1ee73216f4
Reuse the existing locking provided by stdio to keep in_asm, cpu, op, op_opt, op_ind, and out_asm as contiguous blocks. While it isn't possible to interleave e.g. in_asm or op_opt logs because of the TB lock protecting all code generation, it is possible to interleave cpu logs, or to interleave a cpu dump with an out_asm dump. For mingw32, we appear to have no viable solution for this. The locking functions are not properly exported from the system runtime library. Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Richard Henderson <rth@twiddle.net>
671 lines
21 KiB
C
671 lines
21 KiB
C
/*
|
|
* emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "trace.h"
|
|
#include "disas/disas.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg.h"
|
|
#include "qemu/atomic.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "qemu/timer.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "qemu/rcu.h"
|
|
#include "exec/tb-hash.h"
|
|
#include "exec/log.h"
|
|
#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
|
|
#include "hw/i386/apic.h"
|
|
#endif
|
|
#include "sysemu/replay.h"
|
|
|
|
/* -icount align implementation. */
|
|
|
|
typedef struct SyncClocks {
|
|
int64_t diff_clk;
|
|
int64_t last_cpu_icount;
|
|
int64_t realtime_clock;
|
|
} SyncClocks;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* Allow the guest to have a max 3ms advance.
|
|
* The difference between the 2 clocks could therefore
|
|
* oscillate around 0.
|
|
*/
|
|
#define VM_CLOCK_ADVANCE 3000000
|
|
#define THRESHOLD_REDUCE 1.5
|
|
#define MAX_DELAY_PRINT_RATE 2000000000LL
|
|
#define MAX_NB_PRINTS 100
|
|
|
|
static void align_clocks(SyncClocks *sc, const CPUState *cpu)
|
|
{
|
|
int64_t cpu_icount;
|
|
|
|
if (!icount_align_option) {
|
|
return;
|
|
}
|
|
|
|
cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
|
|
sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
|
|
sc->last_cpu_icount = cpu_icount;
|
|
|
|
if (sc->diff_clk > VM_CLOCK_ADVANCE) {
|
|
#ifndef _WIN32
|
|
struct timespec sleep_delay, rem_delay;
|
|
sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
|
|
sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
|
|
if (nanosleep(&sleep_delay, &rem_delay) < 0) {
|
|
sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
|
|
} else {
|
|
sc->diff_clk = 0;
|
|
}
|
|
#else
|
|
Sleep(sc->diff_clk / SCALE_MS);
|
|
sc->diff_clk = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void print_delay(const SyncClocks *sc)
|
|
{
|
|
static float threshold_delay;
|
|
static int64_t last_realtime_clock;
|
|
static int nb_prints;
|
|
|
|
if (icount_align_option &&
|
|
sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
|
|
nb_prints < MAX_NB_PRINTS) {
|
|
if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
|
|
(-sc->diff_clk / (float)1000000000LL <
|
|
(threshold_delay - THRESHOLD_REDUCE))) {
|
|
threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
|
|
printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
|
|
threshold_delay - 1,
|
|
threshold_delay);
|
|
nb_prints++;
|
|
last_realtime_clock = sc->realtime_clock;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_delay_params(SyncClocks *sc,
|
|
const CPUState *cpu)
|
|
{
|
|
if (!icount_align_option) {
|
|
return;
|
|
}
|
|
sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
|
|
sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
|
|
sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
|
|
if (sc->diff_clk < max_delay) {
|
|
max_delay = sc->diff_clk;
|
|
}
|
|
if (sc->diff_clk > max_advance) {
|
|
max_advance = sc->diff_clk;
|
|
}
|
|
|
|
/* Print every 2s max if the guest is late. We limit the number
|
|
of printed messages to NB_PRINT_MAX(currently 100) */
|
|
print_delay(sc);
|
|
}
|
|
#else
|
|
static void align_clocks(SyncClocks *sc, const CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
|
|
{
|
|
}
|
|
#endif /* CONFIG USER ONLY */
|
|
|
|
/* Execute a TB, and fix up the CPU state afterwards if necessary */
|
|
static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
uintptr_t ret;
|
|
TranslationBlock *last_tb;
|
|
int tb_exit;
|
|
uint8_t *tb_ptr = itb->tc_ptr;
|
|
|
|
qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
|
|
"Trace %p [%d: " TARGET_FMT_lx "] %s\n",
|
|
itb->tc_ptr, cpu->cpu_index, itb->pc,
|
|
lookup_symbol(itb->pc));
|
|
|
|
#if defined(DEBUG_DISAS)
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
|
|
&& qemu_log_in_addr_range(itb->pc)) {
|
|
qemu_log_lock();
|
|
#if defined(TARGET_I386)
|
|
log_cpu_state(cpu, CPU_DUMP_CCOP);
|
|
#else
|
|
log_cpu_state(cpu, 0);
|
|
#endif
|
|
qemu_log_unlock();
|
|
}
|
|
#endif /* DEBUG_DISAS */
|
|
|
|
cpu->can_do_io = !use_icount;
|
|
ret = tcg_qemu_tb_exec(env, tb_ptr);
|
|
cpu->can_do_io = 1;
|
|
last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
|
|
tb_exit = ret & TB_EXIT_MASK;
|
|
trace_exec_tb_exit(last_tb, tb_exit);
|
|
|
|
if (tb_exit > TB_EXIT_IDX1) {
|
|
/* We didn't start executing this TB (eg because the instruction
|
|
* counter hit zero); we must restore the guest PC to the address
|
|
* of the start of the TB.
|
|
*/
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
|
|
"Stopped execution of TB chain before %p ["
|
|
TARGET_FMT_lx "] %s\n",
|
|
last_tb->tc_ptr, last_tb->pc,
|
|
lookup_symbol(last_tb->pc));
|
|
if (cc->synchronize_from_tb) {
|
|
cc->synchronize_from_tb(cpu, last_tb);
|
|
} else {
|
|
assert(cc->set_pc);
|
|
cc->set_pc(cpu, last_tb->pc);
|
|
}
|
|
}
|
|
if (tb_exit == TB_EXIT_REQUESTED) {
|
|
/* We were asked to stop executing TBs (probably a pending
|
|
* interrupt. We've now stopped, so clear the flag.
|
|
*/
|
|
atomic_set(&cpu->tcg_exit_req, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Execute the code without caching the generated code. An interpreter
|
|
could be used if available. */
|
|
static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
|
|
TranslationBlock *orig_tb, bool ignore_icount)
|
|
{
|
|
TranslationBlock *tb;
|
|
|
|
/* Should never happen.
|
|
We only end up here when an existing TB is too long. */
|
|
if (max_cycles > CF_COUNT_MASK)
|
|
max_cycles = CF_COUNT_MASK;
|
|
|
|
tb_lock();
|
|
tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
|
max_cycles | CF_NOCACHE
|
|
| (ignore_icount ? CF_IGNORE_ICOUNT : 0));
|
|
tb->orig_tb = orig_tb;
|
|
tb_unlock();
|
|
|
|
/* execute the generated code */
|
|
trace_exec_tb_nocache(tb, tb->pc);
|
|
cpu_tb_exec(cpu, tb);
|
|
|
|
tb_lock();
|
|
tb_phys_invalidate(tb, -1);
|
|
tb_free(tb);
|
|
tb_unlock();
|
|
}
|
|
#endif
|
|
|
|
static void cpu_exec_step(CPUState *cpu)
|
|
{
|
|
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
uint32_t flags;
|
|
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
tb = tb_gen_code(cpu, pc, cs_base, flags,
|
|
1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
|
|
tb->orig_tb = NULL;
|
|
/* execute the generated code */
|
|
trace_exec_tb_nocache(tb, pc);
|
|
cpu_tb_exec(cpu, tb);
|
|
tb_phys_invalidate(tb, -1);
|
|
tb_free(tb);
|
|
}
|
|
|
|
void cpu_exec_step_atomic(CPUState *cpu)
|
|
{
|
|
start_exclusive();
|
|
|
|
/* Since we got here, we know that parallel_cpus must be true. */
|
|
parallel_cpus = false;
|
|
cpu_exec_step(cpu);
|
|
parallel_cpus = true;
|
|
|
|
end_exclusive();
|
|
}
|
|
|
|
struct tb_desc {
|
|
target_ulong pc;
|
|
target_ulong cs_base;
|
|
CPUArchState *env;
|
|
tb_page_addr_t phys_page1;
|
|
uint32_t flags;
|
|
};
|
|
|
|
static bool tb_cmp(const void *p, const void *d)
|
|
{
|
|
const TranslationBlock *tb = p;
|
|
const struct tb_desc *desc = d;
|
|
|
|
if (tb->pc == desc->pc &&
|
|
tb->page_addr[0] == desc->phys_page1 &&
|
|
tb->cs_base == desc->cs_base &&
|
|
tb->flags == desc->flags &&
|
|
!atomic_read(&tb->invalid)) {
|
|
/* check next page if needed */
|
|
if (tb->page_addr[1] == -1) {
|
|
return true;
|
|
} else {
|
|
tb_page_addr_t phys_page2;
|
|
target_ulong virt_page2;
|
|
|
|
virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
|
|
phys_page2 = get_page_addr_code(desc->env, virt_page2);
|
|
if (tb->page_addr[1] == phys_page2) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static TranslationBlock *tb_htable_lookup(CPUState *cpu,
|
|
target_ulong pc,
|
|
target_ulong cs_base,
|
|
uint32_t flags)
|
|
{
|
|
tb_page_addr_t phys_pc;
|
|
struct tb_desc desc;
|
|
uint32_t h;
|
|
|
|
desc.env = (CPUArchState *)cpu->env_ptr;
|
|
desc.cs_base = cs_base;
|
|
desc.flags = flags;
|
|
desc.pc = pc;
|
|
phys_pc = get_page_addr_code(desc.env, pc);
|
|
desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
|
h = tb_hash_func(phys_pc, pc, flags);
|
|
return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h);
|
|
}
|
|
|
|
static inline TranslationBlock *tb_find(CPUState *cpu,
|
|
TranslationBlock *last_tb,
|
|
int tb_exit)
|
|
{
|
|
CPUArchState *env = (CPUArchState *)cpu->env_ptr;
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
uint32_t flags;
|
|
bool have_tb_lock = false;
|
|
|
|
/* we record a subset of the CPU state. It will
|
|
always be the same before a given translated block
|
|
is executed. */
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]);
|
|
if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
|
tb->flags != flags)) {
|
|
tb = tb_htable_lookup(cpu, pc, cs_base, flags);
|
|
if (!tb) {
|
|
|
|
/* mmap_lock is needed by tb_gen_code, and mmap_lock must be
|
|
* taken outside tb_lock. As system emulation is currently
|
|
* single threaded the locks are NOPs.
|
|
*/
|
|
mmap_lock();
|
|
tb_lock();
|
|
have_tb_lock = true;
|
|
|
|
/* There's a chance that our desired tb has been translated while
|
|
* taking the locks so we check again inside the lock.
|
|
*/
|
|
tb = tb_htable_lookup(cpu, pc, cs_base, flags);
|
|
if (!tb) {
|
|
/* if no translated code available, then translate it now */
|
|
tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
|
|
}
|
|
|
|
mmap_unlock();
|
|
}
|
|
|
|
/* We add the TB in the virtual pc hash table for the fast lookup */
|
|
atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* We don't take care of direct jumps when address mapping changes in
|
|
* system emulation. So it's not safe to make a direct jump to a TB
|
|
* spanning two pages because the mapping for the second page can change.
|
|
*/
|
|
if (tb->page_addr[1] != -1) {
|
|
last_tb = NULL;
|
|
}
|
|
#endif
|
|
/* See if we can patch the calling TB. */
|
|
if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
|
|
if (!have_tb_lock) {
|
|
tb_lock();
|
|
have_tb_lock = true;
|
|
}
|
|
if (!tb->invalid) {
|
|
tb_add_jump(last_tb, tb_exit, tb);
|
|
}
|
|
}
|
|
if (have_tb_lock) {
|
|
tb_unlock();
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
static inline bool cpu_handle_halt(CPUState *cpu)
|
|
{
|
|
if (cpu->halted) {
|
|
#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
|
|
if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
|
|
&& replay_interrupt()) {
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
apic_poll_irq(x86_cpu->apic_state);
|
|
cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
|
|
}
|
|
#endif
|
|
if (!cpu_has_work(cpu)) {
|
|
current_cpu = NULL;
|
|
return true;
|
|
}
|
|
|
|
cpu->halted = 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void cpu_handle_debug_exception(CPUState *cpu)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUWatchpoint *wp;
|
|
|
|
if (!cpu->watchpoint_hit) {
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
|
|
cc->debug_excp_handler(cpu);
|
|
}
|
|
|
|
static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
|
|
{
|
|
if (cpu->exception_index >= 0) {
|
|
if (cpu->exception_index >= EXCP_INTERRUPT) {
|
|
/* exit request from the cpu execution loop */
|
|
*ret = cpu->exception_index;
|
|
if (*ret == EXCP_DEBUG) {
|
|
cpu_handle_debug_exception(cpu);
|
|
}
|
|
cpu->exception_index = -1;
|
|
return true;
|
|
} else {
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* if user mode only, we simulate a fake exception
|
|
which will be handled outside the cpu execution
|
|
loop */
|
|
#if defined(TARGET_I386)
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
cc->do_interrupt(cpu);
|
|
#endif
|
|
*ret = cpu->exception_index;
|
|
cpu->exception_index = -1;
|
|
return true;
|
|
#else
|
|
if (replay_exception()) {
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
cc->do_interrupt(cpu);
|
|
cpu->exception_index = -1;
|
|
} else if (!replay_has_interrupt()) {
|
|
/* give a chance to iothread in replay mode */
|
|
*ret = EXCP_INTERRUPT;
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
} else if (replay_has_exception()
|
|
&& cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
|
|
/* try to cause an exception pending in the log */
|
|
cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true);
|
|
*ret = -1;
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void cpu_handle_interrupt(CPUState *cpu,
|
|
TranslationBlock **last_tb)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
int interrupt_request = cpu->interrupt_request;
|
|
|
|
if (unlikely(interrupt_request)) {
|
|
if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
|
|
/* Mask out external interrupts for this step. */
|
|
interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
|
|
/* Do nothing */
|
|
} else if (interrupt_request & CPU_INTERRUPT_HALT) {
|
|
replay_interrupt();
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
|
cpu->halted = 1;
|
|
cpu->exception_index = EXCP_HLT;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
#if defined(TARGET_I386)
|
|
else if (interrupt_request & CPU_INTERRUPT_INIT) {
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
CPUArchState *env = &x86_cpu->env;
|
|
replay_interrupt();
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0);
|
|
do_cpu_init(x86_cpu);
|
|
cpu->exception_index = EXCP_HALTED;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
#else
|
|
else if (interrupt_request & CPU_INTERRUPT_RESET) {
|
|
replay_interrupt();
|
|
cpu_reset(cpu);
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
#endif
|
|
/* The target hook has 3 exit conditions:
|
|
False when the interrupt isn't processed,
|
|
True when it is, and we should restart on a new TB,
|
|
and via longjmp via cpu_loop_exit. */
|
|
else {
|
|
replay_interrupt();
|
|
if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
|
|
*last_tb = NULL;
|
|
}
|
|
/* The target hook may have updated the 'cpu->interrupt_request';
|
|
* reload the 'interrupt_request' value */
|
|
interrupt_request = cpu->interrupt_request;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_EXITTB) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
*last_tb = NULL;
|
|
}
|
|
}
|
|
if (unlikely(atomic_read(&cpu->exit_request) || replay_has_interrupt())) {
|
|
atomic_set(&cpu->exit_request, 0);
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
}
|
|
|
|
static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
|
|
TranslationBlock **last_tb, int *tb_exit,
|
|
SyncClocks *sc)
|
|
{
|
|
uintptr_t ret;
|
|
|
|
if (unlikely(atomic_read(&cpu->exit_request))) {
|
|
return;
|
|
}
|
|
|
|
trace_exec_tb(tb, tb->pc);
|
|
ret = cpu_tb_exec(cpu, tb);
|
|
*last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
|
|
*tb_exit = ret & TB_EXIT_MASK;
|
|
switch (*tb_exit) {
|
|
case TB_EXIT_REQUESTED:
|
|
/* Something asked us to stop executing
|
|
* chained TBs; just continue round the main
|
|
* loop. Whatever requested the exit will also
|
|
* have set something else (eg exit_request or
|
|
* interrupt_request) which we will handle
|
|
* next time around the loop. But we need to
|
|
* ensure the tcg_exit_req read in generated code
|
|
* comes before the next read of cpu->exit_request
|
|
* or cpu->interrupt_request.
|
|
*/
|
|
smp_rmb();
|
|
*last_tb = NULL;
|
|
break;
|
|
case TB_EXIT_ICOUNT_EXPIRED:
|
|
{
|
|
/* Instruction counter expired. */
|
|
#ifdef CONFIG_USER_ONLY
|
|
abort();
|
|
#else
|
|
int insns_left = cpu->icount_decr.u32;
|
|
if (cpu->icount_extra && insns_left >= 0) {
|
|
/* Refill decrementer and continue execution. */
|
|
cpu->icount_extra += insns_left;
|
|
insns_left = MIN(0xffff, cpu->icount_extra);
|
|
cpu->icount_extra -= insns_left;
|
|
cpu->icount_decr.u16.low = insns_left;
|
|
} else {
|
|
if (insns_left > 0) {
|
|
/* Execute remaining instructions. */
|
|
cpu_exec_nocache(cpu, insns_left, *last_tb, false);
|
|
align_clocks(sc, cpu);
|
|
}
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
*last_tb = NULL;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* main execution loop */
|
|
|
|
int cpu_exec(CPUState *cpu)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
int ret;
|
|
SyncClocks sc;
|
|
|
|
/* replay_interrupt may need current_cpu */
|
|
current_cpu = cpu;
|
|
|
|
if (cpu_handle_halt(cpu)) {
|
|
return EXCP_HALTED;
|
|
}
|
|
|
|
atomic_mb_set(&tcg_current_cpu, cpu);
|
|
rcu_read_lock();
|
|
|
|
if (unlikely(atomic_mb_read(&exit_request))) {
|
|
cpu->exit_request = 1;
|
|
}
|
|
|
|
cc->cpu_exec_enter(cpu);
|
|
|
|
/* Calculate difference between guest clock and host clock.
|
|
* This delay includes the delay of the last cycle, so
|
|
* what we have to do is sleep until it is 0. As for the
|
|
* advance/delay we gain here, we try to fix it next time.
|
|
*/
|
|
init_delay_params(&sc, cpu);
|
|
|
|
for(;;) {
|
|
/* prepare setjmp context for exception handling */
|
|
if (sigsetjmp(cpu->jmp_env, 0) == 0) {
|
|
TranslationBlock *tb, *last_tb = NULL;
|
|
int tb_exit = 0;
|
|
|
|
/* if an exception is pending, we execute it here */
|
|
if (cpu_handle_exception(cpu, &ret)) {
|
|
break;
|
|
}
|
|
|
|
for(;;) {
|
|
cpu_handle_interrupt(cpu, &last_tb);
|
|
tb = tb_find(cpu, last_tb, tb_exit);
|
|
cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit, &sc);
|
|
/* Try to align the host and virtual clocks
|
|
if the guest is in advance */
|
|
align_clocks(&sc, cpu);
|
|
} /* for(;;) */
|
|
} else {
|
|
#if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
|
|
/* Some compilers wrongly smash all local variables after
|
|
* siglongjmp. There were bug reports for gcc 4.5.0 and clang.
|
|
* Reload essential local variables here for those compilers.
|
|
* Newer versions of gcc would complain about this code (-Wclobbered). */
|
|
cpu = current_cpu;
|
|
cc = CPU_GET_CLASS(cpu);
|
|
#else /* buggy compiler */
|
|
/* Assert that the compiler does not smash local variables. */
|
|
g_assert(cpu == current_cpu);
|
|
g_assert(cc == CPU_GET_CLASS(cpu));
|
|
#endif /* buggy compiler */
|
|
cpu->can_do_io = 1;
|
|
tb_lock_reset();
|
|
}
|
|
} /* for(;;) */
|
|
|
|
cc->cpu_exec_exit(cpu);
|
|
rcu_read_unlock();
|
|
|
|
/* fail safe : never use current_cpu outside cpu_exec() */
|
|
current_cpu = NULL;
|
|
|
|
/* Does not need atomic_mb_set because a spurious wakeup is okay. */
|
|
atomic_set(&tcg_current_cpu, NULL);
|
|
return ret;
|
|
}
|