qemu-e2k/target/sparc/cpu.h
Richard Henderson 2a1905c79e target/sparc: Split psr and xcc into components
Step in removing CC_OP: change the representation of CC_OP_FLAGS.
The 8 bits are distributed between 6 variables, which should make
it easy to keep up to date.

The code within cc_helper.c is quite ugly but is only temporary.

Tested-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Acked-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-11-05 11:53:13 -08:00

873 lines
25 KiB
C

#ifndef SPARC_CPU_H
#define SPARC_CPU_H
#include "qemu/bswap.h"
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#include "qemu/cpu-float.h"
/*
* From Oracle SPARC Architecture 2015:
*
* Compatibility notes: The PSO memory model described in SPARC V8 and
* SPARC V9 compatibility architecture specifications was never implemented
* in a SPARC V9 implementation and is not included in the Oracle SPARC
* Architecture specification.
*
* The RMO memory model described in the SPARC V9 specification was
* implemented in some non-Sun SPARC V9 implementations, but is not
* directly supported in Oracle SPARC Architecture 2015 implementations.
*
* Therefore always use TSO in QEMU.
*
* D.5 Specification of Partial Store Order (PSO)
* ... [loads] are followed by an implied MEMBAR #LoadLoad | #LoadStore.
*
* D.6 Specification of Total Store Order (TSO)
* ... PSO with the additional requirement that all [stores] are followed
* by an implied MEMBAR #StoreStore.
*/
#define TCG_GUEST_DEFAULT_MO (TCG_MO_LD_LD | TCG_MO_LD_ST | TCG_MO_ST_ST)
#if !defined(TARGET_SPARC64)
#define TARGET_DPREGS 16
#else
#define TARGET_DPREGS 32
#endif
/*#define EXCP_INTERRUPT 0x100*/
/* Windowed register indexes. */
enum {
WREG_O0,
WREG_O1,
WREG_O2,
WREG_O3,
WREG_O4,
WREG_O5,
WREG_O6,
WREG_O7,
WREG_L0,
WREG_L1,
WREG_L2,
WREG_L3,
WREG_L4,
WREG_L5,
WREG_L6,
WREG_L7,
WREG_I0,
WREG_I1,
WREG_I2,
WREG_I3,
WREG_I4,
WREG_I5,
WREG_I6,
WREG_I7,
WREG_SP = WREG_O6,
WREG_FP = WREG_I6,
};
/* trap definitions */
#ifndef TARGET_SPARC64
#define TT_TFAULT 0x01
#define TT_ILL_INSN 0x02
#define TT_PRIV_INSN 0x03
#define TT_NFPU_INSN 0x04
#define TT_WIN_OVF 0x05
#define TT_WIN_UNF 0x06
#define TT_UNALIGNED 0x07
#define TT_FP_EXCP 0x08
#define TT_DFAULT 0x09
#define TT_TOVF 0x0a
#define TT_EXTINT 0x10
#define TT_CODE_ACCESS 0x21
#define TT_UNIMP_FLUSH 0x25
#define TT_DATA_ACCESS 0x29
#define TT_DIV_ZERO 0x2a
#define TT_NCP_INSN 0x24
#define TT_TRAP 0x80
#else
#define TT_POWER_ON_RESET 0x01
#define TT_TFAULT 0x08
#define TT_CODE_ACCESS 0x0a
#define TT_ILL_INSN 0x10
#define TT_UNIMP_FLUSH TT_ILL_INSN
#define TT_PRIV_INSN 0x11
#define TT_NFPU_INSN 0x20
#define TT_FP_EXCP 0x21
#define TT_TOVF 0x23
#define TT_CLRWIN 0x24
#define TT_DIV_ZERO 0x28
#define TT_DFAULT 0x30
#define TT_DATA_ACCESS 0x32
#define TT_UNALIGNED 0x34
#define TT_PRIV_ACT 0x37
#define TT_INSN_REAL_TRANSLATION_MISS 0x3e
#define TT_DATA_REAL_TRANSLATION_MISS 0x3f
#define TT_EXTINT 0x40
#define TT_IVEC 0x60
#define TT_TMISS 0x64
#define TT_DMISS 0x68
#define TT_DPROT 0x6c
#define TT_SPILL 0x80
#define TT_FILL 0xc0
#define TT_WOTHER (1 << 5)
#define TT_TRAP 0x100
#define TT_HTRAP 0x180
#endif
#define PSR_NEG_SHIFT 23
#define PSR_NEG (1 << PSR_NEG_SHIFT)
#define PSR_ZERO_SHIFT 22
#define PSR_ZERO (1 << PSR_ZERO_SHIFT)
#define PSR_OVF_SHIFT 21
#define PSR_OVF (1 << PSR_OVF_SHIFT)
#define PSR_CARRY_SHIFT 20
#define PSR_CARRY (1 << PSR_CARRY_SHIFT)
#define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY)
#if !defined(TARGET_SPARC64)
#define PSR_EF (1<<12)
#define PSR_PIL 0xf00
#define PSR_S (1<<7)
#define PSR_PS (1<<6)
#define PSR_ET (1<<5)
#define PSR_CWP 0x1f
#endif
#define CC_SRC (env->cc_src)
#define CC_SRC2 (env->cc_src2)
#define CC_DST (env->cc_dst)
#define CC_OP (env->cc_op)
/* Even though lazy evaluation of CPU condition codes tends to be less
* important on RISC systems where condition codes are only updated
* when explicitly requested, SPARC uses it to update 32-bit and 64-bit
* condition codes.
*/
enum {
CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
CC_OP_FLAGS, /* all cc are back in cc_*_[NZCV] registers */
CC_OP_DIV, /* modify N, Z and V, C = 0*/
CC_OP_ADD, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_ADDX, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TADD, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TADDTV, /* modify all flags except V, CC_DST = res, CC_SRC = src1 */
CC_OP_SUB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_SUBX, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TSUB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
CC_OP_TSUBTV, /* modify all flags except V, CC_DST = res, CC_SRC = src1 */
CC_OP_LOGIC, /* modify N and Z, C = V = 0, CC_DST = res */
CC_OP_NB,
};
/* Trap base register */
#define TBR_BASE_MASK 0xfffff000
#if defined(TARGET_SPARC64)
#define PS_TCT (1<<12) /* UA2007, impl.dep. trap on control transfer */
#define PS_IG (1<<11) /* v9, zero on UA2007 */
#define PS_MG (1<<10) /* v9, zero on UA2007 */
#define PS_CLE (1<<9) /* UA2007 */
#define PS_TLE (1<<8) /* UA2007 */
#define PS_RMO (1<<7)
#define PS_RED (1<<5) /* v9, zero on UA2007 */
#define PS_PEF (1<<4) /* enable fpu */
#define PS_AM (1<<3) /* address mask */
#define PS_PRIV (1<<2)
#define PS_IE (1<<1)
#define PS_AG (1<<0) /* v9, zero on UA2007 */
#define FPRS_DL (1 << 0)
#define FPRS_DU (1 << 1)
#define FPRS_FEF (1 << 2)
#define HS_PRIV (1<<2)
#endif
/* Fcc */
#define FSR_RD1 (1ULL << 31)
#define FSR_RD0 (1ULL << 30)
#define FSR_RD_MASK (FSR_RD1 | FSR_RD0)
#define FSR_RD_NEAREST 0
#define FSR_RD_ZERO FSR_RD0
#define FSR_RD_POS FSR_RD1
#define FSR_RD_NEG (FSR_RD1 | FSR_RD0)
#define FSR_NVM (1ULL << 27)
#define FSR_OFM (1ULL << 26)
#define FSR_UFM (1ULL << 25)
#define FSR_DZM (1ULL << 24)
#define FSR_NXM (1ULL << 23)
#define FSR_TEM_MASK (FSR_NVM | FSR_OFM | FSR_UFM | FSR_DZM | FSR_NXM)
#define FSR_NVA (1ULL << 9)
#define FSR_OFA (1ULL << 8)
#define FSR_UFA (1ULL << 7)
#define FSR_DZA (1ULL << 6)
#define FSR_NXA (1ULL << 5)
#define FSR_AEXC_MASK (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA)
#define FSR_NVC (1ULL << 4)
#define FSR_OFC (1ULL << 3)
#define FSR_UFC (1ULL << 2)
#define FSR_DZC (1ULL << 1)
#define FSR_NXC (1ULL << 0)
#define FSR_CEXC_MASK (FSR_NVC | FSR_OFC | FSR_UFC | FSR_DZC | FSR_NXC)
#define FSR_FTT2 (1ULL << 16)
#define FSR_FTT1 (1ULL << 15)
#define FSR_FTT0 (1ULL << 14)
#define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0)
#ifdef TARGET_SPARC64
#define FSR_FTT_NMASK 0xfffffffffffe3fffULL
#define FSR_FTT_CEXC_NMASK 0xfffffffffffe3fe0ULL
#define FSR_LDFSR_OLDMASK 0x0000003f000fc000ULL
#define FSR_LDXFSR_MASK 0x0000003fcfc00fffULL
#define FSR_LDXFSR_OLDMASK 0x00000000000fc000ULL
#else
#define FSR_FTT_NMASK 0xfffe3fffULL
#define FSR_FTT_CEXC_NMASK 0xfffe3fe0ULL
#define FSR_LDFSR_OLDMASK 0x000fc000ULL
#endif
#define FSR_LDFSR_MASK 0xcfc00fffULL
#define FSR_FTT_IEEE_EXCP (1ULL << 14)
#define FSR_FTT_UNIMPFPOP (3ULL << 14)
#define FSR_FTT_SEQ_ERROR (4ULL << 14)
#define FSR_FTT_INVAL_FPR (6ULL << 14)
#define FSR_FCC1_SHIFT 11
#define FSR_FCC1 (1ULL << FSR_FCC1_SHIFT)
#define FSR_FCC0_SHIFT 10
#define FSR_FCC0 (1ULL << FSR_FCC0_SHIFT)
/* MMU */
#define MMU_E (1<<0)
#define MMU_NF (1<<1)
#define PTE_ENTRYTYPE_MASK 3
#define PTE_ACCESS_MASK 0x1c
#define PTE_ACCESS_SHIFT 2
#define PTE_PPN_SHIFT 7
#define PTE_ADDR_MASK 0xffffff00
#define PG_ACCESSED_BIT 5
#define PG_MODIFIED_BIT 6
#define PG_CACHE_BIT 7
#define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT)
#define PG_MODIFIED_MASK (1 << PG_MODIFIED_BIT)
#define PG_CACHE_MASK (1 << PG_CACHE_BIT)
/* 3 <= NWINDOWS <= 32. */
#define MIN_NWINDOWS 3
#define MAX_NWINDOWS 32
#ifdef TARGET_SPARC64
typedef struct trap_state {
uint64_t tpc;
uint64_t tnpc;
uint64_t tstate;
uint32_t tt;
} trap_state;
#endif
#define TARGET_INSN_START_EXTRA_WORDS 1
struct sparc_def_t {
const char *name;
target_ulong iu_version;
uint32_t fpu_version;
uint32_t mmu_version;
uint32_t mmu_bm;
uint32_t mmu_ctpr_mask;
uint32_t mmu_cxr_mask;
uint32_t mmu_sfsr_mask;
uint32_t mmu_trcr_mask;
uint32_t mxcc_version;
uint32_t features;
uint32_t nwindows;
uint32_t maxtl;
};
#define FEATURE(X) CPU_FEATURE_BIT_##X,
enum {
#include "cpu-feature.h.inc"
};
#undef FEATURE
#define FEATURE(X) CPU_FEATURE_##X = 1u << CPU_FEATURE_BIT_##X,
enum {
#include "cpu-feature.h.inc"
};
#undef FEATURE
#ifndef TARGET_SPARC64
#define CPU_DEFAULT_FEATURES (CPU_FEATURE_MUL | CPU_FEATURE_DIV | \
CPU_FEATURE_FSMULD)
#else
#define CPU_DEFAULT_FEATURES (CPU_FEATURE_MUL | CPU_FEATURE_DIV | \
CPU_FEATURE_FSMULD | CPU_FEATURE_CASA | \
CPU_FEATURE_VIS1 | CPU_FEATURE_VIS2)
enum {
mmu_us_12, // Ultrasparc < III (64 entry TLB)
mmu_us_3, // Ultrasparc III (512 entry TLB)
mmu_us_4, // Ultrasparc IV (several TLBs, 32 and 256MB pages)
mmu_sun4v, // T1, T2
};
#endif
#define TTE_VALID_BIT (1ULL << 63)
#define TTE_NFO_BIT (1ULL << 60)
#define TTE_IE_BIT (1ULL << 59)
#define TTE_USED_BIT (1ULL << 41)
#define TTE_LOCKED_BIT (1ULL << 6)
#define TTE_SIDEEFFECT_BIT (1ULL << 3)
#define TTE_PRIV_BIT (1ULL << 2)
#define TTE_W_OK_BIT (1ULL << 1)
#define TTE_GLOBAL_BIT (1ULL << 0)
#define TTE_NFO_BIT_UA2005 (1ULL << 62)
#define TTE_USED_BIT_UA2005 (1ULL << 47)
#define TTE_LOCKED_BIT_UA2005 (1ULL << 61)
#define TTE_SIDEEFFECT_BIT_UA2005 (1ULL << 11)
#define TTE_PRIV_BIT_UA2005 (1ULL << 8)
#define TTE_W_OK_BIT_UA2005 (1ULL << 6)
#define TTE_IS_VALID(tte) ((tte) & TTE_VALID_BIT)
#define TTE_IS_NFO(tte) ((tte) & TTE_NFO_BIT)
#define TTE_IS_IE(tte) ((tte) & TTE_IE_BIT)
#define TTE_IS_USED(tte) ((tte) & TTE_USED_BIT)
#define TTE_IS_LOCKED(tte) ((tte) & TTE_LOCKED_BIT)
#define TTE_IS_SIDEEFFECT(tte) ((tte) & TTE_SIDEEFFECT_BIT)
#define TTE_IS_SIDEEFFECT_UA2005(tte) ((tte) & TTE_SIDEEFFECT_BIT_UA2005)
#define TTE_IS_PRIV(tte) ((tte) & TTE_PRIV_BIT)
#define TTE_IS_W_OK(tte) ((tte) & TTE_W_OK_BIT)
#define TTE_IS_NFO_UA2005(tte) ((tte) & TTE_NFO_BIT_UA2005)
#define TTE_IS_USED_UA2005(tte) ((tte) & TTE_USED_BIT_UA2005)
#define TTE_IS_LOCKED_UA2005(tte) ((tte) & TTE_LOCKED_BIT_UA2005)
#define TTE_IS_SIDEEFFECT_UA2005(tte) ((tte) & TTE_SIDEEFFECT_BIT_UA2005)
#define TTE_IS_PRIV_UA2005(tte) ((tte) & TTE_PRIV_BIT_UA2005)
#define TTE_IS_W_OK_UA2005(tte) ((tte) & TTE_W_OK_BIT_UA2005)
#define TTE_IS_GLOBAL(tte) ((tte) & TTE_GLOBAL_BIT)
#define TTE_SET_USED(tte) ((tte) |= TTE_USED_BIT)
#define TTE_SET_UNUSED(tte) ((tte) &= ~TTE_USED_BIT)
#define TTE_PGSIZE(tte) (((tte) >> 61) & 3ULL)
#define TTE_PGSIZE_UA2005(tte) ((tte) & 7ULL)
#define TTE_PA(tte) ((tte) & 0x1ffffffe000ULL)
/* UltraSPARC T1 specific */
#define TLB_UST1_IS_REAL_BIT (1ULL << 9) /* Real translation entry */
#define TLB_UST1_IS_SUN4V_BIT (1ULL << 10) /* sun4u/sun4v TTE format switch */
#define SFSR_NF_BIT (1ULL << 24) /* JPS1 NoFault */
#define SFSR_TM_BIT (1ULL << 15) /* JPS1 TLB Miss */
#define SFSR_FT_VA_IMMU_BIT (1ULL << 13) /* USIIi VA out of range (IMMU) */
#define SFSR_FT_VA_DMMU_BIT (1ULL << 12) /* USIIi VA out of range (DMMU) */
#define SFSR_FT_NFO_BIT (1ULL << 11) /* NFO page access */
#define SFSR_FT_ILL_BIT (1ULL << 10) /* illegal LDA/STA ASI */
#define SFSR_FT_ATOMIC_BIT (1ULL << 9) /* atomic op on noncacheable area */
#define SFSR_FT_NF_E_BIT (1ULL << 8) /* NF access on side effect area */
#define SFSR_FT_PRIV_BIT (1ULL << 7) /* privilege violation */
#define SFSR_PR_BIT (1ULL << 3) /* privilege mode */
#define SFSR_WRITE_BIT (1ULL << 2) /* write access mode */
#define SFSR_OW_BIT (1ULL << 1) /* status overwritten */
#define SFSR_VALID_BIT (1ULL << 0) /* status valid */
#define SFSR_ASI_SHIFT 16 /* 23:16 ASI value */
#define SFSR_ASI_MASK (0xffULL << SFSR_ASI_SHIFT)
#define SFSR_CT_PRIMARY (0ULL << 4) /* 5:4 context type */
#define SFSR_CT_SECONDARY (1ULL << 4)
#define SFSR_CT_NUCLEUS (2ULL << 4)
#define SFSR_CT_NOTRANS (3ULL << 4)
#define SFSR_CT_MASK (3ULL << 4)
/* Leon3 cache control */
/* Cache control: emulate the behavior of cache control registers but without
any effect on the emulated */
#define CACHE_STATE_MASK 0x3
#define CACHE_DISABLED 0x0
#define CACHE_FROZEN 0x1
#define CACHE_ENABLED 0x3
/* Cache Control register fields */
#define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
#define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
#define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
#define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
#define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
#define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
#define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
#define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
#define CONVERT_BIT(X, SRC, DST) \
(SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
typedef struct SparcTLBEntry {
uint64_t tag;
uint64_t tte;
} SparcTLBEntry;
struct CPUTimer
{
const char *name;
uint32_t frequency;
uint32_t disabled;
uint64_t disabled_mask;
uint32_t npt;
uint64_t npt_mask;
int64_t clock_offset;
QEMUTimer *qtimer;
};
typedef struct CPUTimer CPUTimer;
typedef struct CPUArchState CPUSPARCState;
#if defined(TARGET_SPARC64)
typedef union {
uint64_t mmuregs[16];
struct {
uint64_t tsb_tag_target;
uint64_t mmu_primary_context;
uint64_t mmu_secondary_context;
uint64_t sfsr;
uint64_t sfar;
uint64_t tsb;
uint64_t tag_access;
uint64_t virtual_watchpoint;
uint64_t physical_watchpoint;
uint64_t sun4v_ctx_config[2];
uint64_t sun4v_tsb_pointers[4];
};
} SparcV9MMU;
#endif
struct CPUArchState {
target_ulong gregs[8]; /* general registers */
target_ulong *regwptr; /* pointer to current register window */
target_ulong pc; /* program counter */
target_ulong npc; /* next program counter */
target_ulong y; /* multiply/divide register */
/*
* Bit 31 is for icc, bit 63 for xcc.
* Other bits are garbage.
*/
target_long cc_N;
target_long cc_V;
/*
* Z is represented as == 0; any non-zero value is !Z.
* For sparc64, the high 32-bits of icc.Z are garbage.
*/
target_ulong icc_Z;
#ifdef TARGET_SPARC64
target_ulong xcc_Z;
#endif
/*
* For sparc32, icc.C is boolean.
* For sparc64, xcc.C is boolean;
* icc.C is bit 32 with other bits garbage.
*/
target_ulong icc_C;
#ifdef TARGET_SPARC64
target_ulong xcc_C;
#endif
/* emulator internal flags handling */
target_ulong cc_src, cc_src2;
target_ulong cc_dst;
uint32_t cc_op;
target_ulong cond; /* conditional branch result (XXX: save it in a
temporary register when possible) */
target_ulong fsr; /* FPU state register */
CPU_DoubleU fpr[TARGET_DPREGS]; /* floating point registers */
uint32_t cwp; /* index of current register window (extracted
from PSR) */
#if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
uint32_t wim; /* window invalid mask */
#endif
target_ulong tbr; /* trap base register */
#if !defined(TARGET_SPARC64)
int psrs; /* supervisor mode (extracted from PSR) */
int psrps; /* previous supervisor mode */
int psret; /* enable traps */
#endif
uint32_t psrpil; /* interrupt blocking level */
uint32_t pil_in; /* incoming interrupt level bitmap */
#if !defined(TARGET_SPARC64)
int psref; /* enable fpu */
#endif
int interrupt_index;
/* NOTE: we allow 8 more registers to handle wrapping */
target_ulong regbase[MAX_NWINDOWS * 16 + 8];
/* Fields up to this point are cleared by a CPU reset */
struct {} end_reset_fields;
/* Fields from here on are preserved across CPU reset. */
target_ulong version;
uint32_t nwindows;
/* MMU regs */
#if defined(TARGET_SPARC64)
uint64_t lsu;
#define DMMU_E 0x8
#define IMMU_E 0x4
SparcV9MMU immu;
SparcV9MMU dmmu;
SparcTLBEntry itlb[64];
SparcTLBEntry dtlb[64];
uint32_t mmu_version;
#else
uint32_t mmuregs[32];
uint64_t mxccdata[4];
uint64_t mxccregs[8];
uint32_t mmubpctrv, mmubpctrc, mmubpctrs;
uint64_t mmubpaction;
uint64_t mmubpregs[4];
uint64_t prom_addr;
#endif
/* temporary float registers */
float128 qt0, qt1;
float_status fp_status;
#if defined(TARGET_SPARC64)
#define MAXTL_MAX 8
#define MAXTL_MASK (MAXTL_MAX - 1)
trap_state ts[MAXTL_MAX];
uint32_t asi;
uint32_t pstate;
uint32_t tl;
uint32_t maxtl;
uint32_t cansave, canrestore, otherwin, wstate, cleanwin;
uint64_t agregs[8]; /* alternate general registers */
uint64_t bgregs[8]; /* backup for normal global registers */
uint64_t igregs[8]; /* interrupt general registers */
uint64_t mgregs[8]; /* mmu general registers */
uint64_t glregs[8 * MAXTL_MAX];
uint32_t fprs;
uint64_t tick_cmpr, stick_cmpr;
CPUTimer *tick, *stick;
#define TICK_NPT_MASK 0x8000000000000000ULL
#define TICK_INT_DIS 0x8000000000000000ULL
uint64_t gsr;
uint32_t gl; // UA2005
/* UA 2005 hyperprivileged registers */
uint64_t hpstate, htstate[MAXTL_MAX], hintp, htba, hver, hstick_cmpr, ssr;
uint64_t scratch[8];
CPUTimer *hstick; // UA 2005
/* Interrupt vector registers */
uint64_t ivec_status;
uint64_t ivec_data[3];
uint32_t softint;
#define SOFTINT_TIMER 1
#define SOFTINT_STIMER (1 << 16)
#define SOFTINT_INTRMASK (0xFFFE)
#define SOFTINT_REG_MASK (SOFTINT_STIMER|SOFTINT_INTRMASK|SOFTINT_TIMER)
#endif
sparc_def_t def;
void *irq_manager;
void (*qemu_irq_ack)(CPUSPARCState *env, void *irq_manager, int intno);
/* Leon3 cache control */
uint32_t cache_control;
};
/**
* SPARCCPU:
* @env: #CPUSPARCState
*
* A SPARC CPU.
*/
struct ArchCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUSPARCState env;
};
#ifndef CONFIG_USER_ONLY
extern const VMStateDescription vmstate_sparc_cpu;
hwaddr sparc_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
#endif
void sparc_cpu_do_interrupt(CPUState *cpu);
int sparc_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int sparc_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx,
uintptr_t retaddr);
G_NORETURN void cpu_raise_exception_ra(CPUSPARCState *, int, uintptr_t);
/* cpu_init.c */
void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu);
void sparc_cpu_list(void);
/* mmu_helper.c */
bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev);
void dump_mmu(CPUSPARCState *env);
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
int sparc_cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
uint8_t *buf, int len, bool is_write);
#endif
/* translate.c */
void sparc_tcg_init(void);
void sparc_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data);
/* cpu-exec.c */
/* win_helper.c */
target_ulong cpu_get_psr(CPUSPARCState *env1);
void cpu_put_psr(CPUSPARCState *env1, target_ulong val);
void cpu_put_psr_icc(CPUSPARCState *env1, target_ulong val);
void cpu_put_psr_raw(CPUSPARCState *env1, target_ulong val);
#ifdef TARGET_SPARC64
void cpu_change_pstate(CPUSPARCState *env1, uint32_t new_pstate);
void cpu_gl_switch_gregs(CPUSPARCState *env, uint32_t new_gl);
#endif
int cpu_cwp_inc(CPUSPARCState *env1, int cwp);
int cpu_cwp_dec(CPUSPARCState *env1, int cwp);
void cpu_set_cwp(CPUSPARCState *env1, int new_cwp);
/* sun4m.c, sun4u.c */
void cpu_check_irqs(CPUSPARCState *env);
#if defined (TARGET_SPARC64)
static inline int compare_masked(uint64_t x, uint64_t y, uint64_t mask)
{
return (x & mask) == (y & mask);
}
#define MMU_CONTEXT_BITS 13
#define MMU_CONTEXT_MASK ((1 << MMU_CONTEXT_BITS) - 1)
static inline int tlb_compare_context(const SparcTLBEntry *tlb,
uint64_t context)
{
return compare_masked(context, tlb->tag, MMU_CONTEXT_MASK);
}
#endif
/* cpu-exec.c */
#if !defined(CONFIG_USER_ONLY)
void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
#if defined(TARGET_SPARC64)
hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
int mmu_idx);
#endif
#endif
#define SPARC_CPU_TYPE_SUFFIX "-" TYPE_SPARC_CPU
#define SPARC_CPU_TYPE_NAME(model) model SPARC_CPU_TYPE_SUFFIX
#define CPU_RESOLVING_TYPE TYPE_SPARC_CPU
#define cpu_list sparc_cpu_list
/* MMU modes definitions */
#if defined (TARGET_SPARC64)
#define MMU_USER_IDX 0
#define MMU_USER_SECONDARY_IDX 1
#define MMU_KERNEL_IDX 2
#define MMU_KERNEL_SECONDARY_IDX 3
#define MMU_NUCLEUS_IDX 4
#define MMU_PHYS_IDX 5
#else
#define MMU_USER_IDX 0
#define MMU_KERNEL_IDX 1
#define MMU_PHYS_IDX 2
#endif
#if defined (TARGET_SPARC64)
static inline int cpu_has_hypervisor(CPUSPARCState *env1)
{
return env1->def.features & CPU_FEATURE_HYPV;
}
static inline int cpu_hypervisor_mode(CPUSPARCState *env1)
{
return cpu_has_hypervisor(env1) && (env1->hpstate & HS_PRIV);
}
static inline int cpu_supervisor_mode(CPUSPARCState *env1)
{
return env1->pstate & PS_PRIV;
}
#else
static inline int cpu_supervisor_mode(CPUSPARCState *env1)
{
return env1->psrs;
}
#endif
static inline int cpu_mmu_index(CPUSPARCState *env, bool ifetch)
{
#if defined(CONFIG_USER_ONLY)
return MMU_USER_IDX;
#elif !defined(TARGET_SPARC64)
if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
return MMU_PHYS_IDX;
} else {
return env->psrs;
}
#else
/* IMMU or DMMU disabled. */
if (ifetch
? (env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0
: (env->lsu & DMMU_E) == 0) {
return MMU_PHYS_IDX;
} else if (cpu_hypervisor_mode(env)) {
return MMU_PHYS_IDX;
} else if (env->tl > 0) {
return MMU_NUCLEUS_IDX;
} else if (cpu_supervisor_mode(env)) {
return MMU_KERNEL_IDX;
} else {
return MMU_USER_IDX;
}
#endif
}
static inline int cpu_interrupts_enabled(CPUSPARCState *env1)
{
#if !defined (TARGET_SPARC64)
if (env1->psret != 0)
return 1;
#else
if ((env1->pstate & PS_IE) && !cpu_hypervisor_mode(env1)) {
return 1;
}
#endif
return 0;
}
static inline int cpu_pil_allowed(CPUSPARCState *env1, int pil)
{
#if !defined(TARGET_SPARC64)
/* level 15 is non-maskable on sparc v8 */
return pil == 15 || pil > env1->psrpil;
#else
return pil > env1->psrpil;
#endif
}
#include "exec/cpu-all.h"
#ifdef TARGET_SPARC64
/* sun4u.c */
void cpu_tick_set_count(CPUTimer *timer, uint64_t count);
uint64_t cpu_tick_get_count(CPUTimer *timer);
void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit);
trap_state* cpu_tsptr(CPUSPARCState* env);
#endif
#define TB_FLAG_MMU_MASK 7
#define TB_FLAG_FPU_ENABLED (1 << 4)
#define TB_FLAG_AM_ENABLED (1 << 5)
#define TB_FLAG_SUPER (1 << 6)
#define TB_FLAG_HYPER (1 << 7)
#define TB_FLAG_ASI_SHIFT 24
static inline void cpu_get_tb_cpu_state(CPUSPARCState *env, vaddr *pc,
uint64_t *cs_base, uint32_t *pflags)
{
uint32_t flags;
*pc = env->pc;
*cs_base = env->npc;
flags = cpu_mmu_index(env, false);
#ifndef CONFIG_USER_ONLY
if (cpu_supervisor_mode(env)) {
flags |= TB_FLAG_SUPER;
}
#endif
#ifdef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
if (cpu_hypervisor_mode(env)) {
flags |= TB_FLAG_HYPER;
}
#endif
if (env->pstate & PS_AM) {
flags |= TB_FLAG_AM_ENABLED;
}
if ((env->pstate & PS_PEF) && (env->fprs & FPRS_FEF)) {
flags |= TB_FLAG_FPU_ENABLED;
}
flags |= env->asi << TB_FLAG_ASI_SHIFT;
#else
if (env->psref) {
flags |= TB_FLAG_FPU_ENABLED;
}
#endif
*pflags = flags;
}
static inline bool tb_fpu_enabled(int tb_flags)
{
#if defined(CONFIG_USER_ONLY)
return true;
#else
return tb_flags & TB_FLAG_FPU_ENABLED;
#endif
}
static inline bool tb_am_enabled(int tb_flags)
{
#ifndef TARGET_SPARC64
return false;
#else
return tb_flags & TB_FLAG_AM_ENABLED;
#endif
}
#ifdef TARGET_SPARC64
/* win_helper.c */
target_ulong cpu_get_ccr(CPUSPARCState *env1);
void cpu_put_ccr(CPUSPARCState *env1, target_ulong val);
target_ulong cpu_get_cwp64(CPUSPARCState *env1);
void cpu_put_cwp64(CPUSPARCState *env1, int cwp);
static inline uint64_t sparc64_tstate(CPUSPARCState *env)
{
uint64_t tstate = (cpu_get_ccr(env) << 32) |
((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
cpu_get_cwp64(env);
if (env->def.features & CPU_FEATURE_GL) {
tstate |= (env->gl & 7ULL) << 40;
}
return tstate;
}
#endif
#endif