2c1aaa819a
QEMU has a notion of the guest name, so if it's present we might as well put that into the device tree as /ibm,partition-name. This is specificed by PAPR. Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020 lines
61 KiB
C
2020 lines
61 KiB
C
/*
|
|
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
|
|
*
|
|
* Copyright (c) 2004-2007 Fabrice Bellard
|
|
* Copyright (c) 2007 Jocelyn Mayer
|
|
* Copyright (c) 2010 David Gibson, IBM Corporation.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
*/
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/numa.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/fw-path-provider.h"
|
|
#include "elf.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_ppc.h"
|
|
#include "migration/migration.h"
|
|
#include "mmu-hash64.h"
|
|
#include "qom/cpu.h"
|
|
|
|
#include "hw/boards.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "hw/loader.h"
|
|
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/ppc/spapr_vio.h"
|
|
#include "hw/pci-host/spapr.h"
|
|
#include "hw/ppc/xics.h"
|
|
#include "hw/pci/msi.h"
|
|
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/scsi/scsi.h"
|
|
#include "hw/virtio/virtio-scsi.h"
|
|
|
|
#include "exec/address-spaces.h"
|
|
#include "hw/usb.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#include "trace.h"
|
|
#include "hw/nmi.h"
|
|
|
|
#include "hw/compat.h"
|
|
|
|
#include <libfdt.h>
|
|
|
|
/* SLOF memory layout:
|
|
*
|
|
* SLOF raw image loaded at 0, copies its romfs right below the flat
|
|
* device-tree, then position SLOF itself 31M below that
|
|
*
|
|
* So we set FW_OVERHEAD to 40MB which should account for all of that
|
|
* and more
|
|
*
|
|
* We load our kernel at 4M, leaving space for SLOF initial image
|
|
*/
|
|
#define FDT_MAX_SIZE 0x40000
|
|
#define RTAS_MAX_SIZE 0x10000
|
|
#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
|
|
#define FW_MAX_SIZE 0x400000
|
|
#define FW_FILE_NAME "slof.bin"
|
|
#define FW_OVERHEAD 0x2800000
|
|
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
|
|
|
|
#define MIN_RMA_SLOF 128UL
|
|
|
|
#define TIMEBASE_FREQ 512000000ULL
|
|
|
|
#define MAX_CPUS 255
|
|
|
|
#define PHANDLE_XICP 0x00001111
|
|
|
|
#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
|
|
|
|
static XICSState *try_create_xics(const char *type, int nr_servers,
|
|
int nr_irqs, Error **errp)
|
|
{
|
|
Error *err = NULL;
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_create(NULL, type);
|
|
qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
|
|
qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
|
|
object_property_set_bool(OBJECT(dev), true, "realized", &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
object_unparent(OBJECT(dev));
|
|
return NULL;
|
|
}
|
|
return XICS_COMMON(dev);
|
|
}
|
|
|
|
static XICSState *xics_system_init(MachineState *machine,
|
|
int nr_servers, int nr_irqs)
|
|
{
|
|
XICSState *icp = NULL;
|
|
|
|
if (kvm_enabled()) {
|
|
Error *err = NULL;
|
|
|
|
if (machine_kernel_irqchip_allowed(machine)) {
|
|
icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
|
|
}
|
|
if (machine_kernel_irqchip_required(machine) && !icp) {
|
|
error_report("kernel_irqchip requested but unavailable: %s",
|
|
error_get_pretty(err));
|
|
}
|
|
}
|
|
|
|
if (!icp) {
|
|
icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
|
|
}
|
|
|
|
return icp;
|
|
}
|
|
|
|
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
|
|
int smt_threads)
|
|
{
|
|
int i, ret = 0;
|
|
uint32_t servers_prop[smt_threads];
|
|
uint32_t gservers_prop[smt_threads * 2];
|
|
int index = ppc_get_vcpu_dt_id(cpu);
|
|
|
|
if (cpu->cpu_version) {
|
|
ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Build interrupt servers and gservers properties */
|
|
for (i = 0; i < smt_threads; i++) {
|
|
servers_prop[i] = cpu_to_be32(index + i);
|
|
/* Hack, direct the group queues back to cpu 0 */
|
|
gservers_prop[i*2] = cpu_to_be32(index + i);
|
|
gservers_prop[i*2 + 1] = 0;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
|
|
servers_prop, sizeof(servers_prop));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
|
|
gservers_prop, sizeof(gservers_prop));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
|
|
{
|
|
int ret = 0;
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
int index = ppc_get_vcpu_dt_id(cpu);
|
|
uint32_t associativity[] = {cpu_to_be32(0x5),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(cs->numa_node),
|
|
cpu_to_be32(index)};
|
|
|
|
/* Advertise NUMA via ibm,associativity */
|
|
if (nb_numa_nodes > 1) {
|
|
ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
|
|
sizeof(associativity));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
|
|
{
|
|
int ret = 0, offset, cpus_offset;
|
|
CPUState *cs;
|
|
char cpu_model[32];
|
|
int smt = kvmppc_smt_threads();
|
|
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
DeviceClass *dc = DEVICE_GET_CLASS(cs);
|
|
int index = ppc_get_vcpu_dt_id(cpu);
|
|
|
|
if ((index % smt) != 0) {
|
|
continue;
|
|
}
|
|
|
|
snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
|
|
|
|
cpus_offset = fdt_path_offset(fdt, "/cpus");
|
|
if (cpus_offset < 0) {
|
|
cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
|
|
"cpus");
|
|
if (cpus_offset < 0) {
|
|
return cpus_offset;
|
|
}
|
|
}
|
|
offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
|
|
if (offset < 0) {
|
|
offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
|
|
if (offset < 0) {
|
|
return offset;
|
|
}
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, offset, "ibm,pft-size",
|
|
pft_size_prop, sizeof(pft_size_prop));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
|
|
ppc_get_compat_smt_threads(cpu));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
|
|
size_t maxsize)
|
|
{
|
|
size_t maxcells = maxsize / sizeof(uint32_t);
|
|
int i, j, count;
|
|
uint32_t *p = prop;
|
|
|
|
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
|
|
struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
|
|
|
|
if (!sps->page_shift) {
|
|
break;
|
|
}
|
|
for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
|
|
if (sps->enc[count].page_shift == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if ((p - prop) >= (maxcells - 3 - count * 2)) {
|
|
break;
|
|
}
|
|
*(p++) = cpu_to_be32(sps->page_shift);
|
|
*(p++) = cpu_to_be32(sps->slb_enc);
|
|
*(p++) = cpu_to_be32(count);
|
|
for (j = 0; j < count; j++) {
|
|
*(p++) = cpu_to_be32(sps->enc[j].page_shift);
|
|
*(p++) = cpu_to_be32(sps->enc[j].pte_enc);
|
|
}
|
|
}
|
|
|
|
return (p - prop) * sizeof(uint32_t);
|
|
}
|
|
|
|
static hwaddr spapr_node0_size(void)
|
|
{
|
|
MachineState *machine = MACHINE(qdev_get_machine());
|
|
|
|
if (nb_numa_nodes) {
|
|
int i;
|
|
for (i = 0; i < nb_numa_nodes; ++i) {
|
|
if (numa_info[i].node_mem) {
|
|
return MIN(pow2floor(numa_info[i].node_mem),
|
|
machine->ram_size);
|
|
}
|
|
}
|
|
}
|
|
return machine->ram_size;
|
|
}
|
|
|
|
#define _FDT(exp) \
|
|
do { \
|
|
int ret = (exp); \
|
|
if (ret < 0) { \
|
|
fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
|
|
#exp, fdt_strerror(ret)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void add_str(GString *s, const gchar *s1)
|
|
{
|
|
g_string_append_len(s, s1, strlen(s1) + 1);
|
|
}
|
|
|
|
static void *spapr_create_fdt_skel(hwaddr initrd_base,
|
|
hwaddr initrd_size,
|
|
hwaddr kernel_size,
|
|
bool little_endian,
|
|
const char *kernel_cmdline,
|
|
uint32_t epow_irq)
|
|
{
|
|
void *fdt;
|
|
uint32_t start_prop = cpu_to_be32(initrd_base);
|
|
uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
|
|
GString *hypertas = g_string_sized_new(256);
|
|
GString *qemu_hypertas = g_string_sized_new(256);
|
|
uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
|
|
uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
|
|
unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
|
|
char *buf;
|
|
|
|
add_str(hypertas, "hcall-pft");
|
|
add_str(hypertas, "hcall-term");
|
|
add_str(hypertas, "hcall-dabr");
|
|
add_str(hypertas, "hcall-interrupt");
|
|
add_str(hypertas, "hcall-tce");
|
|
add_str(hypertas, "hcall-vio");
|
|
add_str(hypertas, "hcall-splpar");
|
|
add_str(hypertas, "hcall-bulk");
|
|
add_str(hypertas, "hcall-set-mode");
|
|
add_str(qemu_hypertas, "hcall-memop1");
|
|
|
|
fdt = g_malloc0(FDT_MAX_SIZE);
|
|
_FDT((fdt_create(fdt, FDT_MAX_SIZE)));
|
|
|
|
if (kernel_size) {
|
|
_FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
|
|
}
|
|
if (initrd_size) {
|
|
_FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
|
|
}
|
|
_FDT((fdt_finish_reservemap(fdt)));
|
|
|
|
/* Root node */
|
|
_FDT((fdt_begin_node(fdt, "")));
|
|
_FDT((fdt_property_string(fdt, "device_type", "chrp")));
|
|
_FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
|
|
_FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
|
|
|
|
/*
|
|
* Add info to guest to indentify which host is it being run on
|
|
* and what is the uuid of the guest
|
|
*/
|
|
if (kvmppc_get_host_model(&buf)) {
|
|
_FDT((fdt_property_string(fdt, "host-model", buf)));
|
|
g_free(buf);
|
|
}
|
|
if (kvmppc_get_host_serial(&buf)) {
|
|
_FDT((fdt_property_string(fdt, "host-serial", buf)));
|
|
g_free(buf);
|
|
}
|
|
|
|
buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
|
|
qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
|
|
qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
|
|
qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
|
|
qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
|
|
qemu_uuid[14], qemu_uuid[15]);
|
|
|
|
_FDT((fdt_property_string(fdt, "vm,uuid", buf)));
|
|
g_free(buf);
|
|
|
|
if (qemu_get_vm_name()) {
|
|
_FDT((fdt_property_string(fdt, "ibm,partition-name",
|
|
qemu_get_vm_name())));
|
|
}
|
|
|
|
_FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
|
|
_FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
|
|
|
|
/* /chosen */
|
|
_FDT((fdt_begin_node(fdt, "chosen")));
|
|
|
|
/* Set Form1_affinity */
|
|
_FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
|
|
|
|
_FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
|
|
_FDT((fdt_property(fdt, "linux,initrd-start",
|
|
&start_prop, sizeof(start_prop))));
|
|
_FDT((fdt_property(fdt, "linux,initrd-end",
|
|
&end_prop, sizeof(end_prop))));
|
|
if (kernel_size) {
|
|
uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
|
|
cpu_to_be64(kernel_size) };
|
|
|
|
_FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
|
|
if (little_endian) {
|
|
_FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
|
|
}
|
|
}
|
|
if (boot_menu) {
|
|
_FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
|
|
}
|
|
_FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
|
|
_FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
|
|
_FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
|
|
|
|
_FDT((fdt_end_node(fdt)));
|
|
|
|
/* RTAS */
|
|
_FDT((fdt_begin_node(fdt, "rtas")));
|
|
|
|
if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
|
|
add_str(hypertas, "hcall-multi-tce");
|
|
}
|
|
_FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
|
|
hypertas->len)));
|
|
g_string_free(hypertas, TRUE);
|
|
_FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
|
|
qemu_hypertas->len)));
|
|
g_string_free(qemu_hypertas, TRUE);
|
|
|
|
_FDT((fdt_property(fdt, "ibm,associativity-reference-points",
|
|
refpoints, sizeof(refpoints))));
|
|
|
|
_FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
|
|
_FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
|
|
RTAS_EVENT_SCAN_RATE)));
|
|
|
|
/*
|
|
* According to PAPR, rtas ibm,os-term does not guarantee a return
|
|
* back to the guest cpu.
|
|
*
|
|
* While an additional ibm,extended-os-term property indicates that
|
|
* rtas call return will always occur. Set this property.
|
|
*/
|
|
_FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
|
|
|
|
_FDT((fdt_end_node(fdt)));
|
|
|
|
/* interrupt controller */
|
|
_FDT((fdt_begin_node(fdt, "interrupt-controller")));
|
|
|
|
_FDT((fdt_property_string(fdt, "device_type",
|
|
"PowerPC-External-Interrupt-Presentation")));
|
|
_FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
|
|
_FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
|
|
_FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
|
|
interrupt_server_ranges_prop,
|
|
sizeof(interrupt_server_ranges_prop))));
|
|
_FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
|
|
_FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
|
|
_FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
|
|
|
|
_FDT((fdt_end_node(fdt)));
|
|
|
|
/* vdevice */
|
|
_FDT((fdt_begin_node(fdt, "vdevice")));
|
|
|
|
_FDT((fdt_property_string(fdt, "device_type", "vdevice")));
|
|
_FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
|
|
_FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
|
|
_FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
|
|
_FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
|
|
_FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
|
|
|
|
_FDT((fdt_end_node(fdt)));
|
|
|
|
/* event-sources */
|
|
spapr_events_fdt_skel(fdt, epow_irq);
|
|
|
|
/* /hypervisor node */
|
|
if (kvm_enabled()) {
|
|
uint8_t hypercall[16];
|
|
|
|
/* indicate KVM hypercall interface */
|
|
_FDT((fdt_begin_node(fdt, "hypervisor")));
|
|
_FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
|
|
if (kvmppc_has_cap_fixup_hcalls()) {
|
|
/*
|
|
* Older KVM versions with older guest kernels were broken with the
|
|
* magic page, don't allow the guest to map it.
|
|
*/
|
|
kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
|
|
sizeof(hypercall));
|
|
_FDT((fdt_property(fdt, "hcall-instructions", hypercall,
|
|
sizeof(hypercall))));
|
|
}
|
|
_FDT((fdt_end_node(fdt)));
|
|
}
|
|
|
|
_FDT((fdt_end_node(fdt))); /* close root node */
|
|
_FDT((fdt_finish(fdt)));
|
|
|
|
return fdt;
|
|
}
|
|
|
|
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
|
|
target_ulong addr, target_ulong size)
|
|
{
|
|
void *fdt, *fdt_skel;
|
|
sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
|
|
|
|
size -= sizeof(hdr);
|
|
|
|
/* Create sceleton */
|
|
fdt_skel = g_malloc0(size);
|
|
_FDT((fdt_create(fdt_skel, size)));
|
|
_FDT((fdt_begin_node(fdt_skel, "")));
|
|
_FDT((fdt_end_node(fdt_skel)));
|
|
_FDT((fdt_finish(fdt_skel)));
|
|
fdt = g_malloc0(size);
|
|
_FDT((fdt_open_into(fdt_skel, fdt, size)));
|
|
g_free(fdt_skel);
|
|
|
|
/* Fix skeleton up */
|
|
_FDT((spapr_fixup_cpu_dt(fdt, spapr)));
|
|
|
|
/* Pack resulting tree */
|
|
_FDT((fdt_pack(fdt)));
|
|
|
|
if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
|
|
trace_spapr_cas_failed(size);
|
|
return -1;
|
|
}
|
|
|
|
cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
|
|
cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
|
|
trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
|
|
g_free(fdt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
|
|
hwaddr size)
|
|
{
|
|
uint32_t associativity[] = {
|
|
cpu_to_be32(0x4), /* length */
|
|
cpu_to_be32(0x0), cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0), cpu_to_be32(nodeid)
|
|
};
|
|
char mem_name[32];
|
|
uint64_t mem_reg_property[2];
|
|
int off;
|
|
|
|
mem_reg_property[0] = cpu_to_be64(start);
|
|
mem_reg_property[1] = cpu_to_be64(size);
|
|
|
|
sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
|
|
off = fdt_add_subnode(fdt, 0, mem_name);
|
|
_FDT(off);
|
|
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
|
|
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
|
|
sizeof(mem_reg_property))));
|
|
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
|
|
sizeof(associativity))));
|
|
}
|
|
|
|
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
hwaddr mem_start, node_size;
|
|
int i, nb_nodes = nb_numa_nodes;
|
|
NodeInfo *nodes = numa_info;
|
|
NodeInfo ramnode;
|
|
|
|
/* No NUMA nodes, assume there is just one node with whole RAM */
|
|
if (!nb_numa_nodes) {
|
|
nb_nodes = 1;
|
|
ramnode.node_mem = machine->ram_size;
|
|
nodes = &ramnode;
|
|
}
|
|
|
|
for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
|
|
if (!nodes[i].node_mem) {
|
|
continue;
|
|
}
|
|
if (mem_start >= machine->ram_size) {
|
|
node_size = 0;
|
|
} else {
|
|
node_size = nodes[i].node_mem;
|
|
if (node_size > machine->ram_size - mem_start) {
|
|
node_size = machine->ram_size - mem_start;
|
|
}
|
|
}
|
|
if (!mem_start) {
|
|
/* ppc_spapr_init() checks for rma_size <= node0_size already */
|
|
spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
|
|
mem_start += spapr->rma_size;
|
|
node_size -= spapr->rma_size;
|
|
}
|
|
for ( ; node_size; ) {
|
|
hwaddr sizetmp = pow2floor(node_size);
|
|
|
|
/* mem_start != 0 here */
|
|
if (ctzl(mem_start) < ctzl(sizetmp)) {
|
|
sizetmp = 1ULL << ctzl(mem_start);
|
|
}
|
|
|
|
spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
|
|
node_size -= sizetmp;
|
|
mem_start += sizetmp;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
|
|
sPAPRMachineState *spapr)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
|
|
int index = ppc_get_vcpu_dt_id(cpu);
|
|
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
|
|
0xffffffff, 0xffffffff};
|
|
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
|
|
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
|
|
uint32_t page_sizes_prop[64];
|
|
size_t page_sizes_prop_size;
|
|
QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
|
|
unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
|
|
uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
|
|
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
|
|
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
|
|
env->dcache_line_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
|
|
env->dcache_line_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
|
|
env->icache_line_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
|
|
env->icache_line_size)));
|
|
|
|
if (pcc->l1_dcache_size) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
|
|
pcc->l1_dcache_size)));
|
|
} else {
|
|
fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
|
|
}
|
|
if (pcc->l1_icache_size) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
|
|
pcc->l1_icache_size)));
|
|
} else {
|
|
fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
|
|
}
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
|
|
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
|
|
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
|
|
|
|
if (env->spr_cb[SPR_PURR].oea_read) {
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
|
|
}
|
|
|
|
if (env->mmu_model & POWERPC_MMU_1TSEG) {
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
|
|
segs, sizeof(segs))));
|
|
}
|
|
|
|
/* Advertise VMX/VSX (vector extensions) if available
|
|
* 0 / no property == no vector extensions
|
|
* 1 == VMX / Altivec available
|
|
* 2 == VSX available */
|
|
if (env->insns_flags & PPC_ALTIVEC) {
|
|
uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
|
|
}
|
|
|
|
/* Advertise DFP (Decimal Floating Point) if available
|
|
* 0 / no property == no DFP
|
|
* 1 == DFP available */
|
|
if (env->insns_flags2 & PPC2_DFP) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
|
|
}
|
|
|
|
page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
|
|
sizeof(page_sizes_prop));
|
|
if (page_sizes_prop_size) {
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
|
|
page_sizes_prop, page_sizes_prop_size)));
|
|
}
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
|
|
cs->cpu_index / cpus_per_socket)));
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
|
|
pft_size_prop, sizeof(pft_size_prop))));
|
|
|
|
_FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
|
|
|
|
_FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
|
|
ppc_get_compat_smt_threads(cpu)));
|
|
}
|
|
|
|
static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
|
|
{
|
|
CPUState *cs;
|
|
int cpus_offset;
|
|
char *nodename;
|
|
int smt = kvmppc_smt_threads();
|
|
|
|
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
|
|
_FDT(cpus_offset);
|
|
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
|
|
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
|
|
|
|
/*
|
|
* We walk the CPUs in reverse order to ensure that CPU DT nodes
|
|
* created by fdt_add_subnode() end up in the right order in FDT
|
|
* for the guest kernel the enumerate the CPUs correctly.
|
|
*/
|
|
CPU_FOREACH_REVERSE(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
int index = ppc_get_vcpu_dt_id(cpu);
|
|
DeviceClass *dc = DEVICE_GET_CLASS(cs);
|
|
int offset;
|
|
|
|
if ((index % smt) != 0) {
|
|
continue;
|
|
}
|
|
|
|
nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
|
|
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
|
|
g_free(nodename);
|
|
_FDT(offset);
|
|
spapr_populate_cpu_dt(cs, fdt, offset, spapr);
|
|
}
|
|
|
|
}
|
|
|
|
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
|
|
hwaddr fdt_addr,
|
|
hwaddr rtas_addr,
|
|
hwaddr rtas_size)
|
|
{
|
|
MachineState *machine = MACHINE(qdev_get_machine());
|
|
const char *boot_device = machine->boot_order;
|
|
int ret, i;
|
|
size_t cb = 0;
|
|
char *bootlist;
|
|
void *fdt;
|
|
sPAPRPHBState *phb;
|
|
|
|
fdt = g_malloc(FDT_MAX_SIZE);
|
|
|
|
/* open out the base tree into a temp buffer for the final tweaks */
|
|
_FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
|
|
|
|
ret = spapr_populate_memory(spapr, fdt);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "couldn't setup memory nodes in fdt\n");
|
|
exit(1);
|
|
}
|
|
|
|
ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "couldn't setup vio devices in fdt\n");
|
|
exit(1);
|
|
}
|
|
|
|
QLIST_FOREACH(phb, &spapr->phbs, list) {
|
|
ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
fprintf(stderr, "couldn't setup PCI devices in fdt\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* RTAS */
|
|
ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
|
|
}
|
|
|
|
/* cpus */
|
|
spapr_populate_cpus_dt_node(fdt, spapr);
|
|
|
|
bootlist = get_boot_devices_list(&cb, true);
|
|
if (cb && bootlist) {
|
|
int offset = fdt_path_offset(fdt, "/chosen");
|
|
if (offset < 0) {
|
|
exit(1);
|
|
}
|
|
for (i = 0; i < cb; i++) {
|
|
if (bootlist[i] == '\n') {
|
|
bootlist[i] = ' ';
|
|
}
|
|
|
|
}
|
|
ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
|
|
}
|
|
|
|
if (boot_device && strlen(boot_device)) {
|
|
int offset = fdt_path_offset(fdt, "/chosen");
|
|
|
|
if (offset < 0) {
|
|
exit(1);
|
|
}
|
|
fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
|
|
}
|
|
|
|
if (!spapr->has_graphics) {
|
|
spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
|
|
}
|
|
|
|
_FDT((fdt_pack(fdt)));
|
|
|
|
if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
|
|
error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
|
|
fdt_totalsize(fdt), FDT_MAX_SIZE);
|
|
exit(1);
|
|
}
|
|
|
|
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
|
|
|
|
g_free(bootlist);
|
|
g_free(fdt);
|
|
}
|
|
|
|
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
|
|
{
|
|
return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
|
|
}
|
|
|
|
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
if (msr_pr) {
|
|
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
|
|
env->gpr[3] = H_PRIVILEGE;
|
|
} else {
|
|
env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
|
|
}
|
|
}
|
|
|
|
#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
|
|
#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
|
|
#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
|
|
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
|
|
#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
|
|
|
|
static void spapr_reset_htab(sPAPRMachineState *spapr)
|
|
{
|
|
long shift;
|
|
int index;
|
|
|
|
/* allocate hash page table. For now we always make this 16mb,
|
|
* later we should probably make it scale to the size of guest
|
|
* RAM */
|
|
|
|
shift = kvmppc_reset_htab(spapr->htab_shift);
|
|
|
|
if (shift > 0) {
|
|
/* Kernel handles htab, we don't need to allocate one */
|
|
spapr->htab_shift = shift;
|
|
kvmppc_kern_htab = true;
|
|
|
|
/* Tell readers to update their file descriptor */
|
|
if (spapr->htab_fd >= 0) {
|
|
spapr->htab_fd_stale = true;
|
|
}
|
|
} else {
|
|
if (!spapr->htab) {
|
|
/* Allocate an htab if we don't yet have one */
|
|
spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
|
|
}
|
|
|
|
/* And clear it */
|
|
memset(spapr->htab, 0, HTAB_SIZE(spapr));
|
|
|
|
for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
|
|
DIRTY_HPTE(HPTE(spapr->htab, index));
|
|
}
|
|
}
|
|
|
|
/* Update the RMA size if necessary */
|
|
if (spapr->vrma_adjust) {
|
|
spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
|
|
spapr->htab_shift);
|
|
}
|
|
}
|
|
|
|
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
|
|
{
|
|
bool matched = false;
|
|
|
|
if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
|
|
matched = true;
|
|
}
|
|
|
|
if (!matched) {
|
|
error_report("Device %s is not supported by this machine yet.",
|
|
qdev_fw_name(DEVICE(sbdev)));
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A guest reset will cause spapr->htab_fd to become stale if being used.
|
|
* Reopen the file descriptor to make sure the whole HTAB is properly read.
|
|
*/
|
|
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (spapr->htab_fd_stale) {
|
|
close(spapr->htab_fd);
|
|
spapr->htab_fd = kvmppc_get_htab_fd(false);
|
|
if (spapr->htab_fd < 0) {
|
|
error_report("Unable to open fd for reading hash table from KVM: "
|
|
"%s", strerror(errno));
|
|
rc = -1;
|
|
}
|
|
spapr->htab_fd_stale = false;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void ppc_spapr_reset(void)
|
|
{
|
|
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
PowerPCCPU *first_ppc_cpu;
|
|
uint32_t rtas_limit;
|
|
|
|
/* Check for unknown sysbus devices */
|
|
foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
|
|
|
|
/* Reset the hash table & recalc the RMA */
|
|
spapr_reset_htab(spapr);
|
|
|
|
qemu_devices_reset();
|
|
|
|
/*
|
|
* We place the device tree and RTAS just below either the top of the RMA,
|
|
* or just below 2GB, whichever is lowere, so that it can be
|
|
* processed with 32-bit real mode code if necessary
|
|
*/
|
|
rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
|
|
spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
|
|
spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
|
|
|
|
/* Load the fdt */
|
|
spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
|
|
spapr->rtas_size);
|
|
|
|
/* Copy RTAS over */
|
|
cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
|
|
spapr->rtas_size);
|
|
|
|
/* Set up the entry state */
|
|
first_ppc_cpu = POWERPC_CPU(first_cpu);
|
|
first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
|
|
first_ppc_cpu->env.gpr[5] = 0;
|
|
first_cpu->halted = 0;
|
|
first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
|
|
|
|
}
|
|
|
|
static void spapr_cpu_reset(void *opaque)
|
|
{
|
|
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
PowerPCCPU *cpu = opaque;
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
cpu_reset(cs);
|
|
|
|
/* All CPUs start halted. CPU0 is unhalted from the machine level
|
|
* reset code and the rest are explicitly started up by the guest
|
|
* using an RTAS call */
|
|
cs->halted = 1;
|
|
|
|
env->spr[SPR_HIOR] = 0;
|
|
|
|
env->external_htab = (uint8_t *)spapr->htab;
|
|
if (kvm_enabled() && !env->external_htab) {
|
|
/*
|
|
* HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
|
|
* functions do the right thing.
|
|
*/
|
|
env->external_htab = (void *)1;
|
|
}
|
|
env->htab_base = -1;
|
|
/*
|
|
* htab_mask is the mask used to normalize hash value to PTEG index.
|
|
* htab_shift is log2 of hash table size.
|
|
* We have 8 hpte per group, and each hpte is 16 bytes.
|
|
* ie have 128 bytes per hpte entry.
|
|
*/
|
|
env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
|
|
env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
|
|
(spapr->htab_shift - 18);
|
|
}
|
|
|
|
static void spapr_create_nvram(sPAPRMachineState *spapr)
|
|
{
|
|
DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
|
|
DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
|
|
|
|
if (dinfo) {
|
|
qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
|
|
}
|
|
|
|
qdev_init_nofail(dev);
|
|
|
|
spapr->nvram = (struct sPAPRNVRAM *)dev;
|
|
}
|
|
|
|
static void spapr_rtc_create(sPAPRMachineState *spapr)
|
|
{
|
|
DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
|
|
|
|
qdev_init_nofail(dev);
|
|
spapr->rtc = dev;
|
|
|
|
object_property_add_alias(qdev_get_machine(), "rtc-time",
|
|
OBJECT(spapr->rtc), "date", NULL);
|
|
}
|
|
|
|
/* Returns whether we want to use VGA or not */
|
|
static int spapr_vga_init(PCIBus *pci_bus)
|
|
{
|
|
switch (vga_interface_type) {
|
|
case VGA_NONE:
|
|
return false;
|
|
case VGA_DEVICE:
|
|
return true;
|
|
case VGA_STD:
|
|
return pci_vga_init(pci_bus) != NULL;
|
|
default:
|
|
fprintf(stderr, "This vga model is not supported,"
|
|
"currently it only supports -vga std\n");
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
static int spapr_post_load(void *opaque, int version_id)
|
|
{
|
|
sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
|
|
int err = 0;
|
|
|
|
/* In earlier versions, there was no separate qdev for the PAPR
|
|
* RTC, so the RTC offset was stored directly in sPAPREnvironment.
|
|
* So when migrating from those versions, poke the incoming offset
|
|
* value into the RTC device */
|
|
if (version_id < 3) {
|
|
err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static bool version_before_3(void *opaque, int version_id)
|
|
{
|
|
return version_id < 3;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr = {
|
|
.name = "spapr",
|
|
.version_id = 3,
|
|
.minimum_version_id = 1,
|
|
.post_load = spapr_post_load,
|
|
.fields = (VMStateField[]) {
|
|
/* used to be @next_irq */
|
|
VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
|
|
|
|
/* RTC offset */
|
|
VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
|
|
|
|
VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static int htab_save_setup(QEMUFile *f, void *opaque)
|
|
{
|
|
sPAPRMachineState *spapr = opaque;
|
|
|
|
/* "Iteration" header */
|
|
qemu_put_be32(f, spapr->htab_shift);
|
|
|
|
if (spapr->htab) {
|
|
spapr->htab_save_index = 0;
|
|
spapr->htab_first_pass = true;
|
|
} else {
|
|
assert(kvm_enabled());
|
|
|
|
spapr->htab_fd = kvmppc_get_htab_fd(false);
|
|
spapr->htab_fd_stale = false;
|
|
if (spapr->htab_fd < 0) {
|
|
fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
|
|
int64_t max_ns)
|
|
{
|
|
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
|
|
int index = spapr->htab_save_index;
|
|
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
|
|
assert(spapr->htab_first_pass);
|
|
|
|
do {
|
|
int chunkstart;
|
|
|
|
/* Consume invalid HPTEs */
|
|
while ((index < htabslots)
|
|
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
index++;
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
}
|
|
|
|
/* Consume valid HPTEs */
|
|
chunkstart = index;
|
|
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
|
|
&& HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
index++;
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
}
|
|
|
|
if (index > chunkstart) {
|
|
int n_valid = index - chunkstart;
|
|
|
|
qemu_put_be32(f, chunkstart);
|
|
qemu_put_be16(f, n_valid);
|
|
qemu_put_be16(f, 0);
|
|
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
|
|
HASH_PTE_SIZE_64 * n_valid);
|
|
|
|
if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
|
|
break;
|
|
}
|
|
}
|
|
} while ((index < htabslots) && !qemu_file_rate_limit(f));
|
|
|
|
if (index >= htabslots) {
|
|
assert(index == htabslots);
|
|
index = 0;
|
|
spapr->htab_first_pass = false;
|
|
}
|
|
spapr->htab_save_index = index;
|
|
}
|
|
|
|
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
|
|
int64_t max_ns)
|
|
{
|
|
bool final = max_ns < 0;
|
|
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
|
|
int examined = 0, sent = 0;
|
|
int index = spapr->htab_save_index;
|
|
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
|
|
assert(!spapr->htab_first_pass);
|
|
|
|
do {
|
|
int chunkstart, invalidstart;
|
|
|
|
/* Consume non-dirty HPTEs */
|
|
while ((index < htabslots)
|
|
&& !HPTE_DIRTY(HPTE(spapr->htab, index))) {
|
|
index++;
|
|
examined++;
|
|
}
|
|
|
|
chunkstart = index;
|
|
/* Consume valid dirty HPTEs */
|
|
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
|
|
&& HPTE_DIRTY(HPTE(spapr->htab, index))
|
|
&& HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
index++;
|
|
examined++;
|
|
}
|
|
|
|
invalidstart = index;
|
|
/* Consume invalid dirty HPTEs */
|
|
while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
|
|
&& HPTE_DIRTY(HPTE(spapr->htab, index))
|
|
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
index++;
|
|
examined++;
|
|
}
|
|
|
|
if (index > chunkstart) {
|
|
int n_valid = invalidstart - chunkstart;
|
|
int n_invalid = index - invalidstart;
|
|
|
|
qemu_put_be32(f, chunkstart);
|
|
qemu_put_be16(f, n_valid);
|
|
qemu_put_be16(f, n_invalid);
|
|
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
|
|
HASH_PTE_SIZE_64 * n_valid);
|
|
sent += index - chunkstart;
|
|
|
|
if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (examined >= htabslots) {
|
|
break;
|
|
}
|
|
|
|
if (index >= htabslots) {
|
|
assert(index == htabslots);
|
|
index = 0;
|
|
}
|
|
} while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
|
|
|
|
if (index >= htabslots) {
|
|
assert(index == htabslots);
|
|
index = 0;
|
|
}
|
|
|
|
spapr->htab_save_index = index;
|
|
|
|
return (examined >= htabslots) && (sent == 0) ? 1 : 0;
|
|
}
|
|
|
|
#define MAX_ITERATION_NS 5000000 /* 5 ms */
|
|
#define MAX_KVM_BUF_SIZE 2048
|
|
|
|
static int htab_save_iterate(QEMUFile *f, void *opaque)
|
|
{
|
|
sPAPRMachineState *spapr = opaque;
|
|
int rc = 0;
|
|
|
|
/* Iteration header */
|
|
qemu_put_be32(f, 0);
|
|
|
|
if (!spapr->htab) {
|
|
assert(kvm_enabled());
|
|
|
|
rc = spapr_check_htab_fd(spapr);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
|
|
rc = kvmppc_save_htab(f, spapr->htab_fd,
|
|
MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
} else if (spapr->htab_first_pass) {
|
|
htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
|
|
} else {
|
|
rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
|
|
}
|
|
|
|
/* End marker */
|
|
qemu_put_be32(f, 0);
|
|
qemu_put_be16(f, 0);
|
|
qemu_put_be16(f, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int htab_save_complete(QEMUFile *f, void *opaque)
|
|
{
|
|
sPAPRMachineState *spapr = opaque;
|
|
|
|
/* Iteration header */
|
|
qemu_put_be32(f, 0);
|
|
|
|
if (!spapr->htab) {
|
|
int rc;
|
|
|
|
assert(kvm_enabled());
|
|
|
|
rc = spapr_check_htab_fd(spapr);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
|
|
rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
close(spapr->htab_fd);
|
|
spapr->htab_fd = -1;
|
|
} else {
|
|
htab_save_later_pass(f, spapr, -1);
|
|
}
|
|
|
|
/* End marker */
|
|
qemu_put_be32(f, 0);
|
|
qemu_put_be16(f, 0);
|
|
qemu_put_be16(f, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int htab_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
sPAPRMachineState *spapr = opaque;
|
|
uint32_t section_hdr;
|
|
int fd = -1;
|
|
|
|
if (version_id < 1 || version_id > 1) {
|
|
fprintf(stderr, "htab_load() bad version\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
section_hdr = qemu_get_be32(f);
|
|
|
|
if (section_hdr) {
|
|
/* First section, just the hash shift */
|
|
if (spapr->htab_shift != section_hdr) {
|
|
error_report("htab_shift mismatch: source %d target %d",
|
|
section_hdr, spapr->htab_shift);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (!spapr->htab) {
|
|
assert(kvm_enabled());
|
|
|
|
fd = kvmppc_get_htab_fd(true);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
|
|
strerror(errno));
|
|
}
|
|
}
|
|
|
|
while (true) {
|
|
uint32_t index;
|
|
uint16_t n_valid, n_invalid;
|
|
|
|
index = qemu_get_be32(f);
|
|
n_valid = qemu_get_be16(f);
|
|
n_invalid = qemu_get_be16(f);
|
|
|
|
if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
|
|
/* End of Stream */
|
|
break;
|
|
}
|
|
|
|
if ((index + n_valid + n_invalid) >
|
|
(HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
|
|
/* Bad index in stream */
|
|
fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
|
|
"in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
|
|
spapr->htab_shift);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (spapr->htab) {
|
|
if (n_valid) {
|
|
qemu_get_buffer(f, HPTE(spapr->htab, index),
|
|
HASH_PTE_SIZE_64 * n_valid);
|
|
}
|
|
if (n_invalid) {
|
|
memset(HPTE(spapr->htab, index + n_valid), 0,
|
|
HASH_PTE_SIZE_64 * n_invalid);
|
|
}
|
|
} else {
|
|
int rc;
|
|
|
|
assert(fd >= 0);
|
|
|
|
rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!spapr->htab) {
|
|
assert(fd >= 0);
|
|
close(fd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SaveVMHandlers savevm_htab_handlers = {
|
|
.save_live_setup = htab_save_setup,
|
|
.save_live_iterate = htab_save_iterate,
|
|
.save_live_complete = htab_save_complete,
|
|
.load_state = htab_load,
|
|
};
|
|
|
|
static void spapr_boot_set(void *opaque, const char *boot_device,
|
|
Error **errp)
|
|
{
|
|
MachineState *machine = MACHINE(qdev_get_machine());
|
|
machine->boot_order = g_strdup(boot_device);
|
|
}
|
|
|
|
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
/* Set time-base frequency to 512 MHz */
|
|
cpu_ppc_tb_init(env, TIMEBASE_FREQ);
|
|
|
|
/* PAPR always has exception vectors in RAM not ROM. To ensure this,
|
|
* MSR[IP] should never be set.
|
|
*/
|
|
env->msr_mask &= ~(1 << 6);
|
|
|
|
/* Tell KVM that we're in PAPR mode */
|
|
if (kvm_enabled()) {
|
|
kvmppc_set_papr(cpu);
|
|
}
|
|
|
|
if (cpu->max_compat) {
|
|
if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
xics_cpu_setup(spapr->icp, cpu);
|
|
|
|
qemu_register_reset(spapr_cpu_reset, cpu);
|
|
}
|
|
|
|
/* pSeries LPAR / sPAPR hardware init */
|
|
static void ppc_spapr_init(MachineState *machine)
|
|
{
|
|
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
|
|
const char *kernel_filename = machine->kernel_filename;
|
|
const char *kernel_cmdline = machine->kernel_cmdline;
|
|
const char *initrd_filename = machine->initrd_filename;
|
|
PowerPCCPU *cpu;
|
|
PCIHostState *phb;
|
|
int i;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *ram = g_new(MemoryRegion, 1);
|
|
MemoryRegion *rma_region;
|
|
void *rma = NULL;
|
|
hwaddr rma_alloc_size;
|
|
hwaddr node0_size = spapr_node0_size();
|
|
uint32_t initrd_base = 0;
|
|
long kernel_size = 0, initrd_size = 0;
|
|
long load_limit, fw_size;
|
|
bool kernel_le = false;
|
|
char *filename;
|
|
|
|
msi_supported = true;
|
|
|
|
QLIST_INIT(&spapr->phbs);
|
|
|
|
cpu_ppc_hypercall = emulate_spapr_hypercall;
|
|
|
|
/* Allocate RMA if necessary */
|
|
rma_alloc_size = kvmppc_alloc_rma(&rma);
|
|
|
|
if (rma_alloc_size == -1) {
|
|
error_report("Unable to create RMA");
|
|
exit(1);
|
|
}
|
|
|
|
if (rma_alloc_size && (rma_alloc_size < node0_size)) {
|
|
spapr->rma_size = rma_alloc_size;
|
|
} else {
|
|
spapr->rma_size = node0_size;
|
|
|
|
/* With KVM, we don't actually know whether KVM supports an
|
|
* unbounded RMA (PR KVM) or is limited by the hash table size
|
|
* (HV KVM using VRMA), so we always assume the latter
|
|
*
|
|
* In that case, we also limit the initial allocations for RTAS
|
|
* etc... to 256M since we have no way to know what the VRMA size
|
|
* is going to be as it depends on the size of the hash table
|
|
* isn't determined yet.
|
|
*/
|
|
if (kvm_enabled()) {
|
|
spapr->vrma_adjust = 1;
|
|
spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
|
|
}
|
|
}
|
|
|
|
if (spapr->rma_size > node0_size) {
|
|
fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
|
|
spapr->rma_size);
|
|
exit(1);
|
|
}
|
|
|
|
/* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
|
|
load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
|
|
|
|
/* We aim for a hash table of size 1/128 the size of RAM. The
|
|
* normal rule of thumb is 1/64 the size of RAM, but that's much
|
|
* more than needed for the Linux guests we support. */
|
|
spapr->htab_shift = 18; /* Minimum architected size */
|
|
while (spapr->htab_shift <= 46) {
|
|
if ((1ULL << (spapr->htab_shift + 7)) >= machine->ram_size) {
|
|
break;
|
|
}
|
|
spapr->htab_shift++;
|
|
}
|
|
|
|
/* Set up Interrupt Controller before we create the VCPUs */
|
|
spapr->icp = xics_system_init(machine,
|
|
DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
|
|
smp_threads),
|
|
XICS_IRQS);
|
|
|
|
/* init CPUs */
|
|
if (machine->cpu_model == NULL) {
|
|
machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
|
|
}
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
cpu = cpu_ppc_init(machine->cpu_model);
|
|
if (cpu == NULL) {
|
|
fprintf(stderr, "Unable to find PowerPC CPU definition\n");
|
|
exit(1);
|
|
}
|
|
spapr_cpu_init(spapr, cpu);
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
/* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
|
|
kvmppc_enable_logical_ci_hcalls();
|
|
}
|
|
|
|
/* allocate RAM */
|
|
memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
|
|
machine->ram_size);
|
|
memory_region_add_subregion(sysmem, 0, ram);
|
|
|
|
if (rma_alloc_size && rma) {
|
|
rma_region = g_new(MemoryRegion, 1);
|
|
memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
|
|
rma_alloc_size, rma);
|
|
vmstate_register_ram_global(rma_region);
|
|
memory_region_add_subregion(sysmem, 0, rma_region);
|
|
}
|
|
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
|
|
if (!filename) {
|
|
error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
|
|
exit(1);
|
|
}
|
|
spapr->rtas_size = get_image_size(filename);
|
|
spapr->rtas_blob = g_malloc(spapr->rtas_size);
|
|
if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
|
|
error_report("Could not load LPAR rtas '%s'", filename);
|
|
exit(1);
|
|
}
|
|
if (spapr->rtas_size > RTAS_MAX_SIZE) {
|
|
error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
|
|
(size_t)spapr->rtas_size, RTAS_MAX_SIZE);
|
|
exit(1);
|
|
}
|
|
g_free(filename);
|
|
|
|
/* Set up EPOW events infrastructure */
|
|
spapr_events_init(spapr);
|
|
|
|
/* Set up the RTC RTAS interfaces */
|
|
spapr_rtc_create(spapr);
|
|
|
|
/* Set up VIO bus */
|
|
spapr->vio_bus = spapr_vio_bus_init();
|
|
|
|
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
|
|
if (serial_hds[i]) {
|
|
spapr_vty_create(spapr->vio_bus, serial_hds[i]);
|
|
}
|
|
}
|
|
|
|
/* We always have at least the nvram device on VIO */
|
|
spapr_create_nvram(spapr);
|
|
|
|
/* Set up PCI */
|
|
spapr_pci_rtas_init();
|
|
|
|
phb = spapr_create_phb(spapr, 0);
|
|
|
|
for (i = 0; i < nb_nics; i++) {
|
|
NICInfo *nd = &nd_table[i];
|
|
|
|
if (!nd->model) {
|
|
nd->model = g_strdup("ibmveth");
|
|
}
|
|
|
|
if (strcmp(nd->model, "ibmveth") == 0) {
|
|
spapr_vlan_create(spapr->vio_bus, nd);
|
|
} else {
|
|
pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
|
|
spapr_vscsi_create(spapr->vio_bus);
|
|
}
|
|
|
|
/* Graphics */
|
|
if (spapr_vga_init(phb->bus)) {
|
|
spapr->has_graphics = true;
|
|
machine->usb |= defaults_enabled() && !machine->usb_disabled;
|
|
}
|
|
|
|
if (machine->usb) {
|
|
pci_create_simple(phb->bus, -1, "pci-ohci");
|
|
|
|
if (spapr->has_graphics) {
|
|
USBBus *usb_bus = usb_bus_find(-1);
|
|
|
|
usb_create_simple(usb_bus, "usb-kbd");
|
|
usb_create_simple(usb_bus, "usb-mouse");
|
|
}
|
|
}
|
|
|
|
if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
|
|
fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
|
|
"%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
|
|
exit(1);
|
|
}
|
|
|
|
if (kernel_filename) {
|
|
uint64_t lowaddr = 0;
|
|
|
|
kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
|
|
NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
|
|
if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
|
|
kernel_size = load_elf(kernel_filename,
|
|
translate_kernel_address, NULL,
|
|
NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
|
|
kernel_le = kernel_size > 0;
|
|
}
|
|
if (kernel_size < 0) {
|
|
fprintf(stderr, "qemu: error loading %s: %s\n",
|
|
kernel_filename, load_elf_strerror(kernel_size));
|
|
exit(1);
|
|
}
|
|
|
|
/* load initrd */
|
|
if (initrd_filename) {
|
|
/* Try to locate the initrd in the gap between the kernel
|
|
* and the firmware. Add a bit of space just in case
|
|
*/
|
|
initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
|
|
initrd_size = load_image_targphys(initrd_filename, initrd_base,
|
|
load_limit - initrd_base);
|
|
if (initrd_size < 0) {
|
|
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
|
|
initrd_filename);
|
|
exit(1);
|
|
}
|
|
} else {
|
|
initrd_base = 0;
|
|
initrd_size = 0;
|
|
}
|
|
}
|
|
|
|
if (bios_name == NULL) {
|
|
bios_name = FW_FILE_NAME;
|
|
}
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
if (!filename) {
|
|
error_report("Could not find LPAR firmware '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
|
|
if (fw_size <= 0) {
|
|
error_report("Could not load LPAR firmware '%s'", filename);
|
|
exit(1);
|
|
}
|
|
g_free(filename);
|
|
|
|
/* FIXME: Should register things through the MachineState's qdev
|
|
* interface, this is a legacy from the sPAPREnvironment structure
|
|
* which predated MachineState but had a similar function */
|
|
vmstate_register(NULL, 0, &vmstate_spapr, spapr);
|
|
register_savevm_live(NULL, "spapr/htab", -1, 1,
|
|
&savevm_htab_handlers, spapr);
|
|
|
|
/* Prepare the device tree */
|
|
spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
|
|
kernel_size, kernel_le,
|
|
kernel_cmdline,
|
|
spapr->check_exception_irq);
|
|
assert(spapr->fdt_skel != NULL);
|
|
|
|
/* used by RTAS */
|
|
QTAILQ_INIT(&spapr->ccs_list);
|
|
qemu_register_reset(spapr_ccs_reset_hook, spapr);
|
|
|
|
qemu_register_boot_set(spapr_boot_set, spapr);
|
|
}
|
|
|
|
static int spapr_kvm_type(const char *vm_type)
|
|
{
|
|
if (!vm_type) {
|
|
return 0;
|
|
}
|
|
|
|
if (!strcmp(vm_type, "HV")) {
|
|
return 1;
|
|
}
|
|
|
|
if (!strcmp(vm_type, "PR")) {
|
|
return 2;
|
|
}
|
|
|
|
error_report("Unknown kvm-type specified '%s'", vm_type);
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Implementation of an interface to adjust firmware path
|
|
* for the bootindex property handling.
|
|
*/
|
|
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
|
|
DeviceState *dev)
|
|
{
|
|
#define CAST(type, obj, name) \
|
|
((type *)object_dynamic_cast(OBJECT(obj), (name)))
|
|
SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
|
|
sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
|
|
|
|
if (d) {
|
|
void *spapr = CAST(void, bus->parent, "spapr-vscsi");
|
|
VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
|
|
USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
|
|
|
|
if (spapr) {
|
|
/*
|
|
* Replace "channel@0/disk@0,0" with "disk@8000000000000000":
|
|
* We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
|
|
* in the top 16 bits of the 64-bit LUN
|
|
*/
|
|
unsigned id = 0x8000 | (d->id << 8) | d->lun;
|
|
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
|
|
(uint64_t)id << 48);
|
|
} else if (virtio) {
|
|
/*
|
|
* We use SRP luns of the form 01000000 | (target << 8) | lun
|
|
* in the top 32 bits of the 64-bit LUN
|
|
* Note: the quote above is from SLOF and it is wrong,
|
|
* the actual binding is:
|
|
* swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
|
|
*/
|
|
unsigned id = 0x1000000 | (d->id << 16) | d->lun;
|
|
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
|
|
(uint64_t)id << 32);
|
|
} else if (usb) {
|
|
/*
|
|
* We use SRP luns of the form 01000000 | (usb-port << 16) | lun
|
|
* in the top 32 bits of the 64-bit LUN
|
|
*/
|
|
unsigned usb_port = atoi(usb->port->path);
|
|
unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
|
|
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
|
|
(uint64_t)id << 32);
|
|
}
|
|
}
|
|
|
|
if (phb) {
|
|
/* Replace "pci" with "pci@800000020000000" */
|
|
return g_strdup_printf("pci@%"PRIX64, phb->buid);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static char *spapr_get_kvm_type(Object *obj, Error **errp)
|
|
{
|
|
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
return g_strdup(spapr->kvm_type);
|
|
}
|
|
|
|
static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
|
|
{
|
|
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
g_free(spapr->kvm_type);
|
|
spapr->kvm_type = g_strdup(value);
|
|
}
|
|
|
|
static void spapr_machine_initfn(Object *obj)
|
|
{
|
|
object_property_add_str(obj, "kvm-type",
|
|
spapr_get_kvm_type, spapr_set_kvm_type, NULL);
|
|
object_property_set_description(obj, "kvm-type",
|
|
"Specifies the KVM virtualization mode (HV, PR)",
|
|
NULL);
|
|
}
|
|
|
|
static void ppc_cpu_do_nmi_on_cpu(void *arg)
|
|
{
|
|
CPUState *cs = arg;
|
|
|
|
cpu_synchronize_state(cs);
|
|
ppc_cpu_do_system_reset(cs);
|
|
}
|
|
|
|
static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
|
|
{
|
|
CPUState *cs;
|
|
|
|
CPU_FOREACH(cs) {
|
|
async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
|
|
}
|
|
}
|
|
|
|
static void spapr_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
|
|
NMIClass *nc = NMI_CLASS(oc);
|
|
|
|
mc->init = ppc_spapr_init;
|
|
mc->reset = ppc_spapr_reset;
|
|
mc->block_default_type = IF_SCSI;
|
|
mc->max_cpus = MAX_CPUS;
|
|
mc->no_parallel = 1;
|
|
mc->default_boot_order = "";
|
|
mc->default_ram_size = 512 * M_BYTE;
|
|
mc->kvm_type = spapr_kvm_type;
|
|
mc->has_dynamic_sysbus = true;
|
|
mc->pci_allow_0_address = true;
|
|
|
|
fwc->get_dev_path = spapr_get_fw_dev_path;
|
|
nc->nmi_monitor_handler = spapr_nmi;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_info = {
|
|
.name = TYPE_SPAPR_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(sPAPRMachineState),
|
|
.instance_init = spapr_machine_initfn,
|
|
.class_size = sizeof(sPAPRMachineClass),
|
|
.class_init = spapr_machine_class_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_FW_PATH_PROVIDER },
|
|
{ TYPE_NMI },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
#define SPAPR_COMPAT_2_3 \
|
|
HW_COMPAT_2_3 \
|
|
{\
|
|
.driver = "spapr-pci-host-bridge",\
|
|
.property = "dynamic-reconfiguration",\
|
|
.value = "off",\
|
|
},
|
|
|
|
#define SPAPR_COMPAT_2_2 \
|
|
SPAPR_COMPAT_2_3 \
|
|
HW_COMPAT_2_2 \
|
|
{\
|
|
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
|
|
.property = "mem_win_size",\
|
|
.value = "0x20000000",\
|
|
},
|
|
|
|
#define SPAPR_COMPAT_2_1 \
|
|
SPAPR_COMPAT_2_2 \
|
|
HW_COMPAT_2_1
|
|
|
|
static void spapr_compat_2_3(Object *obj)
|
|
{
|
|
savevm_skip_section_footers();
|
|
global_state_set_optional();
|
|
}
|
|
|
|
static void spapr_compat_2_2(Object *obj)
|
|
{
|
|
spapr_compat_2_3(obj);
|
|
}
|
|
|
|
static void spapr_compat_2_1(Object *obj)
|
|
{
|
|
spapr_compat_2_2(obj);
|
|
}
|
|
|
|
static void spapr_machine_2_3_instance_init(Object *obj)
|
|
{
|
|
spapr_compat_2_3(obj);
|
|
spapr_machine_initfn(obj);
|
|
}
|
|
|
|
static void spapr_machine_2_2_instance_init(Object *obj)
|
|
{
|
|
spapr_compat_2_2(obj);
|
|
spapr_machine_initfn(obj);
|
|
}
|
|
|
|
static void spapr_machine_2_1_instance_init(Object *obj)
|
|
{
|
|
spapr_compat_2_1(obj);
|
|
spapr_machine_initfn(obj);
|
|
}
|
|
|
|
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
static GlobalProperty compat_props[] = {
|
|
SPAPR_COMPAT_2_1
|
|
{ /* end of list */ }
|
|
};
|
|
|
|
mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
|
|
mc->compat_props = compat_props;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_2_1_info = {
|
|
.name = MACHINE_TYPE_NAME("pseries-2.1"),
|
|
.parent = TYPE_SPAPR_MACHINE,
|
|
.class_init = spapr_machine_2_1_class_init,
|
|
.instance_init = spapr_machine_2_1_instance_init,
|
|
};
|
|
|
|
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
static GlobalProperty compat_props[] = {
|
|
SPAPR_COMPAT_2_2
|
|
{ /* end of list */ }
|
|
};
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
|
|
mc->compat_props = compat_props;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_2_2_info = {
|
|
.name = MACHINE_TYPE_NAME("pseries-2.2"),
|
|
.parent = TYPE_SPAPR_MACHINE,
|
|
.class_init = spapr_machine_2_2_class_init,
|
|
.instance_init = spapr_machine_2_2_instance_init,
|
|
};
|
|
|
|
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
static GlobalProperty compat_props[] = {
|
|
SPAPR_COMPAT_2_3
|
|
{ /* end of list */ }
|
|
};
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
|
|
mc->compat_props = compat_props;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_2_3_info = {
|
|
.name = MACHINE_TYPE_NAME("pseries-2.3"),
|
|
.parent = TYPE_SPAPR_MACHINE,
|
|
.class_init = spapr_machine_2_3_class_init,
|
|
.instance_init = spapr_machine_2_3_instance_init,
|
|
};
|
|
|
|
static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
|
|
mc->alias = "pseries";
|
|
mc->is_default = 0;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_2_4_info = {
|
|
.name = MACHINE_TYPE_NAME("pseries-2.4"),
|
|
.parent = TYPE_SPAPR_MACHINE,
|
|
.class_init = spapr_machine_2_4_class_init,
|
|
};
|
|
|
|
static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->name = "pseries-2.5";
|
|
mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
|
|
mc->alias = "pseries";
|
|
mc->is_default = 1;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_2_5_info = {
|
|
.name = MACHINE_TYPE_NAME("pseries-2.5"),
|
|
.parent = TYPE_SPAPR_MACHINE,
|
|
.class_init = spapr_machine_2_5_class_init,
|
|
};
|
|
|
|
static void spapr_machine_register_types(void)
|
|
{
|
|
type_register_static(&spapr_machine_info);
|
|
type_register_static(&spapr_machine_2_1_info);
|
|
type_register_static(&spapr_machine_2_2_info);
|
|
type_register_static(&spapr_machine_2_3_info);
|
|
type_register_static(&spapr_machine_2_4_info);
|
|
type_register_static(&spapr_machine_2_5_info);
|
|
}
|
|
|
|
type_init(spapr_machine_register_types)
|