uint64_t tb_diff = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
cs->tb_frequency, NANOSECONDS_PER_SECOND) -
ti->load_time;
return (tb_diff * 0xBF401675E5DULL) / (cs->tb_frequency << 24);
}
static uint64_t cuda_get_load_time(MOS6522State *s, MOS6522Timer *ti)
{
MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj);
CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda);
uint64_t load_time = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
cs->tb_frequency, NANOSECONDS_PER_SECOND);
return load_time;
}
static void cuda_set_sr_int(void *opaque)
{
CUDAState *s = opaque;
MOS6522CUDAState *mcs = &s->mos6522_cuda;
MOS6522State *ms = MOS6522(mcs);
MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(ms);
mdc->set_sr_int(ms);
}
static void cuda_delay_set_sr_int(CUDAState *s)
{
MOS6522CUDAState *mcs = &s->mos6522_cuda;
MOS6522State *ms = MOS6522(mcs);
MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(ms);
int64_t expire;
if (ms->dirb == 0xff || s->sr_delay_ns == 0) {
/* Disabled or not in Mac OS, fire the IRQ directly */
mdc->set_sr_int(ms);
return;
}
trace_cuda_delay_set_sr_int();
expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->sr_delay_ns;
timer_mod(s->sr_delay_timer, expire);
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
MOS6522CUDAState *mcs = &s->mos6522_cuda;
MOS6522State *ms = MOS6522(mcs);
int packet_received, len;
packet_received = 0;
if (!(ms->b & TIP)) {
/* transfer requested from host */
if (ms->acr & SR_OUT) {
/* data output */
if ((ms->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
if (s->data_out_index < sizeof(s->data_out)) {
trace_cuda_data_send(ms->sr);
s->data_out[s->data_out_index++] = ms->sr;
cuda_delay_set_sr_int(s);
}
}
} else {
if (s->data_in_index < s->data_in_size) {
/* data input */
if ((ms->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
ms->sr = s->data_in[s->data_in_index++];
trace_cuda_data_recv(ms->sr);
/* indicate end of transfer */
if (s->data_in_index >= s->data_in_size) {
ms->b = (ms->b | TREQ);
}
cuda_delay_set_sr_int(s);
}
}
}
} else {
/* no transfer requested: handle sync case */
if ((s->last_b & TIP) && (ms->b & TACK) != (s->last_b & TACK)) {
/* update TREQ state each time TACK change state */
if (ms->b & TACK) {
ms->b = (ms->b | TREQ);
} else {
ms->b = (ms->b & ~TREQ);
}
cuda_delay_set_sr_int(s);
} else {
if (!(s->last_b & TIP)) {
/* handle end of host to cuda transfer */
packet_received = (s->data_out_index > 0);
/* always an IRQ at the end of transfer */
cuda_delay_set_sr_int(s);
}
/* signal if there is data to read */
if (s->data_in_index < s->data_in_size) {
ms->b = (ms->b & ~TREQ);
}
}
}
s->last_acr = ms->acr;
s->last_b = ms->b;
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
recursively */
if (packet_received) {
len = s->data_out_index;
s->data_out_index = 0;
cuda_receive_packet_from_host(s, s->data_out, len);
}
}
static void cuda_send_packet_to_host(CUDAState *s,
const uint8_t *data, int len)
{
int i;
trace_cuda_packet_send(len);
for (i = 0; i < len; i++) {
trace_cuda_packet_send_data(i, data[i]);
}
memcpy(s->data_in, data, len);
s->data_in_size = len;
s->data_in_index = 0;
cuda_update(s);
cuda_delay_set_sr_int(s);
}
static void cuda_adb_poll(void *opaque)
{
CUDAState *s = opaque;
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen;
olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x40; /* polled data */
cuda_send_packet_to_host(s, obuf, olen + 2);
}
timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
}
/* description of commands */
typedef struct CudaCommand {
uint8_t command;
const char *name;
bool (*handler)(CUDAState *s,
const uint8_t *in_args, int in_len,
uint8_t *out_args, int *out_len);
} CudaCommand;
static bool cuda_cmd_autopoll(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
int autopoll;
if (in_len != 1) {
return false;
}
autopoll = (in_data[0] != 0);
if (autopoll != s->autopoll) {
s->autopoll = autopoll;
if (autopoll) {
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
} else {
timer_del(s->adb_poll_timer);
}
}
return true;
}
static bool cuda_cmd_set_autorate(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
/* we don't want a period of 0 ms */
/* FIXME: check what real hardware does */
if (in_data[0] == 0) {
return false;
}
s->autopoll_rate_ms = in_data[0];
if (s->autopoll) {
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
}
return true;
}
static bool cuda_cmd_set_device_list(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 2) {
return false;
}
s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
return true;
}
static bool cuda_cmd_powerdown(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 0) {
return false;
}
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
return true;
}
static bool cuda_cmd_reset_system(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 0) {
return false;
}
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
return true;
}
static bool cuda_cmd_set_file_server_flag(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
qemu_log_mask(LOG_UNIMP,
"CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
in_data[0]);
return true;
}
static bool cuda_cmd_set_power_message(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
qemu_log_mask(LOG_UNIMP,
"CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
in_data[0]);
return true;
}
static bool cuda_cmd_get_time(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
uint32_t ti;
if (in_len != 0) {
return false;
}
ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ NANOSECONDS_PER_SECOND);
out_data[0] = ti >> 24;
out_data[1] = ti >> 16;
out_data[2] = ti >> 8;
out_data[3] = ti;
*out_len = 4;
return true;
}
static bool cuda_cmd_set_time(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
uint32_t ti;
if (in_len != 4) {
return false;
}
ti = (((uint32_t)in_data[0]) << 24) + (((uint32_t)in_data[1]) << 16)
+ (((uint32_t)in_data[2]) << 8) + in_data[3];
s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ NANOSECONDS_PER_SECOND);
return true;
}
static const CudaCommand handlers[] = {
{ CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
{ CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
{ CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
{ CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
{ CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
{ CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
cuda_cmd_set_file_server_flag },
{ CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
cuda_cmd_set_power_message },
{ CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
{ CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
};
static void cuda_receive_packet(CUDAState *s,
const uint8_t *data, int len)
{
uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
int i, out_len = 0;
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
const CudaCommand *desc = &handlers[i];
if (desc->command == data[0]) {
trace_cuda_receive_packet_cmd(desc->name);
out_len = 0;
if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
cuda_send_packet_to_host(s, obuf, 3 + out_len);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"CUDA: %s: wrong parameters %d\n",
desc->name, len);
obuf[0] = ERROR_PACKET;
obuf[1] = 0x5; /* bad parameters */
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
}
return;
}
}
qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
obuf[0] = ERROR_PACKET;
obuf[1] = 0x2; /* unknown command */
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
}
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len)
{
int i;
trace_cuda_packet_receive(len);
for (i = 0; i < len; i++) {
trace_cuda_packet_receive_data(i, data[i]);
}
switch(data[0]) {
case ADB_PACKET:
{
uint8_t obuf[ADB_MAX_OUT_LEN + 3];
int olen;
olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x00;
cuda_send_packet_to_host(s, obuf, olen + 2);
} else {
/* error */
obuf[0] = ADB_PACKET;
obuf[1] = -olen;
obuf[2] = data[1];
olen = 0;
cuda_send_packet_to_host(s, obuf, olen + 3);
}
}
break;
case CUDA_PACKET:
cuda_receive_packet(s, data + 1, len - 1);
break;
}
}
static uint64_t mos6522_cuda_read(void *opaque, hwaddr addr, unsigned size)
{
CUDAState *s = opaque;
MOS6522CUDAState *mcs = &s->mos6522_cuda;
MOS6522State *ms = MOS6522(mcs);
addr = (addr >> 9) & 0xf;
return mos6522_read(ms, addr, size);
}
static void mos6522_cuda_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
CUDAState *s = opaque;
MOS6522CUDAState *mcs = &s->mos6522_cuda;
MOS6522State *ms = MOS6522(mcs);
addr = (addr >> 9) & 0xf;
mos6522_write(ms, addr, val, size);
}
static const MemoryRegionOps mos6522_cuda_ops = {
.read = mos6522_cuda_read,
.write = mos6522_cuda_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const VMStateDescription vmstate_cuda = {
.name = "cuda",
.version_id = 5,
.minimum_version_id = 5,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(mos6522_cuda.parent_obj, CUDAState, 0, vmstate_mos6522,
MOS6522State),
VMSTATE_UINT8(last_b, CUDAState),
VMSTATE_UINT8(last_acr, CUDAState),
VMSTATE_INT32(data_in_size, CUDAState),
VMSTATE_INT32(data_in_index, CUDAState),
VMSTATE_INT32(data_out_index, CUDAState),
VMSTATE_UINT8(autopoll, CUDAState),
VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
VMSTATE_UINT16(adb_poll_mask, CUDAState),
VMSTATE_BUFFER(data_in, CUDAState),
VMSTATE_BUFFER(data_out, CUDAState),
VMSTATE_UINT32(tick_offset, CUDAState),
VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
VMSTATE_END_OF_LIST()
}
};
static void cuda_reset(DeviceState *dev)
{
CUDAState *s = CUDA(dev);
s->data_in_size = 0;
s->data_in_index = 0;
s->data_out_index = 0;
s->autopoll = 0;
}
static void cuda_realize(DeviceState *dev, Error **errp)
{
CUDAState *s = CUDA(dev);
SysBusDevice *sbd;
MOS6522State *ms;
DeviceState *d;
struct tm tm;
/* Pass IRQ from 6522 */
d = DEVICE(&s->mos6522_cuda);
ms = MOS6522(d);
sbd = SYS_BUS_DEVICE(s);
sysbus_pass_irq(sbd, SYS_BUS_DEVICE(ms));
qemu_get_timedate(&tm, 0);
s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
s->sr_delay_ns = 300 * SCALE_US;
s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
s->adb_poll_mask = 0xffff;
s->autopoll_rate_ms = 20;
}
static void cuda_init(Object *obj)
{
CUDAState *s = CUDA(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
sysbus_init_child_obj(obj, "mos6522-cuda", &s->mos6522_cuda,
sizeof(s->mos6522_cuda), TYPE_MOS6522_CUDA);
memory_region_init_io(&s->mem, obj, &mos6522_cuda_ops, s, "cuda", 0x2000);
sysbus_init_mmio(sbd, &s->mem);
qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
DEVICE(obj), "adb.0");
}
static Property cuda_properties[] = {
DEFINE_PROP_UINT64("timebase-frequency", CUDAState, tb_frequency, 0),
DEFINE_PROP_END_OF_LIST()
};
static void cuda_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = cuda_realize;
dc->reset = cuda_reset;
dc->vmsd = &vmstate_cuda;
dc->props = cuda_properties;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
}
static const TypeInfo cuda_type_info = {
.name = TYPE_CUDA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CUDAState),
.instance_init = cuda_init,
.class_init = cuda_class_init,
};
static void mos6522_cuda_portB_write(MOS6522State *s)
{
MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj);
CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda);
cuda_update(cs);
}
static void mos6522_cuda_reset(DeviceState *dev)
{
MOS6522State *ms = MOS6522(dev);
MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(ms);
mdc->parent_reset(dev);
ms->timers[0].frequency = CUDA_TIMER_FREQ;
ms->timers[1].frequency = (SCALE_US * 6000) / 4700;
}
static void mos6522_cuda_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
MOS6522DeviceClass *mdc = MOS6522_DEVICE_CLASS(oc);
dc->reset = mos6522_cuda_reset;
mdc->portB_write = mos6522_cuda_portB_write;
mdc->get_timer1_counter_value = cuda_get_counter_value;
mdc->get_timer2_counter_value = cuda_get_counter_value;
mdc->get_timer1_load_time = cuda_get_load_time;
mdc->get_timer2_load_time = cuda_get_load_time;
}
static const TypeInfo mos6522_cuda_type_info = {
.name = TYPE_MOS6522_CUDA,
.parent = TYPE_MOS6522,
.instance_size = sizeof(MOS6522CUDAState),
.class_init = mos6522_cuda_class_init,
};
static void cuda_register_types(void)
{
type_register_static(&mos6522_cuda_type_info);
type_register_static(&cuda_type_info);
}
type_init(cuda_register_types)