qemu-e2k/target-sparc/op_helper.c
blueswir1 d4218d996d Fix Sparc lda/ldda/sta/stda asi handling, fault on misaligned register ldd/std and illegal cwp on wrpsr (Aurelien Jarno)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2568 c046a42c-6fe2-441c-8c8c-71466251a162
2007-04-01 15:15:36 +00:00

925 lines
22 KiB
C

#include "exec.h"
//#define DEBUG_PCALL
//#define DEBUG_MMU
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
}
void do_fitod(void)
{
DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}
#endif
void do_fabss(void)
{
FT0 = float32_abs(FT1);
}
#ifdef TARGET_SPARC64
void do_fabsd(void)
{
DT0 = float64_abs(DT1);
}
#endif
void do_fsqrts(void)
{
FT0 = float32_sqrt(FT1, &env->fp_status);
}
void do_fsqrtd(void)
{
DT0 = float64_sqrt(DT1, &env->fp_status);
}
#define GEN_FCMP(name, size, reg1, reg2, FS) \
void glue(do_, name) (void) \
{ \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
case float_relation_unordered: \
T0 = (FSR_FCC1 | FSR_FCC0) << FS; \
if (env->fsr & FSR_NVM) { \
env->fsr |= T0; \
raise_exception(TT_FP_EXCP); \
} else { \
env->fsr |= FSR_NVA; \
} \
break; \
case float_relation_less: \
T0 = FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
T0 = FSR_FCC1 << FS; \
break; \
default: \
T0 = 0; \
break; \
} \
env->fsr |= T0; \
}
GEN_FCMP(fcmps, float32, FT0, FT1, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0);
#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22);
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24);
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26);
#endif
#if defined(CONFIG_USER_ONLY)
void helper_ld_asi(int asi, int size, int sign)
{
}
void helper_st_asi(int asi, int size, int sign)
{
}
#else
#ifndef TARGET_SPARC64
void helper_ld_asi(int asi, int size, int sign)
{
uint32_t ret = 0;
switch (asi) {
case 3: /* MMU probe */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
if (mmulev > 4)
ret = 0;
else {
ret = mmu_probe(env, T0, mmulev);
//bswap32s(&ret);
}
#ifdef DEBUG_MMU
printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
#endif
}
break;
case 4: /* read MMU regs */
{
int reg = (T0 >> 8) & 0xf;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
env->mmuregs[reg] = 0;
#ifdef DEBUG_MMU
printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
#endif
}
break;
case 0x20 ... 0x2f: /* MMU passthrough */
switch(size) {
case 1:
ret = ldub_phys(T0);
break;
case 2:
ret = lduw_phys(T0 & ~1);
break;
default:
case 4:
ret = ldl_phys(T0 & ~3);
break;
case 8:
ret = ldl_phys(T0 & ~3);
T0 = ldl_phys((T0 + 4) & ~3);
break;
}
break;
default:
ret = 0;
break;
}
T1 = ret;
}
void helper_st_asi(int asi, int size, int sign)
{
switch(asi) {
case 3: /* MMU flush */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
#ifdef DEBUG_MMU
printf("mmu flush level %d\n", mmulev);
#endif
switch (mmulev) {
case 0: // flush page
tlb_flush_page(env, T0 & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(env, 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu(env);
#endif
return;
}
case 4: /* write MMU regs */
{
int reg = (T0 >> 8) & 0xf;
uint32_t oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0:
env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
if (oldreg != env->mmuregs[reg])
tlb_flush(env, 1);
break;
case 2:
env->mmuregs[reg] = T1;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
case 3:
case 4:
break;
default:
env->mmuregs[reg] = T1;
break;
}
#ifdef DEBUG_MMU
if (oldreg != env->mmuregs[reg]) {
printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
}
dump_mmu(env);
#endif
return;
}
case 0x17: /* Block copy, sta access */
{
// value (T1) = src
// address (T0) = dst
// copy 32 bytes
uint32_t src = T1, dst = T0;
uint8_t temp[32];
tswap32s(&src);
cpu_physical_memory_read(src, (void *) &temp, 32);
cpu_physical_memory_write(dst, (void *) &temp, 32);
}
return;
case 0x1f: /* Block fill, stda access */
{
// value (T1, T2)
// address (T0) = dst
// fill 32 bytes
int i;
uint32_t dst = T0;
uint64_t val;
val = (((uint64_t)T1) << 32) | T2;
tswap64s(&val);
for (i = 0; i < 32; i += 8, dst += 8) {
cpu_physical_memory_write(dst, (void *) &val, 8);
}
}
return;
case 0x20 ... 0x2f: /* MMU passthrough */
{
switch(size) {
case 1:
stb_phys(T0, T1);
break;
case 2:
stw_phys(T0 & ~1, T1);
break;
case 4:
default:
stl_phys(T0 & ~3, T1);
break;
case 8:
stl_phys(T0 & ~3, T1);
stl_phys((T0 + 4) & ~3, T2);
break;
}
}
return;
default:
return;
}
}
#else
void helper_ld_asi(int asi, int size, int sign)
{
uint64_t ret = 0;
if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
raise_exception(TT_PRIV_ACT);
switch (asi) {
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
{
switch(size) {
case 1:
ret = ldub_phys(T0);
break;
case 2:
ret = lduw_phys(T0 & ~1);
break;
case 4:
ret = ldl_phys(T0 & ~3);
break;
default:
case 8:
ret = ldq_phys(T0 & ~7);
break;
}
break;
}
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
case 0x10: // As if user primary
case 0x11: // As if user secondary
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic
case 0x4a: // UPA config
case 0x82: // Primary no-fault
case 0x83: // Secondary no-fault
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
// XXX
break;
case 0x45: // LSU
ret = env->lsu;
break;
case 0x50: // I-MMU regs
{
int reg = (T0 >> 3) & 0xf;
ret = env->immuregs[reg];
break;
}
case 0x51: // I-MMU 8k TSB pointer
case 0x52: // I-MMU 64k TSB pointer
case 0x55: // I-MMU data access
// XXX
break;
case 0x56: // I-MMU tag read
{
unsigned int i;
for (i = 0; i < 64; i++) {
// Valid, ctx match, vaddr match
if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
env->itlb_tag[i] == T0) {
ret = env->itlb_tag[i];
break;
}
}
break;
}
case 0x58: // D-MMU regs
{
int reg = (T0 >> 3) & 0xf;
ret = env->dmmuregs[reg];
break;
}
case 0x5e: // D-MMU tag read
{
unsigned int i;
for (i = 0; i < 64; i++) {
// Valid, ctx match, vaddr match
if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
env->dtlb_tag[i] == T0) {
ret = env->dtlb_tag[i];
break;
}
}
break;
}
case 0x59: // D-MMU 8k TSB pointer
case 0x5a: // D-MMU 64k TSB pointer
case 0x5b: // D-MMU data pointer
case 0x5d: // D-MMU data access
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x7f: // Incoming interrupt vector, RO
// XXX
break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
default:
ret = 0;
break;
}
T1 = ret;
}
void helper_st_asi(int asi, int size, int sign)
{
if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
raise_exception(TT_PRIV_ACT);
switch(asi) {
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
{
switch(size) {
case 1:
stb_phys(T0, T1);
break;
case 2:
stw_phys(T0 & ~1, T1);
break;
case 4:
stl_phys(T0 & ~3, T1);
break;
case 8:
default:
stq_phys(T0 & ~7, T1);
break;
}
}
return;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
case 0x10: // As if user primary
case 0x11: // As if user secondary
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic
case 0x4a: // UPA config
case 0x88: // Primary LE
case 0x89: // Secondary LE
// XXX
return;
case 0x45: // LSU
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = T1 & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are
// invalid in normal mode
if (oldreg != env->lsu) {
#ifdef DEBUG_MMU
printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
dump_mmu(env);
#endif
tlb_flush(env, 1);
}
return;
}
case 0x50: // I-MMU regs
{
int reg = (T0 >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 1: // Not in I-MMU
case 2:
case 7:
case 8:
return;
case 3: // SFSR
if ((T1 & 1) == 0)
T1 = 0; // Clear SFSR
break;
case 5: // TSB access
case 6: // Tag access
default:
break;
}
env->immuregs[reg] = T1;
#ifdef DEBUG_MMU
if (oldreg != env->immuregs[reg]) {
printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
dump_mmu(env);
#endif
return;
}
case 0x54: // I-MMU data in
{
unsigned int i;
// Try finding an invalid entry
for (i = 0; i < 64; i++) {
if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
}
// Try finding an unlocked entry
for (i = 0; i < 64; i++) {
if ((env->itlb_tte[i] & 0x40) == 0) {
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
}
// error state?
return;
}
case 0x55: // I-MMU data access
{
unsigned int i = (T0 >> 3) & 0x3f;
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
case 0x57: // I-MMU demap
// XXX
return;
case 0x58: // D-MMU regs
{
int reg = (T0 >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 3: // SFSR
if ((T1 & 1) == 0) {
T1 = 0; // Clear SFSR, Fault address
env->dmmuregs[4] = 0;
}
env->dmmuregs[reg] = T1;
break;
case 1: // Primary context
case 2: // Secondary context
case 5: // TSB access
case 6: // Tag access
case 7: // Virtual Watchpoint
case 8: // Physical Watchpoint
default:
break;
}
env->dmmuregs[reg] = T1;
#ifdef DEBUG_MMU
if (oldreg != env->dmmuregs[reg]) {
printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
dump_mmu(env);
#endif
return;
}
case 0x5c: // D-MMU data in
{
unsigned int i;
// Try finding an invalid entry
for (i = 0; i < 64; i++) {
if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
}
// Try finding an unlocked entry
for (i = 0; i < 64; i++) {
if ((env->dtlb_tte[i] & 0x40) == 0) {
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
}
// error state?
return;
}
case 0x5d: // D-MMU data access
{
unsigned int i = (T0 >> 3) & 0x3f;
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
case 0x5f: // D-MMU demap
case 0x49: // Interrupt data receive
// XXX
return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x59: // D-MMU 8k TSB pointer, RO
case 0x5a: // D-MMU 64k TSB pointer, RO
case 0x5b: // D-MMU data pointer, RO
case 0x5e: // D-MMU tag read, RO
case 0x48: // Interrupt dispatch, RO
case 0x7f: // Incoming interrupt vector, RO
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
return;
}
}
#endif
#endif /* !CONFIG_USER_ONLY */
#ifndef TARGET_SPARC64
void helper_rett()
{
unsigned int cwp;
if (env->psret == 1)
raise_exception(TT_ILL_INSN);
env->psret = 1;
cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
#endif
void helper_ldfsr(void)
{
int rnd_mode;
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
break;
case FSR_RD_POS:
rnd_mode = float_round_up;
break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
void helper_debug()
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
#ifndef TARGET_SPARC64
void do_wrpsr()
{
if ((T0 & PSR_CWP) >= NWINDOWS)
raise_exception(TT_ILL_INSN);
else
PUT_PSR(env, T0);
}
void do_rdpsr()
{
T0 = GET_PSR(env);
}
#else
void do_popc()
{
T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
}
static inline uint64_t *get_gregset(uint64_t pstate)
{
switch (pstate) {
default:
case 0:
return env->bgregs;
case PS_AG:
return env->agregs;
case PS_MG:
return env->mgregs;
case PS_IG:
return env->igregs;
}
}
void do_wrpstate()
{
uint64_t new_pstate, pstate_regs, new_pstate_regs;
uint64_t *src, *dst;
new_pstate = T0 & 0xf3f;
pstate_regs = env->pstate & 0xc01;
new_pstate_regs = new_pstate & 0xc01;
if (new_pstate_regs != pstate_regs) {
// Switch global register bank
src = get_gregset(new_pstate_regs);
dst = get_gregset(pstate_regs);
memcpy32(dst, env->gregs);
memcpy32(env->gregs, src);
}
env->pstate = new_pstate;
}
void do_done(void)
{
env->tl--;
env->pc = env->tnpc[env->tl];
env->npc = env->tnpc[env->tl] + 4;
PUT_CCR(env, env->tstate[env->tl] >> 32);
env->asi = (env->tstate[env->tl] >> 24) & 0xff;
env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
set_cwp(env->tstate[env->tl] & 0xff);
}
void do_retry(void)
{
env->tl--;
env->pc = env->tpc[env->tl];
env->npc = env->tnpc[env->tl];
PUT_CCR(env, env->tstate[env->tl] >> 32);
env->asi = (env->tstate[env->tl] >> 24) & 0xff;
env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
set_cwp(env->tstate[env->tl] & 0xff);
}
#endif
void set_cwp(int new_cwp)
{
/* put the modified wrap registers at their proper location */
if (env->cwp == (NWINDOWS - 1))
memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
env->cwp = new_cwp;
/* put the wrap registers at their temporary location */
if (new_cwp == (NWINDOWS - 1))
memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
env->regwptr = env->regbase + (new_cwp * 16);
REGWPTR = env->regwptr;
}
void cpu_set_cwp(CPUState *env1, int new_cwp)
{
CPUState *saved_env;
#ifdef reg_REGWPTR
target_ulong *saved_regwptr;
#endif
saved_env = env;
#ifdef reg_REGWPTR
saved_regwptr = REGWPTR;
#endif
env = env1;
set_cwp(new_cwp);
env = saved_env;
#ifdef reg_REGWPTR
REGWPTR = saved_regwptr;
#endif
}
#ifdef TARGET_SPARC64
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
static int count;
fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
count, intno,
env->pc,
env->npc, env->regwptr[6]);
cpu_dump_state(env, logfile, fprintf, 0);
#if 0
{
int i;
uint8_t *ptr;
fprintf(logfile, " code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
fprintf(logfile, " %02x", ldub(ptr + i));
}
fprintf(logfile, "\n");
}
#endif
count++;
}
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->tl == MAXTL) {
cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
return;
}
#endif
env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
((env->pstate & 0xfff) << 8) | (env->cwp & 0xff);
env->tpc[env->tl] = env->pc;
env->tnpc[env->tl] = env->npc;
env->tt[env->tl] = intno;
env->pstate = PS_PEF | PS_PRIV | PS_AG;
env->tbr &= ~0x7fffULL;
env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
if (env->tl < MAXTL - 1) {
env->tl++;
} else {
env->pstate |= PS_RED;
if (env->tl != MAXTL)
env->tl++;
}
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#else
void do_interrupt(int intno)
{
int cwp;
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
static int count;
fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
count, intno,
env->pc,
env->npc, env->regwptr[6]);
cpu_dump_state(env, logfile, fprintf, 0);
#if 0
{
int i;
uint8_t *ptr;
fprintf(logfile, " code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
fprintf(logfile, " %02x", ldub(ptr + i));
}
fprintf(logfile, "\n");
}
#endif
count++;
}
#endif
#if !defined(CONFIG_USER_ONLY)
if (env->psret == 0) {
cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
return;
}
#endif
env->psret = 0;
cwp = (env->cwp - 1) & (NWINDOWS - 1);
set_cwp(cwp);
env->regwptr[9] = env->pc;
env->regwptr[10] = env->npc;
env->psrps = env->psrs;
env->psrs = 1;
env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#endif
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define GETPC() (__builtin_return_address(0))
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
{
TranslationBlock *tb;
int ret;
unsigned long pc;
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, (void *)T2);
}
}
cpu_loop_exit();
}
env = saved_env;
}
#endif