310616d367
The code for handling the reset level count in the Resettable code
has two issues:
The reset count is only decremented for the 1->0 case. This means
that if there's ever a nested reset that takes the count to 2 then it
will never again be decremented. Eventually the count will exceed
the '50' limit in resettable_phase_enter() and QEMU will trip over
the assertion failure. The repro case in issue 1266 is an example of
this that happens now the SCSI subsystem uses three-phase reset.
Secondly, the count is decremented only after the exit phase handler
is called. Moving the reset count decrement from "just after" to
"just before" calling the exit phase handler allows
resettable_is_in_reset() to return false during the handler
execution.
This simplifies reset handling in resettable devices. Typically, a
function that updates the device state will just need to read the
current reset state and not anymore treat the "in a reset-exit
transition" as a special case.
Note that the semantics change to the *_is_in_reset() functions
will have no effect on the current codebase, because only two
devices (hw/char/cadence_uart.c and hw/misc/zynq_sclr.c) currently
call those functions, and in neither case do they do it from the
device's exit phase methed.
Fixes: 4a5fc890
("scsi: Use device_cold_reset() and bus_cold_reset()")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1266
Signed-off-by: Damien Hedde <damien.hedde@greensocs.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reported-by: Michael Peter <michael.peter@hensoldt-cyber.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20221020142749.3357951-1-peter.maydell@linaro.org
Buglink: https://bugs.launchpad.net/qemu/+bug/1905297
Reported-by: Michael Peter <michael.peter@hensoldt-cyber.com>
[PMM: adjust the docs paragraph changed to get the name of the
'enter' phase right and to clarify exactly when the count is
adjusted; rewrite the commit message]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
292 lines
12 KiB
ReStructuredText
292 lines
12 KiB
ReStructuredText
|
|
=======================================
|
|
Reset in QEMU: the Resettable interface
|
|
=======================================
|
|
|
|
The reset of qemu objects is handled using the resettable interface declared
|
|
in ``include/hw/resettable.h``.
|
|
|
|
This interface allows objects to be grouped (on a tree basis); so that the
|
|
whole group can be reset consistently. Each individual member object does not
|
|
have to care about others; in particular, problems of order (which object is
|
|
reset first) are addressed.
|
|
|
|
As of now DeviceClass and BusClass implement this interface.
|
|
|
|
|
|
Triggering reset
|
|
----------------
|
|
|
|
This section documents the APIs which "users" of a resettable object should use
|
|
to control it. All resettable control functions must be called while holding
|
|
the iothread lock.
|
|
|
|
You can apply a reset to an object using ``resettable_assert_reset()``. You need
|
|
to call ``resettable_release_reset()`` to release the object from reset. To
|
|
instantly reset an object, without keeping it in reset state, just call
|
|
``resettable_reset()``. These functions take two parameters: a pointer to the
|
|
object to reset and a reset type.
|
|
|
|
Several types of reset will be supported. For now only cold reset is defined;
|
|
others may be added later. The Resettable interface handles reset types with an
|
|
enum:
|
|
|
|
``RESET_TYPE_COLD``
|
|
Cold reset is supported by every resettable object. In QEMU, it means we reset
|
|
to the initial state corresponding to the start of QEMU; this might differ
|
|
from what is a real hardware cold reset. It differs from other resets (like
|
|
warm or bus resets) which may keep certain parts untouched.
|
|
|
|
Calling ``resettable_reset()`` is equivalent to calling
|
|
``resettable_assert_reset()`` then ``resettable_release_reset()``. It is
|
|
possible to interleave multiple calls to these three functions. There may
|
|
be several reset sources/controllers of a given object. The interface handles
|
|
everything and the different reset controllers do not need to know anything
|
|
about each others. The object will leave reset state only when each other
|
|
controllers end their reset operation. This point is handled internally by
|
|
maintaining a count of in-progress resets; it is crucial to call
|
|
``resettable_release_reset()`` one time and only one time per
|
|
``resettable_assert_reset()`` call.
|
|
|
|
For now migration of a device or bus in reset is not supported. Care must be
|
|
taken not to delay ``resettable_release_reset()`` after its
|
|
``resettable_assert_reset()`` counterpart.
|
|
|
|
Note that, since resettable is an interface, the API takes a simple Object as
|
|
parameter. Still, it is a programming error to call a resettable function on a
|
|
non-resettable object and it will trigger a run time assert error. Since most
|
|
calls to resettable interface are done through base class functions, such an
|
|
error is not likely to happen.
|
|
|
|
For Devices and Buses, the following helper functions exist:
|
|
|
|
- ``device_cold_reset()``
|
|
- ``bus_cold_reset()``
|
|
|
|
These are simple wrappers around resettable_reset() function; they only cast the
|
|
Device or Bus into an Object and pass the cold reset type. When possible
|
|
prefer to use these functions instead of ``resettable_reset()``.
|
|
|
|
Device and bus functions co-exist because there can be semantic differences
|
|
between resetting a bus and resetting the controller bridge which owns it.
|
|
For example, consider a SCSI controller. Resetting the controller puts all
|
|
its registers back to what reset state was as well as reset everything on the
|
|
SCSI bus, whereas resetting just the SCSI bus only resets everything that's on
|
|
it but not the controller.
|
|
|
|
|
|
Multi-phase mechanism
|
|
---------------------
|
|
|
|
This section documents the internals of the resettable interface.
|
|
|
|
The resettable interface uses a multi-phase system to relieve objects and
|
|
machines from reset ordering problems. To address this, the reset operation
|
|
of an object is split into three well defined phases.
|
|
|
|
When resetting several objects (for example the whole machine at simulation
|
|
startup), all first phases of all objects are executed, then all second phases
|
|
and then all third phases.
|
|
|
|
The three phases are:
|
|
|
|
1. The **enter** phase is executed when the object enters reset. It resets only
|
|
local state of the object; it must not do anything that has a side-effect
|
|
on other objects, such as raising or lowering a qemu_irq line or reading or
|
|
writing guest memory.
|
|
|
|
2. The **hold** phase is executed for entry into reset, once every object in the
|
|
group which is being reset has had its *enter* phase executed. At this point
|
|
devices can do actions that affect other objects.
|
|
|
|
3. The **exit** phase is executed when the object leaves the reset state.
|
|
Actions affecting other objects are permitted.
|
|
|
|
As said in previous section, the interface maintains a count of reset. This
|
|
count is used to ensure phases are executed only when required. *enter* and
|
|
*hold* phases are executed only when asserting reset for the first time
|
|
(if an object is already in reset state when calling
|
|
``resettable_assert_reset()`` or ``resettable_reset()``, they are not
|
|
executed).
|
|
The *exit* phase is executed only when the last reset operation ends. Therefore
|
|
the object does not need to care how many of reset controllers it has and how
|
|
many of them have started a reset.
|
|
|
|
|
|
Handling reset in a resettable object
|
|
-------------------------------------
|
|
|
|
This section documents the APIs that an implementation of a resettable object
|
|
must provide and what functions it has access to. It is intended for people
|
|
who want to implement or convert a class which has the resettable interface;
|
|
for example when specializing an existing device or bus.
|
|
|
|
Methods to implement
|
|
....................
|
|
|
|
Three methods should be defined or left empty. Each method corresponds to a
|
|
phase of the reset; they are name ``phases.enter()``, ``phases.hold()`` and
|
|
``phases.exit()``. They all take the object as parameter. The *enter* method
|
|
also take the reset type as second parameter.
|
|
|
|
When extending an existing class, these methods may need to be extended too.
|
|
The ``resettable_class_set_parent_phases()`` class function may be used to
|
|
backup parent class methods.
|
|
|
|
Here follows an example to implement reset for a Device which sets an IO while
|
|
in reset.
|
|
|
|
::
|
|
|
|
static void mydev_reset_enter(Object *obj, ResetType type)
|
|
{
|
|
MyDevClass *myclass = MYDEV_GET_CLASS(obj);
|
|
MyDevState *mydev = MYDEV(obj);
|
|
/* call parent class enter phase */
|
|
if (myclass->parent_phases.enter) {
|
|
myclass->parent_phases.enter(obj, type);
|
|
}
|
|
/* initialize local state only */
|
|
mydev->var = 0;
|
|
}
|
|
|
|
static void mydev_reset_hold(Object *obj)
|
|
{
|
|
MyDevClass *myclass = MYDEV_GET_CLASS(obj);
|
|
MyDevState *mydev = MYDEV(obj);
|
|
/* call parent class hold phase */
|
|
if (myclass->parent_phases.hold) {
|
|
myclass->parent_phases.hold(obj);
|
|
}
|
|
/* set an IO */
|
|
qemu_set_irq(mydev->irq, 1);
|
|
}
|
|
|
|
static void mydev_reset_exit(Object *obj)
|
|
{
|
|
MyDevClass *myclass = MYDEV_GET_CLASS(obj);
|
|
MyDevState *mydev = MYDEV(obj);
|
|
/* call parent class exit phase */
|
|
if (myclass->parent_phases.exit) {
|
|
myclass->parent_phases.exit(obj);
|
|
}
|
|
/* clear an IO */
|
|
qemu_set_irq(mydev->irq, 0);
|
|
}
|
|
|
|
typedef struct MyDevClass {
|
|
MyParentClass parent_class;
|
|
/* to store eventual parent reset methods */
|
|
ResettablePhases parent_phases;
|
|
} MyDevClass;
|
|
|
|
static void mydev_class_init(ObjectClass *class, void *data)
|
|
{
|
|
MyDevClass *myclass = MYDEV_CLASS(class);
|
|
ResettableClass *rc = RESETTABLE_CLASS(class);
|
|
resettable_class_set_parent_reset_phases(rc,
|
|
mydev_reset_enter,
|
|
mydev_reset_hold,
|
|
mydev_reset_exit,
|
|
&myclass->parent_phases);
|
|
}
|
|
|
|
In the above example, we override all three phases. It is possible to override
|
|
only some of them by passing NULL instead of a function pointer to
|
|
``resettable_class_set_parent_reset_phases()``. For example, the following will
|
|
only override the *enter* phase and leave *hold* and *exit* untouched::
|
|
|
|
resettable_class_set_parent_reset_phases(rc, mydev_reset_enter,
|
|
NULL, NULL,
|
|
&myclass->parent_phases);
|
|
|
|
This is equivalent to providing a trivial implementation of the hold and exit
|
|
phases which does nothing but call the parent class's implementation of the
|
|
phase.
|
|
|
|
Polling the reset state
|
|
.......................
|
|
|
|
Resettable interface provides the ``resettable_is_in_reset()`` function.
|
|
This function returns true if the object parameter is currently under reset.
|
|
|
|
An object is under reset from the beginning of the *enter* phase (before
|
|
either its children or its own enter method is called) to the *exit*
|
|
phase. During *enter* and *hold* phase only, the function will return that the
|
|
object is in reset. The state is changed after the *exit* is propagated to
|
|
its children and just before calling the object's own *exit* method.
|
|
|
|
This function may be used if the object behavior has to be adapted
|
|
while in reset state. For example if a device has an irq input,
|
|
it will probably need to ignore it while in reset; then it can for
|
|
example check the reset state at the beginning of the irq callback.
|
|
|
|
Note that until migration of the reset state is supported, an object
|
|
should not be left in reset. So apart from being currently executing
|
|
one of the reset phases, the only cases when this function will return
|
|
true is if an external interaction (like changing an io) is made during
|
|
*hold* or *exit* phase of another object in the same reset group.
|
|
|
|
Helpers ``device_is_in_reset()`` and ``bus_is_in_reset()`` are also provided
|
|
for devices and buses and should be preferred.
|
|
|
|
|
|
Base class handling of reset
|
|
----------------------------
|
|
|
|
This section documents parts of the reset mechanism that you only need to know
|
|
about if you are extending it to work with a new base class other than
|
|
DeviceClass or BusClass, or maintaining the existing code in those classes. Most
|
|
people can ignore it.
|
|
|
|
Methods to implement
|
|
....................
|
|
|
|
There are two other methods that need to exist in a class implementing the
|
|
interface: ``get_state()`` and ``child_foreach()``.
|
|
|
|
``get_state()`` is simple. *resettable* is an interface and, as a consequence,
|
|
does not have any class state structure. But in order to factorize the code, we
|
|
need one. This method must return a pointer to ``ResettableState`` structure.
|
|
The structure must be allocated by the base class; preferably it should be
|
|
located inside the object instance structure.
|
|
|
|
``child_foreach()`` is more complex. It should execute the given callback on
|
|
every reset child of the given resettable object. All children must be
|
|
resettable too. Additional parameters (a reset type and an opaque pointer) must
|
|
be passed to the callback too.
|
|
|
|
In ``DeviceClass`` and ``BusClass`` the ``ResettableState`` is located
|
|
``DeviceState`` and ``BusState`` structure. ``child_foreach()`` is implemented
|
|
to follow the bus hierarchy; for a bus, it calls the function on every child
|
|
device; for a device, it calls the function on every bus child. When we reset
|
|
the main system bus, we reset the whole machine bus tree.
|
|
|
|
Changing a resettable parent
|
|
............................
|
|
|
|
One thing which should be taken care of by the base class is handling reset
|
|
hierarchy changes.
|
|
|
|
The reset hierarchy is supposed to be static and built during machine creation.
|
|
But there are actually some exceptions. To cope with this, the resettable API
|
|
provides ``resettable_change_parent()``. This function allows to set, update or
|
|
remove the parent of a resettable object after machine creation is done. As
|
|
parameters, it takes the object being moved, the old parent if any and the new
|
|
parent if any.
|
|
|
|
This function can be used at any time when not in a reset operation. During
|
|
a reset operation it must be used only in *hold* phase. Using it in *enter* or
|
|
*exit* phase is an error.
|
|
Also it should not be used during machine creation, although it is harmless to
|
|
do so: the function is a no-op as long as old and new parent are NULL or not
|
|
in reset.
|
|
|
|
There is currently 2 cases where this function is used:
|
|
|
|
1. *device hotplug*; it means a new device is introduced on a live bus.
|
|
|
|
2. *hot bus change*; it means an existing live device is added, moved or
|
|
removed in the bus hierarchy. At the moment, it occurs only in the raspi
|
|
machines for changing the sdbus used by sd card.
|