3642 lines
93 KiB
C
3642 lines
93 KiB
C
/*
|
|
* gdb server stub
|
|
*
|
|
* This implements a subset of the remote protocol as described in:
|
|
*
|
|
* https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* SPDX-License-Identifier: LGPL-2.0+
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/ctype.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/module.h"
|
|
#include "trace/trace-root.h"
|
|
#include "exec/gdbstub.h"
|
|
#ifdef CONFIG_USER_ONLY
|
|
#include "qemu.h"
|
|
#else
|
|
#include "monitor/monitor.h"
|
|
#include "chardev/char.h"
|
|
#include "chardev/char-fe.h"
|
|
#include "hw/cpu/cluster.h"
|
|
#include "hw/boards.h"
|
|
#endif
|
|
|
|
#define MAX_PACKET_LENGTH 4096
|
|
|
|
#include "qemu/sockets.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "semihosting/semihost.h"
|
|
#include "exec/exec-all.h"
|
|
#include "sysemu/replay.h"
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
#define GDB_ATTACHED "0"
|
|
#else
|
|
#define GDB_ATTACHED "1"
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static int phy_memory_mode;
|
|
#endif
|
|
|
|
static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, bool is_write)
|
|
{
|
|
CPUClass *cc;
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (phy_memory_mode) {
|
|
if (is_write) {
|
|
cpu_physical_memory_write(addr, buf, len);
|
|
} else {
|
|
cpu_physical_memory_read(addr, buf, len);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
cc = CPU_GET_CLASS(cpu);
|
|
if (cc->memory_rw_debug) {
|
|
return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
|
|
}
|
|
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
|
|
}
|
|
|
|
/* Return the GDB index for a given vCPU state.
|
|
*
|
|
* For user mode this is simply the thread id. In system mode GDB
|
|
* numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
|
|
*/
|
|
static inline int cpu_gdb_index(CPUState *cpu)
|
|
{
|
|
#if defined(CONFIG_USER_ONLY)
|
|
TaskState *ts = (TaskState *) cpu->opaque;
|
|
return ts ? ts->ts_tid : -1;
|
|
#else
|
|
return cpu->cpu_index + 1;
|
|
#endif
|
|
}
|
|
|
|
enum {
|
|
GDB_SIGNAL_0 = 0,
|
|
GDB_SIGNAL_INT = 2,
|
|
GDB_SIGNAL_QUIT = 3,
|
|
GDB_SIGNAL_TRAP = 5,
|
|
GDB_SIGNAL_ABRT = 6,
|
|
GDB_SIGNAL_ALRM = 14,
|
|
GDB_SIGNAL_IO = 23,
|
|
GDB_SIGNAL_XCPU = 24,
|
|
GDB_SIGNAL_UNKNOWN = 143
|
|
};
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
/* Map target signal numbers to GDB protocol signal numbers and vice
|
|
* versa. For user emulation's currently supported systems, we can
|
|
* assume most signals are defined.
|
|
*/
|
|
|
|
static int gdb_signal_table[] = {
|
|
0,
|
|
TARGET_SIGHUP,
|
|
TARGET_SIGINT,
|
|
TARGET_SIGQUIT,
|
|
TARGET_SIGILL,
|
|
TARGET_SIGTRAP,
|
|
TARGET_SIGABRT,
|
|
-1, /* SIGEMT */
|
|
TARGET_SIGFPE,
|
|
TARGET_SIGKILL,
|
|
TARGET_SIGBUS,
|
|
TARGET_SIGSEGV,
|
|
TARGET_SIGSYS,
|
|
TARGET_SIGPIPE,
|
|
TARGET_SIGALRM,
|
|
TARGET_SIGTERM,
|
|
TARGET_SIGURG,
|
|
TARGET_SIGSTOP,
|
|
TARGET_SIGTSTP,
|
|
TARGET_SIGCONT,
|
|
TARGET_SIGCHLD,
|
|
TARGET_SIGTTIN,
|
|
TARGET_SIGTTOU,
|
|
TARGET_SIGIO,
|
|
TARGET_SIGXCPU,
|
|
TARGET_SIGXFSZ,
|
|
TARGET_SIGVTALRM,
|
|
TARGET_SIGPROF,
|
|
TARGET_SIGWINCH,
|
|
-1, /* SIGLOST */
|
|
TARGET_SIGUSR1,
|
|
TARGET_SIGUSR2,
|
|
#ifdef TARGET_SIGPWR
|
|
TARGET_SIGPWR,
|
|
#else
|
|
-1,
|
|
#endif
|
|
-1, /* SIGPOLL */
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
#ifdef __SIGRTMIN
|
|
__SIGRTMIN + 1,
|
|
__SIGRTMIN + 2,
|
|
__SIGRTMIN + 3,
|
|
__SIGRTMIN + 4,
|
|
__SIGRTMIN + 5,
|
|
__SIGRTMIN + 6,
|
|
__SIGRTMIN + 7,
|
|
__SIGRTMIN + 8,
|
|
__SIGRTMIN + 9,
|
|
__SIGRTMIN + 10,
|
|
__SIGRTMIN + 11,
|
|
__SIGRTMIN + 12,
|
|
__SIGRTMIN + 13,
|
|
__SIGRTMIN + 14,
|
|
__SIGRTMIN + 15,
|
|
__SIGRTMIN + 16,
|
|
__SIGRTMIN + 17,
|
|
__SIGRTMIN + 18,
|
|
__SIGRTMIN + 19,
|
|
__SIGRTMIN + 20,
|
|
__SIGRTMIN + 21,
|
|
__SIGRTMIN + 22,
|
|
__SIGRTMIN + 23,
|
|
__SIGRTMIN + 24,
|
|
__SIGRTMIN + 25,
|
|
__SIGRTMIN + 26,
|
|
__SIGRTMIN + 27,
|
|
__SIGRTMIN + 28,
|
|
__SIGRTMIN + 29,
|
|
__SIGRTMIN + 30,
|
|
__SIGRTMIN + 31,
|
|
-1, /* SIGCANCEL */
|
|
__SIGRTMIN,
|
|
__SIGRTMIN + 32,
|
|
__SIGRTMIN + 33,
|
|
__SIGRTMIN + 34,
|
|
__SIGRTMIN + 35,
|
|
__SIGRTMIN + 36,
|
|
__SIGRTMIN + 37,
|
|
__SIGRTMIN + 38,
|
|
__SIGRTMIN + 39,
|
|
__SIGRTMIN + 40,
|
|
__SIGRTMIN + 41,
|
|
__SIGRTMIN + 42,
|
|
__SIGRTMIN + 43,
|
|
__SIGRTMIN + 44,
|
|
__SIGRTMIN + 45,
|
|
__SIGRTMIN + 46,
|
|
__SIGRTMIN + 47,
|
|
__SIGRTMIN + 48,
|
|
__SIGRTMIN + 49,
|
|
__SIGRTMIN + 50,
|
|
__SIGRTMIN + 51,
|
|
__SIGRTMIN + 52,
|
|
__SIGRTMIN + 53,
|
|
__SIGRTMIN + 54,
|
|
__SIGRTMIN + 55,
|
|
__SIGRTMIN + 56,
|
|
__SIGRTMIN + 57,
|
|
__SIGRTMIN + 58,
|
|
__SIGRTMIN + 59,
|
|
__SIGRTMIN + 60,
|
|
__SIGRTMIN + 61,
|
|
__SIGRTMIN + 62,
|
|
__SIGRTMIN + 63,
|
|
__SIGRTMIN + 64,
|
|
__SIGRTMIN + 65,
|
|
__SIGRTMIN + 66,
|
|
__SIGRTMIN + 67,
|
|
__SIGRTMIN + 68,
|
|
__SIGRTMIN + 69,
|
|
__SIGRTMIN + 70,
|
|
__SIGRTMIN + 71,
|
|
__SIGRTMIN + 72,
|
|
__SIGRTMIN + 73,
|
|
__SIGRTMIN + 74,
|
|
__SIGRTMIN + 75,
|
|
__SIGRTMIN + 76,
|
|
__SIGRTMIN + 77,
|
|
__SIGRTMIN + 78,
|
|
__SIGRTMIN + 79,
|
|
__SIGRTMIN + 80,
|
|
__SIGRTMIN + 81,
|
|
__SIGRTMIN + 82,
|
|
__SIGRTMIN + 83,
|
|
__SIGRTMIN + 84,
|
|
__SIGRTMIN + 85,
|
|
__SIGRTMIN + 86,
|
|
__SIGRTMIN + 87,
|
|
__SIGRTMIN + 88,
|
|
__SIGRTMIN + 89,
|
|
__SIGRTMIN + 90,
|
|
__SIGRTMIN + 91,
|
|
__SIGRTMIN + 92,
|
|
__SIGRTMIN + 93,
|
|
__SIGRTMIN + 94,
|
|
__SIGRTMIN + 95,
|
|
-1, /* SIGINFO */
|
|
-1, /* UNKNOWN */
|
|
-1, /* DEFAULT */
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1
|
|
#endif
|
|
};
|
|
#else
|
|
/* In system mode we only need SIGINT and SIGTRAP; other signals
|
|
are not yet supported. */
|
|
|
|
enum {
|
|
TARGET_SIGINT = 2,
|
|
TARGET_SIGTRAP = 5
|
|
};
|
|
|
|
static int gdb_signal_table[] = {
|
|
-1,
|
|
-1,
|
|
TARGET_SIGINT,
|
|
-1,
|
|
-1,
|
|
TARGET_SIGTRAP
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
static int target_signal_to_gdb (int sig)
|
|
{
|
|
int i;
|
|
for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
|
|
if (gdb_signal_table[i] == sig)
|
|
return i;
|
|
return GDB_SIGNAL_UNKNOWN;
|
|
}
|
|
#endif
|
|
|
|
static int gdb_signal_to_target (int sig)
|
|
{
|
|
if (sig < ARRAY_SIZE (gdb_signal_table))
|
|
return gdb_signal_table[sig];
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
typedef struct GDBRegisterState {
|
|
int base_reg;
|
|
int num_regs;
|
|
gdb_get_reg_cb get_reg;
|
|
gdb_set_reg_cb set_reg;
|
|
const char *xml;
|
|
struct GDBRegisterState *next;
|
|
} GDBRegisterState;
|
|
|
|
typedef struct GDBProcess {
|
|
uint32_t pid;
|
|
bool attached;
|
|
|
|
char target_xml[1024];
|
|
} GDBProcess;
|
|
|
|
enum RSState {
|
|
RS_INACTIVE,
|
|
RS_IDLE,
|
|
RS_GETLINE,
|
|
RS_GETLINE_ESC,
|
|
RS_GETLINE_RLE,
|
|
RS_CHKSUM1,
|
|
RS_CHKSUM2,
|
|
};
|
|
typedef struct GDBState {
|
|
bool init; /* have we been initialised? */
|
|
CPUState *c_cpu; /* current CPU for step/continue ops */
|
|
CPUState *g_cpu; /* current CPU for other ops */
|
|
CPUState *query_cpu; /* for q{f|s}ThreadInfo */
|
|
enum RSState state; /* parsing state */
|
|
char line_buf[MAX_PACKET_LENGTH];
|
|
int line_buf_index;
|
|
int line_sum; /* running checksum */
|
|
int line_csum; /* checksum at the end of the packet */
|
|
GByteArray *last_packet;
|
|
int signal;
|
|
#ifdef CONFIG_USER_ONLY
|
|
int fd;
|
|
char *socket_path;
|
|
int running_state;
|
|
#else
|
|
CharBackend chr;
|
|
Chardev *mon_chr;
|
|
#endif
|
|
bool multiprocess;
|
|
GDBProcess *processes;
|
|
int process_num;
|
|
char syscall_buf[256];
|
|
gdb_syscall_complete_cb current_syscall_cb;
|
|
GString *str_buf;
|
|
GByteArray *mem_buf;
|
|
int sstep_flags;
|
|
int supported_sstep_flags;
|
|
} GDBState;
|
|
|
|
static GDBState gdbserver_state;
|
|
|
|
static void init_gdbserver_state(void)
|
|
{
|
|
g_assert(!gdbserver_state.init);
|
|
memset(&gdbserver_state, 0, sizeof(GDBState));
|
|
gdbserver_state.init = true;
|
|
gdbserver_state.str_buf = g_string_new(NULL);
|
|
gdbserver_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH);
|
|
gdbserver_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4);
|
|
|
|
/*
|
|
* In replay mode all events will come from the log and can't be
|
|
* suppressed otherwise we would break determinism. However as those
|
|
* events are tied to the number of executed instructions we won't see
|
|
* them occurring every time we single step.
|
|
*/
|
|
if (replay_mode != REPLAY_MODE_NONE) {
|
|
gdbserver_state.supported_sstep_flags = SSTEP_ENABLE;
|
|
} else if (kvm_enabled()) {
|
|
gdbserver_state.supported_sstep_flags = kvm_get_supported_sstep_flags();
|
|
} else {
|
|
gdbserver_state.supported_sstep_flags =
|
|
SSTEP_ENABLE | SSTEP_NOIRQ | SSTEP_NOTIMER;
|
|
}
|
|
|
|
/*
|
|
* By default use no IRQs and no timers while single stepping so as to
|
|
* make single stepping like an ICE HW step.
|
|
*/
|
|
gdbserver_state.sstep_flags = SSTEP_ENABLE | SSTEP_NOIRQ | SSTEP_NOTIMER;
|
|
gdbserver_state.sstep_flags &= gdbserver_state.supported_sstep_flags;
|
|
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void reset_gdbserver_state(void)
|
|
{
|
|
g_free(gdbserver_state.processes);
|
|
gdbserver_state.processes = NULL;
|
|
gdbserver_state.process_num = 0;
|
|
}
|
|
#endif
|
|
|
|
bool gdb_has_xml;
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
static int get_char(void)
|
|
{
|
|
uint8_t ch;
|
|
int ret;
|
|
|
|
for(;;) {
|
|
ret = recv(gdbserver_state.fd, &ch, 1, 0);
|
|
if (ret < 0) {
|
|
if (errno == ECONNRESET)
|
|
gdbserver_state.fd = -1;
|
|
if (errno != EINTR)
|
|
return -1;
|
|
} else if (ret == 0) {
|
|
close(gdbserver_state.fd);
|
|
gdbserver_state.fd = -1;
|
|
return -1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return ch;
|
|
}
|
|
#endif
|
|
|
|
static enum {
|
|
GDB_SYS_UNKNOWN,
|
|
GDB_SYS_ENABLED,
|
|
GDB_SYS_DISABLED,
|
|
} gdb_syscall_mode;
|
|
|
|
/* Decide if either remote gdb syscalls or native file IO should be used. */
|
|
int use_gdb_syscalls(void)
|
|
{
|
|
SemihostingTarget target = semihosting_get_target();
|
|
if (target == SEMIHOSTING_TARGET_NATIVE) {
|
|
/* -semihosting-config target=native */
|
|
return false;
|
|
} else if (target == SEMIHOSTING_TARGET_GDB) {
|
|
/* -semihosting-config target=gdb */
|
|
return true;
|
|
}
|
|
|
|
/* -semihosting-config target=auto */
|
|
/* On the first call check if gdb is connected and remember. */
|
|
if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
|
|
gdb_syscall_mode = gdbserver_state.init ?
|
|
GDB_SYS_ENABLED : GDB_SYS_DISABLED;
|
|
}
|
|
return gdb_syscall_mode == GDB_SYS_ENABLED;
|
|
}
|
|
|
|
static bool stub_can_reverse(void)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
return false;
|
|
#else
|
|
return replay_mode == REPLAY_MODE_PLAY;
|
|
#endif
|
|
}
|
|
|
|
/* Resume execution. */
|
|
static inline void gdb_continue(void)
|
|
{
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
gdbserver_state.running_state = 1;
|
|
trace_gdbstub_op_continue();
|
|
#else
|
|
if (!runstate_needs_reset()) {
|
|
trace_gdbstub_op_continue();
|
|
vm_start();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Resume execution, per CPU actions. For user-mode emulation it's
|
|
* equivalent to gdb_continue.
|
|
*/
|
|
static int gdb_continue_partial(char *newstates)
|
|
{
|
|
CPUState *cpu;
|
|
int res = 0;
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* This is not exactly accurate, but it's an improvement compared to the
|
|
* previous situation, where only one CPU would be single-stepped.
|
|
*/
|
|
CPU_FOREACH(cpu) {
|
|
if (newstates[cpu->cpu_index] == 's') {
|
|
trace_gdbstub_op_stepping(cpu->cpu_index);
|
|
cpu_single_step(cpu, gdbserver_state.sstep_flags);
|
|
}
|
|
}
|
|
gdbserver_state.running_state = 1;
|
|
#else
|
|
int flag = 0;
|
|
|
|
if (!runstate_needs_reset()) {
|
|
bool step_requested = false;
|
|
CPU_FOREACH(cpu) {
|
|
if (newstates[cpu->cpu_index] == 's') {
|
|
step_requested = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vm_prepare_start(step_requested)) {
|
|
return 0;
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
switch (newstates[cpu->cpu_index]) {
|
|
case 0:
|
|
case 1:
|
|
break; /* nothing to do here */
|
|
case 's':
|
|
trace_gdbstub_op_stepping(cpu->cpu_index);
|
|
cpu_single_step(cpu, gdbserver_state.sstep_flags);
|
|
cpu_resume(cpu);
|
|
flag = 1;
|
|
break;
|
|
case 'c':
|
|
trace_gdbstub_op_continue_cpu(cpu->cpu_index);
|
|
cpu_resume(cpu);
|
|
flag = 1;
|
|
break;
|
|
default:
|
|
res = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (flag) {
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
|
|
}
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
static void put_buffer(const uint8_t *buf, int len)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
int ret;
|
|
|
|
while (len > 0) {
|
|
ret = send(gdbserver_state.fd, buf, len, 0);
|
|
if (ret < 0) {
|
|
if (errno != EINTR)
|
|
return;
|
|
} else {
|
|
buf += ret;
|
|
len -= ret;
|
|
}
|
|
}
|
|
#else
|
|
/* XXX this blocks entire thread. Rewrite to use
|
|
* qemu_chr_fe_write and background I/O callbacks */
|
|
qemu_chr_fe_write_all(&gdbserver_state.chr, buf, len);
|
|
#endif
|
|
}
|
|
|
|
static inline int fromhex(int v)
|
|
{
|
|
if (v >= '0' && v <= '9')
|
|
return v - '0';
|
|
else if (v >= 'A' && v <= 'F')
|
|
return v - 'A' + 10;
|
|
else if (v >= 'a' && v <= 'f')
|
|
return v - 'a' + 10;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int tohex(int v)
|
|
{
|
|
if (v < 10)
|
|
return v + '0';
|
|
else
|
|
return v - 10 + 'a';
|
|
}
|
|
|
|
/* writes 2*len+1 bytes in buf */
|
|
static void memtohex(GString *buf, const uint8_t *mem, int len)
|
|
{
|
|
int i, c;
|
|
for(i = 0; i < len; i++) {
|
|
c = mem[i];
|
|
g_string_append_c(buf, tohex(c >> 4));
|
|
g_string_append_c(buf, tohex(c & 0xf));
|
|
}
|
|
g_string_append_c(buf, '\0');
|
|
}
|
|
|
|
static void hextomem(GByteArray *mem, const char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < len; i++) {
|
|
guint8 byte = fromhex(buf[0]) << 4 | fromhex(buf[1]);
|
|
g_byte_array_append(mem, &byte, 1);
|
|
buf += 2;
|
|
}
|
|
}
|
|
|
|
static void hexdump(const char *buf, int len,
|
|
void (*trace_fn)(size_t ofs, char const *text))
|
|
{
|
|
char line_buffer[3 * 16 + 4 + 16 + 1];
|
|
|
|
size_t i;
|
|
for (i = 0; i < len || (i & 0xF); ++i) {
|
|
size_t byte_ofs = i & 15;
|
|
|
|
if (byte_ofs == 0) {
|
|
memset(line_buffer, ' ', 3 * 16 + 4 + 16);
|
|
line_buffer[3 * 16 + 4 + 16] = 0;
|
|
}
|
|
|
|
size_t col_group = (i >> 2) & 3;
|
|
size_t hex_col = byte_ofs * 3 + col_group;
|
|
size_t txt_col = 3 * 16 + 4 + byte_ofs;
|
|
|
|
if (i < len) {
|
|
char value = buf[i];
|
|
|
|
line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
|
|
line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
|
|
line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
|
|
? value
|
|
: '.';
|
|
}
|
|
|
|
if (byte_ofs == 0xF)
|
|
trace_fn(i & -16, line_buffer);
|
|
}
|
|
}
|
|
|
|
/* return -1 if error, 0 if OK */
|
|
static int put_packet_binary(const char *buf, int len, bool dump)
|
|
{
|
|
int csum, i;
|
|
uint8_t footer[3];
|
|
|
|
if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
|
|
hexdump(buf, len, trace_gdbstub_io_binaryreply);
|
|
}
|
|
|
|
for(;;) {
|
|
g_byte_array_set_size(gdbserver_state.last_packet, 0);
|
|
g_byte_array_append(gdbserver_state.last_packet,
|
|
(const uint8_t *) "$", 1);
|
|
g_byte_array_append(gdbserver_state.last_packet,
|
|
(const uint8_t *) buf, len);
|
|
csum = 0;
|
|
for(i = 0; i < len; i++) {
|
|
csum += buf[i];
|
|
}
|
|
footer[0] = '#';
|
|
footer[1] = tohex((csum >> 4) & 0xf);
|
|
footer[2] = tohex((csum) & 0xf);
|
|
g_byte_array_append(gdbserver_state.last_packet, footer, 3);
|
|
|
|
put_buffer(gdbserver_state.last_packet->data,
|
|
gdbserver_state.last_packet->len);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
i = get_char();
|
|
if (i < 0)
|
|
return -1;
|
|
if (i == '+')
|
|
break;
|
|
#else
|
|
break;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* return -1 if error, 0 if OK */
|
|
static int put_packet(const char *buf)
|
|
{
|
|
trace_gdbstub_io_reply(buf);
|
|
|
|
return put_packet_binary(buf, strlen(buf), false);
|
|
}
|
|
|
|
static void put_strbuf(void)
|
|
{
|
|
put_packet(gdbserver_state.str_buf->str);
|
|
}
|
|
|
|
/* Encode data using the encoding for 'x' packets. */
|
|
static void memtox(GString *buf, const char *mem, int len)
|
|
{
|
|
char c;
|
|
|
|
while (len--) {
|
|
c = *(mem++);
|
|
switch (c) {
|
|
case '#': case '$': case '*': case '}':
|
|
g_string_append_c(buf, '}');
|
|
g_string_append_c(buf, c ^ 0x20);
|
|
break;
|
|
default:
|
|
g_string_append_c(buf, c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t gdb_get_cpu_pid(CPUState *cpu)
|
|
{
|
|
/* TODO: In user mode, we should use the task state PID */
|
|
if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
|
|
/* Return the default process' PID */
|
|
int index = gdbserver_state.process_num - 1;
|
|
return gdbserver_state.processes[index].pid;
|
|
}
|
|
return cpu->cluster_index + 1;
|
|
}
|
|
|
|
static GDBProcess *gdb_get_process(uint32_t pid)
|
|
{
|
|
int i;
|
|
|
|
if (!pid) {
|
|
/* 0 means any process, we take the first one */
|
|
return &gdbserver_state.processes[0];
|
|
}
|
|
|
|
for (i = 0; i < gdbserver_state.process_num; i++) {
|
|
if (gdbserver_state.processes[i].pid == pid) {
|
|
return &gdbserver_state.processes[i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static GDBProcess *gdb_get_cpu_process(CPUState *cpu)
|
|
{
|
|
return gdb_get_process(gdb_get_cpu_pid(cpu));
|
|
}
|
|
|
|
static CPUState *find_cpu(uint32_t thread_id)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu_gdb_index(cpu) == thread_id) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static CPUState *get_first_cpu_in_process(GDBProcess *process)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (gdb_get_cpu_pid(cpu) == process->pid) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static CPUState *gdb_next_cpu_in_process(CPUState *cpu)
|
|
{
|
|
uint32_t pid = gdb_get_cpu_pid(cpu);
|
|
cpu = CPU_NEXT(cpu);
|
|
|
|
while (cpu) {
|
|
if (gdb_get_cpu_pid(cpu) == pid) {
|
|
break;
|
|
}
|
|
|
|
cpu = CPU_NEXT(cpu);
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
|
|
/* Return the cpu following @cpu, while ignoring unattached processes. */
|
|
static CPUState *gdb_next_attached_cpu(CPUState *cpu)
|
|
{
|
|
cpu = CPU_NEXT(cpu);
|
|
|
|
while (cpu) {
|
|
if (gdb_get_cpu_process(cpu)->attached) {
|
|
break;
|
|
}
|
|
|
|
cpu = CPU_NEXT(cpu);
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
|
|
/* Return the first attached cpu */
|
|
static CPUState *gdb_first_attached_cpu(void)
|
|
{
|
|
CPUState *cpu = first_cpu;
|
|
GDBProcess *process = gdb_get_cpu_process(cpu);
|
|
|
|
if (!process->attached) {
|
|
return gdb_next_attached_cpu(cpu);
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
|
|
static CPUState *gdb_get_cpu(uint32_t pid, uint32_t tid)
|
|
{
|
|
GDBProcess *process;
|
|
CPUState *cpu;
|
|
|
|
if (!pid && !tid) {
|
|
/* 0 means any process/thread, we take the first attached one */
|
|
return gdb_first_attached_cpu();
|
|
} else if (pid && !tid) {
|
|
/* any thread in a specific process */
|
|
process = gdb_get_process(pid);
|
|
|
|
if (process == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!process->attached) {
|
|
return NULL;
|
|
}
|
|
|
|
return get_first_cpu_in_process(process);
|
|
} else {
|
|
/* a specific thread */
|
|
cpu = find_cpu(tid);
|
|
|
|
if (cpu == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
process = gdb_get_cpu_process(cpu);
|
|
|
|
if (pid && process->pid != pid) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!process->attached) {
|
|
return NULL;
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
static const char *get_feature_xml(const char *p, const char **newp,
|
|
GDBProcess *process)
|
|
{
|
|
size_t len;
|
|
int i;
|
|
const char *name;
|
|
CPUState *cpu = get_first_cpu_in_process(process);
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
|
|
len = 0;
|
|
while (p[len] && p[len] != ':')
|
|
len++;
|
|
*newp = p + len;
|
|
|
|
name = NULL;
|
|
if (strncmp(p, "target.xml", len) == 0) {
|
|
char *buf = process->target_xml;
|
|
const size_t buf_sz = sizeof(process->target_xml);
|
|
|
|
/* Generate the XML description for this CPU. */
|
|
if (!buf[0]) {
|
|
GDBRegisterState *r;
|
|
|
|
pstrcat(buf, buf_sz,
|
|
"<?xml version=\"1.0\"?>"
|
|
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
|
|
"<target>");
|
|
if (cc->gdb_arch_name) {
|
|
gchar *arch = cc->gdb_arch_name(cpu);
|
|
pstrcat(buf, buf_sz, "<architecture>");
|
|
pstrcat(buf, buf_sz, arch);
|
|
pstrcat(buf, buf_sz, "</architecture>");
|
|
g_free(arch);
|
|
}
|
|
pstrcat(buf, buf_sz, "<xi:include href=\"");
|
|
pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
|
|
pstrcat(buf, buf_sz, "\"/>");
|
|
for (r = cpu->gdb_regs; r; r = r->next) {
|
|
pstrcat(buf, buf_sz, "<xi:include href=\"");
|
|
pstrcat(buf, buf_sz, r->xml);
|
|
pstrcat(buf, buf_sz, "\"/>");
|
|
}
|
|
pstrcat(buf, buf_sz, "</target>");
|
|
}
|
|
return buf;
|
|
}
|
|
if (cc->gdb_get_dynamic_xml) {
|
|
char *xmlname = g_strndup(p, len);
|
|
const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
|
|
|
|
g_free(xmlname);
|
|
if (xml) {
|
|
return xml;
|
|
}
|
|
}
|
|
for (i = 0; ; i++) {
|
|
name = xml_builtin[i][0];
|
|
if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
|
|
break;
|
|
}
|
|
return name ? xml_builtin[i][1] : NULL;
|
|
}
|
|
|
|
static int gdb_read_register(CPUState *cpu, GByteArray *buf, int reg)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUArchState *env = cpu->env_ptr;
|
|
GDBRegisterState *r;
|
|
|
|
if (reg < cc->gdb_num_core_regs) {
|
|
return cc->gdb_read_register(cpu, buf, reg);
|
|
}
|
|
|
|
for (r = cpu->gdb_regs; r; r = r->next) {
|
|
if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
|
|
return r->get_reg(env, buf, reg - r->base_reg);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUArchState *env = cpu->env_ptr;
|
|
GDBRegisterState *r;
|
|
|
|
if (reg < cc->gdb_num_core_regs) {
|
|
return cc->gdb_write_register(cpu, mem_buf, reg);
|
|
}
|
|
|
|
for (r = cpu->gdb_regs; r; r = r->next) {
|
|
if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
|
|
return r->set_reg(env, mem_buf, reg - r->base_reg);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Register a supplemental set of CPU registers. If g_pos is nonzero it
|
|
specifies the first register number and these registers are included in
|
|
a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
|
|
gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
|
|
*/
|
|
|
|
void gdb_register_coprocessor(CPUState *cpu,
|
|
gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg,
|
|
int num_regs, const char *xml, int g_pos)
|
|
{
|
|
GDBRegisterState *s;
|
|
GDBRegisterState **p;
|
|
|
|
p = &cpu->gdb_regs;
|
|
while (*p) {
|
|
/* Check for duplicates. */
|
|
if (strcmp((*p)->xml, xml) == 0)
|
|
return;
|
|
p = &(*p)->next;
|
|
}
|
|
|
|
s = g_new0(GDBRegisterState, 1);
|
|
s->base_reg = cpu->gdb_num_regs;
|
|
s->num_regs = num_regs;
|
|
s->get_reg = get_reg;
|
|
s->set_reg = set_reg;
|
|
s->xml = xml;
|
|
|
|
/* Add to end of list. */
|
|
cpu->gdb_num_regs += num_regs;
|
|
*p = s;
|
|
if (g_pos) {
|
|
if (g_pos != s->base_reg) {
|
|
error_report("Error: Bad gdb register numbering for '%s', "
|
|
"expected %d got %d", xml, g_pos, s->base_reg);
|
|
} else {
|
|
cpu->gdb_num_g_regs = cpu->gdb_num_regs;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
|
|
static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
|
|
{
|
|
static const int xlat[] = {
|
|
[GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
|
|
[GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
|
|
[GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
|
|
};
|
|
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
int cputype = xlat[gdbtype];
|
|
|
|
if (cc->gdb_stop_before_watchpoint) {
|
|
cputype |= BP_STOP_BEFORE_ACCESS;
|
|
}
|
|
return cputype;
|
|
}
|
|
#endif
|
|
|
|
static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
|
|
{
|
|
CPUState *cpu;
|
|
int err = 0;
|
|
|
|
if (kvm_enabled()) {
|
|
return kvm_insert_breakpoint(gdbserver_state.c_cpu, addr, len, type);
|
|
}
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
CPU_FOREACH(cpu) {
|
|
err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
|
|
if (err) {
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
#ifndef CONFIG_USER_ONLY
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
CPU_FOREACH(cpu) {
|
|
err = cpu_watchpoint_insert(cpu, addr, len,
|
|
xlat_gdb_type(cpu, type), NULL);
|
|
if (err) {
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
#endif
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
|
|
{
|
|
CPUState *cpu;
|
|
int err = 0;
|
|
|
|
if (kvm_enabled()) {
|
|
return kvm_remove_breakpoint(gdbserver_state.c_cpu, addr, len, type);
|
|
}
|
|
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_SW:
|
|
case GDB_BREAKPOINT_HW:
|
|
CPU_FOREACH(cpu) {
|
|
err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
|
|
if (err) {
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
#ifndef CONFIG_USER_ONLY
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
CPU_FOREACH(cpu) {
|
|
err = cpu_watchpoint_remove(cpu, addr, len,
|
|
xlat_gdb_type(cpu, type));
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
#endif
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
|
|
{
|
|
cpu_breakpoint_remove_all(cpu, BP_GDB);
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu_watchpoint_remove_all(cpu, BP_GDB);
|
|
#endif
|
|
}
|
|
|
|
static void gdb_process_breakpoint_remove_all(GDBProcess *p)
|
|
{
|
|
CPUState *cpu = get_first_cpu_in_process(p);
|
|
|
|
while (cpu) {
|
|
gdb_cpu_breakpoint_remove_all(cpu);
|
|
cpu = gdb_next_cpu_in_process(cpu);
|
|
}
|
|
}
|
|
|
|
static void gdb_breakpoint_remove_all(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
if (kvm_enabled()) {
|
|
kvm_remove_all_breakpoints(gdbserver_state.c_cpu);
|
|
return;
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
gdb_cpu_breakpoint_remove_all(cpu);
|
|
}
|
|
}
|
|
|
|
static void gdb_set_cpu_pc(target_ulong pc)
|
|
{
|
|
CPUState *cpu = gdbserver_state.c_cpu;
|
|
|
|
cpu_synchronize_state(cpu);
|
|
cpu_set_pc(cpu, pc);
|
|
}
|
|
|
|
static void gdb_append_thread_id(CPUState *cpu, GString *buf)
|
|
{
|
|
if (gdbserver_state.multiprocess) {
|
|
g_string_append_printf(buf, "p%02x.%02x",
|
|
gdb_get_cpu_pid(cpu), cpu_gdb_index(cpu));
|
|
} else {
|
|
g_string_append_printf(buf, "%02x", cpu_gdb_index(cpu));
|
|
}
|
|
}
|
|
|
|
typedef enum GDBThreadIdKind {
|
|
GDB_ONE_THREAD = 0,
|
|
GDB_ALL_THREADS, /* One process, all threads */
|
|
GDB_ALL_PROCESSES,
|
|
GDB_READ_THREAD_ERR
|
|
} GDBThreadIdKind;
|
|
|
|
static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
|
|
uint32_t *pid, uint32_t *tid)
|
|
{
|
|
unsigned long p, t;
|
|
int ret;
|
|
|
|
if (*buf == 'p') {
|
|
buf++;
|
|
ret = qemu_strtoul(buf, &buf, 16, &p);
|
|
|
|
if (ret) {
|
|
return GDB_READ_THREAD_ERR;
|
|
}
|
|
|
|
/* Skip '.' */
|
|
buf++;
|
|
} else {
|
|
p = 1;
|
|
}
|
|
|
|
ret = qemu_strtoul(buf, &buf, 16, &t);
|
|
|
|
if (ret) {
|
|
return GDB_READ_THREAD_ERR;
|
|
}
|
|
|
|
*end_buf = buf;
|
|
|
|
if (p == -1) {
|
|
return GDB_ALL_PROCESSES;
|
|
}
|
|
|
|
if (pid) {
|
|
*pid = p;
|
|
}
|
|
|
|
if (t == -1) {
|
|
return GDB_ALL_THREADS;
|
|
}
|
|
|
|
if (tid) {
|
|
*tid = t;
|
|
}
|
|
|
|
return GDB_ONE_THREAD;
|
|
}
|
|
|
|
/**
|
|
* gdb_handle_vcont - Parses and handles a vCont packet.
|
|
* returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
|
|
* a format error, 0 on success.
|
|
*/
|
|
static int gdb_handle_vcont(const char *p)
|
|
{
|
|
int res, signal = 0;
|
|
char cur_action;
|
|
char *newstates;
|
|
unsigned long tmp;
|
|
uint32_t pid, tid;
|
|
GDBProcess *process;
|
|
CPUState *cpu;
|
|
GDBThreadIdKind kind;
|
|
#ifdef CONFIG_USER_ONLY
|
|
int max_cpus = 1; /* global variable max_cpus exists only in system mode */
|
|
|
|
CPU_FOREACH(cpu) {
|
|
max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
|
|
}
|
|
#else
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
unsigned int max_cpus = ms->smp.max_cpus;
|
|
#endif
|
|
/* uninitialised CPUs stay 0 */
|
|
newstates = g_new0(char, max_cpus);
|
|
|
|
/* mark valid CPUs with 1 */
|
|
CPU_FOREACH(cpu) {
|
|
newstates[cpu->cpu_index] = 1;
|
|
}
|
|
|
|
/*
|
|
* res keeps track of what error we are returning, with -ENOTSUP meaning
|
|
* that the command is unknown or unsupported, thus returning an empty
|
|
* packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
|
|
* or incorrect parameters passed.
|
|
*/
|
|
res = 0;
|
|
while (*p) {
|
|
if (*p++ != ';') {
|
|
res = -ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
cur_action = *p++;
|
|
if (cur_action == 'C' || cur_action == 'S') {
|
|
cur_action = qemu_tolower(cur_action);
|
|
res = qemu_strtoul(p, &p, 16, &tmp);
|
|
if (res) {
|
|
goto out;
|
|
}
|
|
signal = gdb_signal_to_target(tmp);
|
|
} else if (cur_action != 'c' && cur_action != 's') {
|
|
/* unknown/invalid/unsupported command */
|
|
res = -ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
if (*p == '\0' || *p == ';') {
|
|
/*
|
|
* No thread specifier, action is on "all threads". The
|
|
* specification is unclear regarding the process to act on. We
|
|
* choose all processes.
|
|
*/
|
|
kind = GDB_ALL_PROCESSES;
|
|
} else if (*p++ == ':') {
|
|
kind = read_thread_id(p, &p, &pid, &tid);
|
|
} else {
|
|
res = -ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
switch (kind) {
|
|
case GDB_READ_THREAD_ERR:
|
|
res = -EINVAL;
|
|
goto out;
|
|
|
|
case GDB_ALL_PROCESSES:
|
|
cpu = gdb_first_attached_cpu();
|
|
while (cpu) {
|
|
if (newstates[cpu->cpu_index] == 1) {
|
|
newstates[cpu->cpu_index] = cur_action;
|
|
}
|
|
|
|
cpu = gdb_next_attached_cpu(cpu);
|
|
}
|
|
break;
|
|
|
|
case GDB_ALL_THREADS:
|
|
process = gdb_get_process(pid);
|
|
|
|
if (!process->attached) {
|
|
res = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
cpu = get_first_cpu_in_process(process);
|
|
while (cpu) {
|
|
if (newstates[cpu->cpu_index] == 1) {
|
|
newstates[cpu->cpu_index] = cur_action;
|
|
}
|
|
|
|
cpu = gdb_next_cpu_in_process(cpu);
|
|
}
|
|
break;
|
|
|
|
case GDB_ONE_THREAD:
|
|
cpu = gdb_get_cpu(pid, tid);
|
|
|
|
/* invalid CPU/thread specified */
|
|
if (!cpu) {
|
|
res = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* only use if no previous match occourred */
|
|
if (newstates[cpu->cpu_index] == 1) {
|
|
newstates[cpu->cpu_index] = cur_action;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
gdbserver_state.signal = signal;
|
|
gdb_continue_partial(newstates);
|
|
|
|
out:
|
|
g_free(newstates);
|
|
|
|
return res;
|
|
}
|
|
|
|
typedef union GdbCmdVariant {
|
|
const char *data;
|
|
uint8_t opcode;
|
|
unsigned long val_ul;
|
|
unsigned long long val_ull;
|
|
struct {
|
|
GDBThreadIdKind kind;
|
|
uint32_t pid;
|
|
uint32_t tid;
|
|
} thread_id;
|
|
} GdbCmdVariant;
|
|
|
|
#define get_param(p, i) (&g_array_index(p, GdbCmdVariant, i))
|
|
|
|
static const char *cmd_next_param(const char *param, const char delimiter)
|
|
{
|
|
static const char all_delimiters[] = ",;:=";
|
|
char curr_delimiters[2] = {0};
|
|
const char *delimiters;
|
|
|
|
if (delimiter == '?') {
|
|
delimiters = all_delimiters;
|
|
} else if (delimiter == '0') {
|
|
return strchr(param, '\0');
|
|
} else if (delimiter == '.' && *param) {
|
|
return param + 1;
|
|
} else {
|
|
curr_delimiters[0] = delimiter;
|
|
delimiters = curr_delimiters;
|
|
}
|
|
|
|
param += strcspn(param, delimiters);
|
|
if (*param) {
|
|
param++;
|
|
}
|
|
return param;
|
|
}
|
|
|
|
static int cmd_parse_params(const char *data, const char *schema,
|
|
GArray *params)
|
|
{
|
|
const char *curr_schema, *curr_data;
|
|
|
|
g_assert(schema);
|
|
g_assert(params->len == 0);
|
|
|
|
curr_schema = schema;
|
|
curr_data = data;
|
|
while (curr_schema[0] && curr_schema[1] && *curr_data) {
|
|
GdbCmdVariant this_param;
|
|
|
|
switch (curr_schema[0]) {
|
|
case 'l':
|
|
if (qemu_strtoul(curr_data, &curr_data, 16,
|
|
&this_param.val_ul)) {
|
|
return -EINVAL;
|
|
}
|
|
curr_data = cmd_next_param(curr_data, curr_schema[1]);
|
|
g_array_append_val(params, this_param);
|
|
break;
|
|
case 'L':
|
|
if (qemu_strtou64(curr_data, &curr_data, 16,
|
|
(uint64_t *)&this_param.val_ull)) {
|
|
return -EINVAL;
|
|
}
|
|
curr_data = cmd_next_param(curr_data, curr_schema[1]);
|
|
g_array_append_val(params, this_param);
|
|
break;
|
|
case 's':
|
|
this_param.data = curr_data;
|
|
curr_data = cmd_next_param(curr_data, curr_schema[1]);
|
|
g_array_append_val(params, this_param);
|
|
break;
|
|
case 'o':
|
|
this_param.opcode = *(uint8_t *)curr_data;
|
|
curr_data = cmd_next_param(curr_data, curr_schema[1]);
|
|
g_array_append_val(params, this_param);
|
|
break;
|
|
case 't':
|
|
this_param.thread_id.kind =
|
|
read_thread_id(curr_data, &curr_data,
|
|
&this_param.thread_id.pid,
|
|
&this_param.thread_id.tid);
|
|
curr_data = cmd_next_param(curr_data, curr_schema[1]);
|
|
g_array_append_val(params, this_param);
|
|
break;
|
|
case '?':
|
|
curr_data = cmd_next_param(curr_data, curr_schema[1]);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
curr_schema += 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef void (*GdbCmdHandler)(GArray *params, void *user_ctx);
|
|
|
|
/*
|
|
* cmd_startswith -> cmd is compared using startswith
|
|
*
|
|
*
|
|
* schema definitions:
|
|
* Each schema parameter entry consists of 2 chars,
|
|
* the first char represents the parameter type handling
|
|
* the second char represents the delimiter for the next parameter
|
|
*
|
|
* Currently supported schema types:
|
|
* 'l' -> unsigned long (stored in .val_ul)
|
|
* 'L' -> unsigned long long (stored in .val_ull)
|
|
* 's' -> string (stored in .data)
|
|
* 'o' -> single char (stored in .opcode)
|
|
* 't' -> thread id (stored in .thread_id)
|
|
* '?' -> skip according to delimiter
|
|
*
|
|
* Currently supported delimiters:
|
|
* '?' -> Stop at any delimiter (",;:=\0")
|
|
* '0' -> Stop at "\0"
|
|
* '.' -> Skip 1 char unless reached "\0"
|
|
* Any other value is treated as the delimiter value itself
|
|
*/
|
|
typedef struct GdbCmdParseEntry {
|
|
GdbCmdHandler handler;
|
|
const char *cmd;
|
|
bool cmd_startswith;
|
|
const char *schema;
|
|
} GdbCmdParseEntry;
|
|
|
|
static inline int startswith(const char *string, const char *pattern)
|
|
{
|
|
return !strncmp(string, pattern, strlen(pattern));
|
|
}
|
|
|
|
static int process_string_cmd(void *user_ctx, const char *data,
|
|
const GdbCmdParseEntry *cmds, int num_cmds)
|
|
{
|
|
int i;
|
|
g_autoptr(GArray) params = g_array_new(false, true, sizeof(GdbCmdVariant));
|
|
|
|
if (!cmds) {
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < num_cmds; i++) {
|
|
const GdbCmdParseEntry *cmd = &cmds[i];
|
|
g_assert(cmd->handler && cmd->cmd);
|
|
|
|
if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
|
|
(!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
|
|
continue;
|
|
}
|
|
|
|
if (cmd->schema) {
|
|
if (cmd_parse_params(&data[strlen(cmd->cmd)],
|
|
cmd->schema, params)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
cmd->handler(params, user_ctx);
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd)
|
|
{
|
|
if (!data) {
|
|
return;
|
|
}
|
|
|
|
g_string_set_size(gdbserver_state.str_buf, 0);
|
|
g_byte_array_set_size(gdbserver_state.mem_buf, 0);
|
|
|
|
/* In case there was an error during the command parsing we must
|
|
* send a NULL packet to indicate the command is not supported */
|
|
if (process_string_cmd(NULL, data, cmd, 1)) {
|
|
put_packet("");
|
|
}
|
|
}
|
|
|
|
static void handle_detach(GArray *params, void *user_ctx)
|
|
{
|
|
GDBProcess *process;
|
|
uint32_t pid = 1;
|
|
|
|
if (gdbserver_state.multiprocess) {
|
|
if (!params->len) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
pid = get_param(params, 0)->val_ul;
|
|
}
|
|
|
|
process = gdb_get_process(pid);
|
|
gdb_process_breakpoint_remove_all(process);
|
|
process->attached = false;
|
|
|
|
if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) {
|
|
gdbserver_state.c_cpu = gdb_first_attached_cpu();
|
|
}
|
|
|
|
if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) {
|
|
gdbserver_state.g_cpu = gdb_first_attached_cpu();
|
|
}
|
|
|
|
if (!gdbserver_state.c_cpu) {
|
|
/* No more process attached */
|
|
gdb_syscall_mode = GDB_SYS_DISABLED;
|
|
gdb_continue();
|
|
}
|
|
put_packet("OK");
|
|
}
|
|
|
|
static void handle_thread_alive(GArray *params, void *user_ctx)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
if (!params->len) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
if (get_param(params, 0)->thread_id.kind == GDB_READ_THREAD_ERR) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
cpu = gdb_get_cpu(get_param(params, 0)->thread_id.pid,
|
|
get_param(params, 0)->thread_id.tid);
|
|
if (!cpu) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
put_packet("OK");
|
|
}
|
|
|
|
static void handle_continue(GArray *params, void *user_ctx)
|
|
{
|
|
if (params->len) {
|
|
gdb_set_cpu_pc(get_param(params, 0)->val_ull);
|
|
}
|
|
|
|
gdbserver_state.signal = 0;
|
|
gdb_continue();
|
|
}
|
|
|
|
static void handle_cont_with_sig(GArray *params, void *user_ctx)
|
|
{
|
|
unsigned long signal = 0;
|
|
|
|
/*
|
|
* Note: C sig;[addr] is currently unsupported and we simply
|
|
* omit the addr parameter
|
|
*/
|
|
if (params->len) {
|
|
signal = get_param(params, 0)->val_ul;
|
|
}
|
|
|
|
gdbserver_state.signal = gdb_signal_to_target(signal);
|
|
if (gdbserver_state.signal == -1) {
|
|
gdbserver_state.signal = 0;
|
|
}
|
|
gdb_continue();
|
|
}
|
|
|
|
static void handle_set_thread(GArray *params, void *user_ctx)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
if (params->len != 2) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
if (get_param(params, 1)->thread_id.kind == GDB_READ_THREAD_ERR) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
if (get_param(params, 1)->thread_id.kind != GDB_ONE_THREAD) {
|
|
put_packet("OK");
|
|
return;
|
|
}
|
|
|
|
cpu = gdb_get_cpu(get_param(params, 1)->thread_id.pid,
|
|
get_param(params, 1)->thread_id.tid);
|
|
if (!cpu) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Note: This command is deprecated and modern gdb's will be using the
|
|
* vCont command instead.
|
|
*/
|
|
switch (get_param(params, 0)->opcode) {
|
|
case 'c':
|
|
gdbserver_state.c_cpu = cpu;
|
|
put_packet("OK");
|
|
break;
|
|
case 'g':
|
|
gdbserver_state.g_cpu = cpu;
|
|
put_packet("OK");
|
|
break;
|
|
default:
|
|
put_packet("E22");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void handle_insert_bp(GArray *params, void *user_ctx)
|
|
{
|
|
int res;
|
|
|
|
if (params->len != 3) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
res = gdb_breakpoint_insert(get_param(params, 0)->val_ul,
|
|
get_param(params, 1)->val_ull,
|
|
get_param(params, 2)->val_ull);
|
|
if (res >= 0) {
|
|
put_packet("OK");
|
|
return;
|
|
} else if (res == -ENOSYS) {
|
|
put_packet("");
|
|
return;
|
|
}
|
|
|
|
put_packet("E22");
|
|
}
|
|
|
|
static void handle_remove_bp(GArray *params, void *user_ctx)
|
|
{
|
|
int res;
|
|
|
|
if (params->len != 3) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
res = gdb_breakpoint_remove(get_param(params, 0)->val_ul,
|
|
get_param(params, 1)->val_ull,
|
|
get_param(params, 2)->val_ull);
|
|
if (res >= 0) {
|
|
put_packet("OK");
|
|
return;
|
|
} else if (res == -ENOSYS) {
|
|
put_packet("");
|
|
return;
|
|
}
|
|
|
|
put_packet("E22");
|
|
}
|
|
|
|
/*
|
|
* handle_set/get_reg
|
|
*
|
|
* Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
|
|
* This works, but can be very slow. Anything new enough to understand
|
|
* XML also knows how to use this properly. However to use this we
|
|
* need to define a local XML file as well as be talking to a
|
|
* reasonably modern gdb. Responding with an empty packet will cause
|
|
* the remote gdb to fallback to older methods.
|
|
*/
|
|
|
|
static void handle_set_reg(GArray *params, void *user_ctx)
|
|
{
|
|
int reg_size;
|
|
|
|
if (!gdb_has_xml) {
|
|
put_packet("");
|
|
return;
|
|
}
|
|
|
|
if (params->len != 2) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
reg_size = strlen(get_param(params, 1)->data) / 2;
|
|
hextomem(gdbserver_state.mem_buf, get_param(params, 1)->data, reg_size);
|
|
gdb_write_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf->data,
|
|
get_param(params, 0)->val_ull);
|
|
put_packet("OK");
|
|
}
|
|
|
|
static void handle_get_reg(GArray *params, void *user_ctx)
|
|
{
|
|
int reg_size;
|
|
|
|
if (!gdb_has_xml) {
|
|
put_packet("");
|
|
return;
|
|
}
|
|
|
|
if (!params->len) {
|
|
put_packet("E14");
|
|
return;
|
|
}
|
|
|
|
reg_size = gdb_read_register(gdbserver_state.g_cpu,
|
|
gdbserver_state.mem_buf,
|
|
get_param(params, 0)->val_ull);
|
|
if (!reg_size) {
|
|
put_packet("E14");
|
|
return;
|
|
} else {
|
|
g_byte_array_set_size(gdbserver_state.mem_buf, reg_size);
|
|
}
|
|
|
|
memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, reg_size);
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_write_mem(GArray *params, void *user_ctx)
|
|
{
|
|
if (params->len != 3) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
/* hextomem() reads 2*len bytes */
|
|
if (get_param(params, 1)->val_ull >
|
|
strlen(get_param(params, 2)->data) / 2) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
hextomem(gdbserver_state.mem_buf, get_param(params, 2)->data,
|
|
get_param(params, 1)->val_ull);
|
|
if (target_memory_rw_debug(gdbserver_state.g_cpu,
|
|
get_param(params, 0)->val_ull,
|
|
gdbserver_state.mem_buf->data,
|
|
gdbserver_state.mem_buf->len, true)) {
|
|
put_packet("E14");
|
|
return;
|
|
}
|
|
|
|
put_packet("OK");
|
|
}
|
|
|
|
static void handle_read_mem(GArray *params, void *user_ctx)
|
|
{
|
|
if (params->len != 2) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
/* memtohex() doubles the required space */
|
|
if (get_param(params, 1)->val_ull > MAX_PACKET_LENGTH / 2) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
g_byte_array_set_size(gdbserver_state.mem_buf,
|
|
get_param(params, 1)->val_ull);
|
|
|
|
if (target_memory_rw_debug(gdbserver_state.g_cpu,
|
|
get_param(params, 0)->val_ull,
|
|
gdbserver_state.mem_buf->data,
|
|
gdbserver_state.mem_buf->len, false)) {
|
|
put_packet("E14");
|
|
return;
|
|
}
|
|
|
|
memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data,
|
|
gdbserver_state.mem_buf->len);
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_write_all_regs(GArray *params, void *user_ctx)
|
|
{
|
|
target_ulong addr, len;
|
|
uint8_t *registers;
|
|
int reg_size;
|
|
|
|
if (!params->len) {
|
|
return;
|
|
}
|
|
|
|
cpu_synchronize_state(gdbserver_state.g_cpu);
|
|
len = strlen(get_param(params, 0)->data) / 2;
|
|
hextomem(gdbserver_state.mem_buf, get_param(params, 0)->data, len);
|
|
registers = gdbserver_state.mem_buf->data;
|
|
for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0;
|
|
addr++) {
|
|
reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, addr);
|
|
len -= reg_size;
|
|
registers += reg_size;
|
|
}
|
|
put_packet("OK");
|
|
}
|
|
|
|
static void handle_read_all_regs(GArray *params, void *user_ctx)
|
|
{
|
|
target_ulong addr, len;
|
|
|
|
cpu_synchronize_state(gdbserver_state.g_cpu);
|
|
g_byte_array_set_size(gdbserver_state.mem_buf, 0);
|
|
len = 0;
|
|
for (addr = 0; addr < gdbserver_state.g_cpu->gdb_num_g_regs; addr++) {
|
|
len += gdb_read_register(gdbserver_state.g_cpu,
|
|
gdbserver_state.mem_buf,
|
|
addr);
|
|
}
|
|
g_assert(len == gdbserver_state.mem_buf->len);
|
|
|
|
memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, len);
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_file_io(GArray *params, void *user_ctx)
|
|
{
|
|
if (params->len >= 1 && gdbserver_state.current_syscall_cb) {
|
|
target_ulong ret, err;
|
|
|
|
ret = (target_ulong)get_param(params, 0)->val_ull;
|
|
if (params->len >= 2) {
|
|
err = (target_ulong)get_param(params, 1)->val_ull;
|
|
} else {
|
|
err = 0;
|
|
}
|
|
gdbserver_state.current_syscall_cb(gdbserver_state.c_cpu, ret, err);
|
|
gdbserver_state.current_syscall_cb = NULL;
|
|
}
|
|
|
|
if (params->len >= 3 && get_param(params, 2)->opcode == (uint8_t)'C') {
|
|
put_packet("T02");
|
|
return;
|
|
}
|
|
|
|
gdb_continue();
|
|
}
|
|
|
|
static void handle_step(GArray *params, void *user_ctx)
|
|
{
|
|
if (params->len) {
|
|
gdb_set_cpu_pc((target_ulong)get_param(params, 0)->val_ull);
|
|
}
|
|
|
|
cpu_single_step(gdbserver_state.c_cpu, gdbserver_state.sstep_flags);
|
|
gdb_continue();
|
|
}
|
|
|
|
static void handle_backward(GArray *params, void *user_ctx)
|
|
{
|
|
if (!stub_can_reverse()) {
|
|
put_packet("E22");
|
|
}
|
|
if (params->len == 1) {
|
|
switch (get_param(params, 0)->opcode) {
|
|
case 's':
|
|
if (replay_reverse_step()) {
|
|
gdb_continue();
|
|
} else {
|
|
put_packet("E14");
|
|
}
|
|
return;
|
|
case 'c':
|
|
if (replay_reverse_continue()) {
|
|
gdb_continue();
|
|
} else {
|
|
put_packet("E14");
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Default invalid command */
|
|
put_packet("");
|
|
}
|
|
|
|
static void handle_v_cont_query(GArray *params, void *user_ctx)
|
|
{
|
|
put_packet("vCont;c;C;s;S");
|
|
}
|
|
|
|
static void handle_v_cont(GArray *params, void *user_ctx)
|
|
{
|
|
int res;
|
|
|
|
if (!params->len) {
|
|
return;
|
|
}
|
|
|
|
res = gdb_handle_vcont(get_param(params, 0)->data);
|
|
if ((res == -EINVAL) || (res == -ERANGE)) {
|
|
put_packet("E22");
|
|
} else if (res) {
|
|
put_packet("");
|
|
}
|
|
}
|
|
|
|
static void handle_v_attach(GArray *params, void *user_ctx)
|
|
{
|
|
GDBProcess *process;
|
|
CPUState *cpu;
|
|
|
|
g_string_assign(gdbserver_state.str_buf, "E22");
|
|
if (!params->len) {
|
|
goto cleanup;
|
|
}
|
|
|
|
process = gdb_get_process(get_param(params, 0)->val_ul);
|
|
if (!process) {
|
|
goto cleanup;
|
|
}
|
|
|
|
cpu = get_first_cpu_in_process(process);
|
|
if (!cpu) {
|
|
goto cleanup;
|
|
}
|
|
|
|
process->attached = true;
|
|
gdbserver_state.g_cpu = cpu;
|
|
gdbserver_state.c_cpu = cpu;
|
|
|
|
g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
|
|
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
|
|
g_string_append_c(gdbserver_state.str_buf, ';');
|
|
cleanup:
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_v_kill(GArray *params, void *user_ctx)
|
|
{
|
|
/* Kill the target */
|
|
put_packet("OK");
|
|
error_report("QEMU: Terminated via GDBstub");
|
|
gdb_exit(0);
|
|
exit(0);
|
|
}
|
|
|
|
static const GdbCmdParseEntry gdb_v_commands_table[] = {
|
|
/* Order is important if has same prefix */
|
|
{
|
|
.handler = handle_v_cont_query,
|
|
.cmd = "Cont?",
|
|
.cmd_startswith = 1
|
|
},
|
|
{
|
|
.handler = handle_v_cont,
|
|
.cmd = "Cont",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
},
|
|
{
|
|
.handler = handle_v_attach,
|
|
.cmd = "Attach;",
|
|
.cmd_startswith = 1,
|
|
.schema = "l0"
|
|
},
|
|
{
|
|
.handler = handle_v_kill,
|
|
.cmd = "Kill;",
|
|
.cmd_startswith = 1
|
|
},
|
|
};
|
|
|
|
static void handle_v_commands(GArray *params, void *user_ctx)
|
|
{
|
|
if (!params->len) {
|
|
return;
|
|
}
|
|
|
|
if (process_string_cmd(NULL, get_param(params, 0)->data,
|
|
gdb_v_commands_table,
|
|
ARRAY_SIZE(gdb_v_commands_table))) {
|
|
put_packet("");
|
|
}
|
|
}
|
|
|
|
static void handle_query_qemu_sstepbits(GArray *params, void *user_ctx)
|
|
{
|
|
g_string_printf(gdbserver_state.str_buf, "ENABLE=%x", SSTEP_ENABLE);
|
|
|
|
if (gdbserver_state.supported_sstep_flags & SSTEP_NOIRQ) {
|
|
g_string_append_printf(gdbserver_state.str_buf, ",NOIRQ=%x",
|
|
SSTEP_NOIRQ);
|
|
}
|
|
|
|
if (gdbserver_state.supported_sstep_flags & SSTEP_NOTIMER) {
|
|
g_string_append_printf(gdbserver_state.str_buf, ",NOTIMER=%x",
|
|
SSTEP_NOTIMER);
|
|
}
|
|
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_set_qemu_sstep(GArray *params, void *user_ctx)
|
|
{
|
|
int new_sstep_flags;
|
|
|
|
if (!params->len) {
|
|
return;
|
|
}
|
|
|
|
new_sstep_flags = get_param(params, 0)->val_ul;
|
|
|
|
if (new_sstep_flags & ~gdbserver_state.supported_sstep_flags) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
gdbserver_state.sstep_flags = new_sstep_flags;
|
|
put_packet("OK");
|
|
}
|
|
|
|
static void handle_query_qemu_sstep(GArray *params, void *user_ctx)
|
|
{
|
|
g_string_printf(gdbserver_state.str_buf, "0x%x",
|
|
gdbserver_state.sstep_flags);
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_query_curr_tid(GArray *params, void *user_ctx)
|
|
{
|
|
CPUState *cpu;
|
|
GDBProcess *process;
|
|
|
|
/*
|
|
* "Current thread" remains vague in the spec, so always return
|
|
* the first thread of the current process (gdb returns the
|
|
* first thread).
|
|
*/
|
|
process = gdb_get_cpu_process(gdbserver_state.g_cpu);
|
|
cpu = get_first_cpu_in_process(process);
|
|
g_string_assign(gdbserver_state.str_buf, "QC");
|
|
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_query_threads(GArray *params, void *user_ctx)
|
|
{
|
|
if (!gdbserver_state.query_cpu) {
|
|
put_packet("l");
|
|
return;
|
|
}
|
|
|
|
g_string_assign(gdbserver_state.str_buf, "m");
|
|
gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf);
|
|
put_strbuf();
|
|
gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu);
|
|
}
|
|
|
|
static void handle_query_first_threads(GArray *params, void *user_ctx)
|
|
{
|
|
gdbserver_state.query_cpu = gdb_first_attached_cpu();
|
|
handle_query_threads(params, user_ctx);
|
|
}
|
|
|
|
static void handle_query_thread_extra(GArray *params, void *user_ctx)
|
|
{
|
|
g_autoptr(GString) rs = g_string_new(NULL);
|
|
CPUState *cpu;
|
|
|
|
if (!params->len ||
|
|
get_param(params, 0)->thread_id.kind == GDB_READ_THREAD_ERR) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
cpu = gdb_get_cpu(get_param(params, 0)->thread_id.pid,
|
|
get_param(params, 0)->thread_id.tid);
|
|
if (!cpu) {
|
|
return;
|
|
}
|
|
|
|
cpu_synchronize_state(cpu);
|
|
|
|
if (gdbserver_state.multiprocess && (gdbserver_state.process_num > 1)) {
|
|
/* Print the CPU model and name in multiprocess mode */
|
|
ObjectClass *oc = object_get_class(OBJECT(cpu));
|
|
const char *cpu_model = object_class_get_name(oc);
|
|
const char *cpu_name =
|
|
object_get_canonical_path_component(OBJECT(cpu));
|
|
g_string_printf(rs, "%s %s [%s]", cpu_model, cpu_name,
|
|
cpu->halted ? "halted " : "running");
|
|
} else {
|
|
g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index,
|
|
cpu->halted ? "halted " : "running");
|
|
}
|
|
trace_gdbstub_op_extra_info(rs->str);
|
|
memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len);
|
|
put_strbuf();
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
static void handle_query_offsets(GArray *params, void *user_ctx)
|
|
{
|
|
TaskState *ts;
|
|
|
|
ts = gdbserver_state.c_cpu->opaque;
|
|
g_string_printf(gdbserver_state.str_buf,
|
|
"Text=" TARGET_ABI_FMT_lx
|
|
";Data=" TARGET_ABI_FMT_lx
|
|
";Bss=" TARGET_ABI_FMT_lx,
|
|
ts->info->code_offset,
|
|
ts->info->data_offset,
|
|
ts->info->data_offset);
|
|
put_strbuf();
|
|
}
|
|
#else
|
|
static void handle_query_rcmd(GArray *params, void *user_ctx)
|
|
{
|
|
const guint8 zero = 0;
|
|
int len;
|
|
|
|
if (!params->len) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
len = strlen(get_param(params, 0)->data);
|
|
if (len % 2) {
|
|
put_packet("E01");
|
|
return;
|
|
}
|
|
|
|
g_assert(gdbserver_state.mem_buf->len == 0);
|
|
len = len / 2;
|
|
hextomem(gdbserver_state.mem_buf, get_param(params, 0)->data, len);
|
|
g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
|
|
qemu_chr_be_write(gdbserver_state.mon_chr, gdbserver_state.mem_buf->data,
|
|
gdbserver_state.mem_buf->len);
|
|
put_packet("OK");
|
|
}
|
|
#endif
|
|
|
|
static void handle_query_supported(GArray *params, void *user_ctx)
|
|
{
|
|
CPUClass *cc;
|
|
|
|
g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH);
|
|
cc = CPU_GET_CLASS(first_cpu);
|
|
if (cc->gdb_core_xml_file) {
|
|
g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+");
|
|
}
|
|
|
|
if (stub_can_reverse()) {
|
|
g_string_append(gdbserver_state.str_buf,
|
|
";ReverseStep+;ReverseContinue+");
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
if (gdbserver_state.c_cpu->opaque) {
|
|
g_string_append(gdbserver_state.str_buf, ";qXfer:auxv:read+");
|
|
}
|
|
#endif
|
|
|
|
if (params->len &&
|
|
strstr(get_param(params, 0)->data, "multiprocess+")) {
|
|
gdbserver_state.multiprocess = true;
|
|
}
|
|
|
|
#ifdef TARGET_E2K
|
|
// TODO: qXfer:tags:write+
|
|
// TODO: qXfer:packed_tags:read+
|
|
g_string_append(gdbserver_state.str_buf, ";qXfer:tags:read+");
|
|
#endif
|
|
|
|
g_string_append(gdbserver_state.str_buf, ";vContSupported+;multiprocess+");
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_query_xfer_features(GArray *params, void *user_ctx)
|
|
{
|
|
GDBProcess *process;
|
|
CPUClass *cc;
|
|
unsigned long len, total_len, addr;
|
|
const char *xml;
|
|
const char *p;
|
|
|
|
if (params->len < 3) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
process = gdb_get_cpu_process(gdbserver_state.g_cpu);
|
|
cc = CPU_GET_CLASS(gdbserver_state.g_cpu);
|
|
if (!cc->gdb_core_xml_file) {
|
|
put_packet("");
|
|
return;
|
|
}
|
|
|
|
gdb_has_xml = true;
|
|
p = get_param(params, 0)->data;
|
|
xml = get_feature_xml(p, &p, process);
|
|
if (!xml) {
|
|
put_packet("E00");
|
|
return;
|
|
}
|
|
|
|
addr = get_param(params, 1)->val_ul;
|
|
len = get_param(params, 2)->val_ul;
|
|
total_len = strlen(xml);
|
|
if (addr > total_len) {
|
|
put_packet("E00");
|
|
return;
|
|
}
|
|
|
|
if (len > (MAX_PACKET_LENGTH - 5) / 2) {
|
|
len = (MAX_PACKET_LENGTH - 5) / 2;
|
|
}
|
|
|
|
if (len < total_len - addr) {
|
|
g_string_assign(gdbserver_state.str_buf, "m");
|
|
memtox(gdbserver_state.str_buf, xml + addr, len);
|
|
} else {
|
|
g_string_assign(gdbserver_state.str_buf, "l");
|
|
memtox(gdbserver_state.str_buf, xml + addr, total_len - addr);
|
|
}
|
|
|
|
put_packet_binary(gdbserver_state.str_buf->str,
|
|
gdbserver_state.str_buf->len, true);
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX_USER)
|
|
static void handle_query_xfer_auxv(GArray *params, void *user_ctx)
|
|
{
|
|
TaskState *ts;
|
|
unsigned long offset, len, saved_auxv, auxv_len;
|
|
|
|
if (params->len < 2) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
offset = get_param(params, 0)->val_ul;
|
|
len = get_param(params, 1)->val_ul;
|
|
ts = gdbserver_state.c_cpu->opaque;
|
|
saved_auxv = ts->info->saved_auxv;
|
|
auxv_len = ts->info->auxv_len;
|
|
|
|
if (offset >= auxv_len) {
|
|
put_packet("E00");
|
|
return;
|
|
}
|
|
|
|
if (len > (MAX_PACKET_LENGTH - 5) / 2) {
|
|
len = (MAX_PACKET_LENGTH - 5) / 2;
|
|
}
|
|
|
|
if (len < auxv_len - offset) {
|
|
g_string_assign(gdbserver_state.str_buf, "m");
|
|
} else {
|
|
g_string_assign(gdbserver_state.str_buf, "l");
|
|
len = auxv_len - offset;
|
|
}
|
|
|
|
g_byte_array_set_size(gdbserver_state.mem_buf, len);
|
|
if (target_memory_rw_debug(gdbserver_state.g_cpu, saved_auxv + offset,
|
|
gdbserver_state.mem_buf->data, len, false)) {
|
|
put_packet("E14");
|
|
return;
|
|
}
|
|
|
|
memtox(gdbserver_state.str_buf,
|
|
(const char *)gdbserver_state.mem_buf->data, len);
|
|
put_packet_binary(gdbserver_state.str_buf->str,
|
|
gdbserver_state.str_buf->len, true);
|
|
}
|
|
#endif
|
|
|
|
static void handle_query_attached(GArray *params, void *user_ctx)
|
|
{
|
|
put_packet(GDB_ATTACHED);
|
|
}
|
|
|
|
static void handle_query_qemu_supported(GArray *params, void *user_ctx)
|
|
{
|
|
g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep");
|
|
#ifndef CONFIG_USER_ONLY
|
|
g_string_append(gdbserver_state.str_buf, ";PhyMemMode");
|
|
#endif
|
|
put_strbuf();
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void handle_query_qemu_phy_mem_mode(GArray *params,
|
|
void *user_ctx)
|
|
{
|
|
g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
|
|
put_strbuf();
|
|
}
|
|
|
|
static void handle_set_qemu_phy_mem_mode(GArray *params, void *user_ctx)
|
|
{
|
|
if (!params->len) {
|
|
put_packet("E22");
|
|
return;
|
|
}
|
|
|
|
if (!get_param(params, 0)->val_ul) {
|
|
phy_memory_mode = 0;
|
|
} else {
|
|
phy_memory_mode = 1;
|
|
}
|
|
put_packet("OK");
|
|
}
|
|
#endif
|
|
|
|
#ifdef TARGET_E2K
|
|
static void handle_query_e2k_tags_read(GArray *params, void *user_ctx)
|
|
{
|
|
E2KCPU *cpu = E2K_CPU(gdbserver_state.g_cpu);
|
|
CPUE2KState *env = &cpu->env;
|
|
target_ulong addr = get_param(params, 0)->val_ull;
|
|
unsigned long len = get_param(params, 1)->val_ul;
|
|
unsigned int i;
|
|
int tags = 0;
|
|
|
|
g_string_assign(gdbserver_state.str_buf, "l");
|
|
if (env->psp.base <= addr && addr < (env->psp.base + env->psp.size)) {
|
|
target_ulong offset = addr - env->psp.base;
|
|
tags = cpu_ldub_data(env, env->psp.base_tag + offset / 8);
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
int tag = (tags >> i * E2K_TAG_SIZE) & 0x3;
|
|
g_string_append_c(gdbserver_state.str_buf, tag);
|
|
}
|
|
|
|
put_packet_binary(gdbserver_state.str_buf->str,
|
|
gdbserver_state.str_buf->len, true);
|
|
}
|
|
#endif
|
|
|
|
static const GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
|
|
/* Order is important if has same prefix */
|
|
{
|
|
.handler = handle_query_qemu_sstepbits,
|
|
.cmd = "qemu.sstepbits",
|
|
},
|
|
{
|
|
.handler = handle_query_qemu_sstep,
|
|
.cmd = "qemu.sstep",
|
|
},
|
|
{
|
|
.handler = handle_set_qemu_sstep,
|
|
.cmd = "qemu.sstep=",
|
|
.cmd_startswith = 1,
|
|
.schema = "l0"
|
|
},
|
|
};
|
|
|
|
static const GdbCmdParseEntry gdb_gen_query_table[] = {
|
|
{
|
|
.handler = handle_query_curr_tid,
|
|
.cmd = "C",
|
|
},
|
|
{
|
|
.handler = handle_query_threads,
|
|
.cmd = "sThreadInfo",
|
|
},
|
|
{
|
|
.handler = handle_query_first_threads,
|
|
.cmd = "fThreadInfo",
|
|
},
|
|
{
|
|
.handler = handle_query_thread_extra,
|
|
.cmd = "ThreadExtraInfo,",
|
|
.cmd_startswith = 1,
|
|
.schema = "t0"
|
|
},
|
|
#ifdef CONFIG_USER_ONLY
|
|
{
|
|
.handler = handle_query_offsets,
|
|
.cmd = "Offsets",
|
|
},
|
|
#else
|
|
{
|
|
.handler = handle_query_rcmd,
|
|
.cmd = "Rcmd,",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
},
|
|
#endif
|
|
{
|
|
.handler = handle_query_supported,
|
|
.cmd = "Supported:",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
},
|
|
{
|
|
.handler = handle_query_supported,
|
|
.cmd = "Supported",
|
|
.schema = "s0"
|
|
},
|
|
{
|
|
.handler = handle_query_xfer_features,
|
|
.cmd = "Xfer:features:read:",
|
|
.cmd_startswith = 1,
|
|
.schema = "s:l,l0"
|
|
},
|
|
#if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX_USER)
|
|
{
|
|
.handler = handle_query_xfer_auxv,
|
|
.cmd = "Xfer:auxv:read::",
|
|
.cmd_startswith = 1,
|
|
.schema = "l,l0"
|
|
},
|
|
#endif
|
|
{
|
|
.handler = handle_query_attached,
|
|
.cmd = "Attached:",
|
|
.cmd_startswith = 1
|
|
},
|
|
{
|
|
.handler = handle_query_attached,
|
|
.cmd = "Attached",
|
|
},
|
|
{
|
|
.handler = handle_query_qemu_supported,
|
|
.cmd = "qemu.Supported",
|
|
},
|
|
#ifndef CONFIG_USER_ONLY
|
|
{
|
|
.handler = handle_query_qemu_phy_mem_mode,
|
|
.cmd = "qemu.PhyMemMode",
|
|
},
|
|
#endif
|
|
#ifdef TARGET_E2K
|
|
{
|
|
.handler = handle_query_e2k_tags_read,
|
|
.cmd = "Xfer:tags:read::",
|
|
.cmd_startswith = 1,
|
|
.schema = "L,l0",
|
|
},
|
|
#endif
|
|
};
|
|
|
|
static const GdbCmdParseEntry gdb_gen_set_table[] = {
|
|
/* Order is important if has same prefix */
|
|
{
|
|
.handler = handle_set_qemu_sstep,
|
|
.cmd = "qemu.sstep:",
|
|
.cmd_startswith = 1,
|
|
.schema = "l0"
|
|
},
|
|
#ifndef CONFIG_USER_ONLY
|
|
{
|
|
.handler = handle_set_qemu_phy_mem_mode,
|
|
.cmd = "qemu.PhyMemMode:",
|
|
.cmd_startswith = 1,
|
|
.schema = "l0"
|
|
},
|
|
#endif
|
|
};
|
|
|
|
static void handle_gen_query(GArray *params, void *user_ctx)
|
|
{
|
|
if (!params->len) {
|
|
return;
|
|
}
|
|
|
|
if (!process_string_cmd(NULL, get_param(params, 0)->data,
|
|
gdb_gen_query_set_common_table,
|
|
ARRAY_SIZE(gdb_gen_query_set_common_table))) {
|
|
return;
|
|
}
|
|
|
|
if (process_string_cmd(NULL, get_param(params, 0)->data,
|
|
gdb_gen_query_table,
|
|
ARRAY_SIZE(gdb_gen_query_table))) {
|
|
put_packet("");
|
|
}
|
|
}
|
|
|
|
static void handle_gen_set(GArray *params, void *user_ctx)
|
|
{
|
|
if (!params->len) {
|
|
return;
|
|
}
|
|
|
|
if (!process_string_cmd(NULL, get_param(params, 0)->data,
|
|
gdb_gen_query_set_common_table,
|
|
ARRAY_SIZE(gdb_gen_query_set_common_table))) {
|
|
return;
|
|
}
|
|
|
|
if (process_string_cmd(NULL, get_param(params, 0)->data,
|
|
gdb_gen_set_table,
|
|
ARRAY_SIZE(gdb_gen_set_table))) {
|
|
put_packet("");
|
|
}
|
|
}
|
|
|
|
static void handle_target_halt(GArray *params, void *user_ctx)
|
|
{
|
|
g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP);
|
|
gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf);
|
|
g_string_append_c(gdbserver_state.str_buf, ';');
|
|
put_strbuf();
|
|
/*
|
|
* Remove all the breakpoints when this query is issued,
|
|
* because gdb is doing an initial connect and the state
|
|
* should be cleaned up.
|
|
*/
|
|
gdb_breakpoint_remove_all();
|
|
}
|
|
|
|
static int gdb_handle_packet(const char *line_buf)
|
|
{
|
|
const GdbCmdParseEntry *cmd_parser = NULL;
|
|
|
|
trace_gdbstub_io_command(line_buf);
|
|
|
|
switch (line_buf[0]) {
|
|
case '!':
|
|
put_packet("OK");
|
|
break;
|
|
case '?':
|
|
{
|
|
static const GdbCmdParseEntry target_halted_cmd_desc = {
|
|
.handler = handle_target_halt,
|
|
.cmd = "?",
|
|
.cmd_startswith = 1
|
|
};
|
|
cmd_parser = &target_halted_cmd_desc;
|
|
}
|
|
break;
|
|
case 'c':
|
|
{
|
|
static const GdbCmdParseEntry continue_cmd_desc = {
|
|
.handler = handle_continue,
|
|
.cmd = "c",
|
|
.cmd_startswith = 1,
|
|
.schema = "L0"
|
|
};
|
|
cmd_parser = &continue_cmd_desc;
|
|
}
|
|
break;
|
|
case 'C':
|
|
{
|
|
static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
|
|
.handler = handle_cont_with_sig,
|
|
.cmd = "C",
|
|
.cmd_startswith = 1,
|
|
.schema = "l0"
|
|
};
|
|
cmd_parser = &cont_with_sig_cmd_desc;
|
|
}
|
|
break;
|
|
case 'v':
|
|
{
|
|
static const GdbCmdParseEntry v_cmd_desc = {
|
|
.handler = handle_v_commands,
|
|
.cmd = "v",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
};
|
|
cmd_parser = &v_cmd_desc;
|
|
}
|
|
break;
|
|
case 'k':
|
|
/* Kill the target */
|
|
error_report("QEMU: Terminated via GDBstub");
|
|
gdb_exit(0);
|
|
exit(0);
|
|
case 'D':
|
|
{
|
|
static const GdbCmdParseEntry detach_cmd_desc = {
|
|
.handler = handle_detach,
|
|
.cmd = "D",
|
|
.cmd_startswith = 1,
|
|
.schema = "?.l0"
|
|
};
|
|
cmd_parser = &detach_cmd_desc;
|
|
}
|
|
break;
|
|
case 's':
|
|
{
|
|
static const GdbCmdParseEntry step_cmd_desc = {
|
|
.handler = handle_step,
|
|
.cmd = "s",
|
|
.cmd_startswith = 1,
|
|
.schema = "L0"
|
|
};
|
|
cmd_parser = &step_cmd_desc;
|
|
}
|
|
break;
|
|
case 'b':
|
|
{
|
|
static const GdbCmdParseEntry backward_cmd_desc = {
|
|
.handler = handle_backward,
|
|
.cmd = "b",
|
|
.cmd_startswith = 1,
|
|
.schema = "o0"
|
|
};
|
|
cmd_parser = &backward_cmd_desc;
|
|
}
|
|
break;
|
|
case 'F':
|
|
{
|
|
static const GdbCmdParseEntry file_io_cmd_desc = {
|
|
.handler = handle_file_io,
|
|
.cmd = "F",
|
|
.cmd_startswith = 1,
|
|
.schema = "L,L,o0"
|
|
};
|
|
cmd_parser = &file_io_cmd_desc;
|
|
}
|
|
break;
|
|
case 'g':
|
|
{
|
|
static const GdbCmdParseEntry read_all_regs_cmd_desc = {
|
|
.handler = handle_read_all_regs,
|
|
.cmd = "g",
|
|
.cmd_startswith = 1
|
|
};
|
|
cmd_parser = &read_all_regs_cmd_desc;
|
|
}
|
|
break;
|
|
case 'G':
|
|
{
|
|
static const GdbCmdParseEntry write_all_regs_cmd_desc = {
|
|
.handler = handle_write_all_regs,
|
|
.cmd = "G",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
};
|
|
cmd_parser = &write_all_regs_cmd_desc;
|
|
}
|
|
break;
|
|
case 'm':
|
|
{
|
|
static const GdbCmdParseEntry read_mem_cmd_desc = {
|
|
.handler = handle_read_mem,
|
|
.cmd = "m",
|
|
.cmd_startswith = 1,
|
|
.schema = "L,L0"
|
|
};
|
|
cmd_parser = &read_mem_cmd_desc;
|
|
}
|
|
break;
|
|
case 'M':
|
|
{
|
|
static const GdbCmdParseEntry write_mem_cmd_desc = {
|
|
.handler = handle_write_mem,
|
|
.cmd = "M",
|
|
.cmd_startswith = 1,
|
|
.schema = "L,L:s0"
|
|
};
|
|
cmd_parser = &write_mem_cmd_desc;
|
|
}
|
|
break;
|
|
case 'p':
|
|
{
|
|
static const GdbCmdParseEntry get_reg_cmd_desc = {
|
|
.handler = handle_get_reg,
|
|
.cmd = "p",
|
|
.cmd_startswith = 1,
|
|
.schema = "L0"
|
|
};
|
|
cmd_parser = &get_reg_cmd_desc;
|
|
}
|
|
break;
|
|
case 'P':
|
|
{
|
|
static const GdbCmdParseEntry set_reg_cmd_desc = {
|
|
.handler = handle_set_reg,
|
|
.cmd = "P",
|
|
.cmd_startswith = 1,
|
|
.schema = "L?s0"
|
|
};
|
|
cmd_parser = &set_reg_cmd_desc;
|
|
}
|
|
break;
|
|
case 'Z':
|
|
{
|
|
static const GdbCmdParseEntry insert_bp_cmd_desc = {
|
|
.handler = handle_insert_bp,
|
|
.cmd = "Z",
|
|
.cmd_startswith = 1,
|
|
.schema = "l?L?L0"
|
|
};
|
|
cmd_parser = &insert_bp_cmd_desc;
|
|
}
|
|
break;
|
|
case 'z':
|
|
{
|
|
static const GdbCmdParseEntry remove_bp_cmd_desc = {
|
|
.handler = handle_remove_bp,
|
|
.cmd = "z",
|
|
.cmd_startswith = 1,
|
|
.schema = "l?L?L0"
|
|
};
|
|
cmd_parser = &remove_bp_cmd_desc;
|
|
}
|
|
break;
|
|
case 'H':
|
|
{
|
|
static const GdbCmdParseEntry set_thread_cmd_desc = {
|
|
.handler = handle_set_thread,
|
|
.cmd = "H",
|
|
.cmd_startswith = 1,
|
|
.schema = "o.t0"
|
|
};
|
|
cmd_parser = &set_thread_cmd_desc;
|
|
}
|
|
break;
|
|
case 'T':
|
|
{
|
|
static const GdbCmdParseEntry thread_alive_cmd_desc = {
|
|
.handler = handle_thread_alive,
|
|
.cmd = "T",
|
|
.cmd_startswith = 1,
|
|
.schema = "t0"
|
|
};
|
|
cmd_parser = &thread_alive_cmd_desc;
|
|
}
|
|
break;
|
|
case 'q':
|
|
{
|
|
static const GdbCmdParseEntry gen_query_cmd_desc = {
|
|
.handler = handle_gen_query,
|
|
.cmd = "q",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
};
|
|
cmd_parser = &gen_query_cmd_desc;
|
|
}
|
|
break;
|
|
case 'Q':
|
|
{
|
|
static const GdbCmdParseEntry gen_set_cmd_desc = {
|
|
.handler = handle_gen_set,
|
|
.cmd = "Q",
|
|
.cmd_startswith = 1,
|
|
.schema = "s0"
|
|
};
|
|
cmd_parser = &gen_set_cmd_desc;
|
|
}
|
|
break;
|
|
default:
|
|
/* put empty packet */
|
|
put_packet("");
|
|
break;
|
|
}
|
|
|
|
if (cmd_parser) {
|
|
run_cmd_parser(line_buf, cmd_parser);
|
|
}
|
|
|
|
return RS_IDLE;
|
|
}
|
|
|
|
void gdb_set_stop_cpu(CPUState *cpu)
|
|
{
|
|
GDBProcess *p = gdb_get_cpu_process(cpu);
|
|
|
|
if (!p->attached) {
|
|
/*
|
|
* Having a stop CPU corresponding to a process that is not attached
|
|
* confuses GDB. So we ignore the request.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
gdbserver_state.c_cpu = cpu;
|
|
gdbserver_state.g_cpu = cpu;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void gdb_vm_state_change(void *opaque, bool running, RunState state)
|
|
{
|
|
CPUState *cpu = gdbserver_state.c_cpu;
|
|
g_autoptr(GString) buf = g_string_new(NULL);
|
|
g_autoptr(GString) tid = g_string_new(NULL);
|
|
const char *type;
|
|
int ret;
|
|
|
|
if (running || gdbserver_state.state == RS_INACTIVE) {
|
|
return;
|
|
}
|
|
/* Is there a GDB syscall waiting to be sent? */
|
|
if (gdbserver_state.current_syscall_cb) {
|
|
put_packet(gdbserver_state.syscall_buf);
|
|
return;
|
|
}
|
|
|
|
if (cpu == NULL) {
|
|
/* No process attached */
|
|
return;
|
|
}
|
|
|
|
gdb_append_thread_id(cpu, tid);
|
|
|
|
switch (state) {
|
|
case RUN_STATE_DEBUG:
|
|
if (cpu->watchpoint_hit) {
|
|
switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
|
|
case BP_MEM_READ:
|
|
type = "r";
|
|
break;
|
|
case BP_MEM_ACCESS:
|
|
type = "a";
|
|
break;
|
|
default:
|
|
type = "";
|
|
break;
|
|
}
|
|
trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
|
|
(target_ulong)cpu->watchpoint_hit->vaddr);
|
|
g_string_printf(buf, "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
|
|
GDB_SIGNAL_TRAP, tid->str, type,
|
|
(target_ulong)cpu->watchpoint_hit->vaddr);
|
|
cpu->watchpoint_hit = NULL;
|
|
goto send_packet;
|
|
} else {
|
|
trace_gdbstub_hit_break();
|
|
}
|
|
tb_flush(cpu);
|
|
ret = GDB_SIGNAL_TRAP;
|
|
break;
|
|
case RUN_STATE_PAUSED:
|
|
trace_gdbstub_hit_paused();
|
|
ret = GDB_SIGNAL_INT;
|
|
break;
|
|
case RUN_STATE_SHUTDOWN:
|
|
trace_gdbstub_hit_shutdown();
|
|
ret = GDB_SIGNAL_QUIT;
|
|
break;
|
|
case RUN_STATE_IO_ERROR:
|
|
trace_gdbstub_hit_io_error();
|
|
ret = GDB_SIGNAL_IO;
|
|
break;
|
|
case RUN_STATE_WATCHDOG:
|
|
trace_gdbstub_hit_watchdog();
|
|
ret = GDB_SIGNAL_ALRM;
|
|
break;
|
|
case RUN_STATE_INTERNAL_ERROR:
|
|
trace_gdbstub_hit_internal_error();
|
|
ret = GDB_SIGNAL_ABRT;
|
|
break;
|
|
case RUN_STATE_SAVE_VM:
|
|
case RUN_STATE_RESTORE_VM:
|
|
return;
|
|
case RUN_STATE_FINISH_MIGRATE:
|
|
ret = GDB_SIGNAL_XCPU;
|
|
break;
|
|
default:
|
|
trace_gdbstub_hit_unknown(state);
|
|
ret = GDB_SIGNAL_UNKNOWN;
|
|
break;
|
|
}
|
|
gdb_set_stop_cpu(cpu);
|
|
g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
|
|
|
|
send_packet:
|
|
put_packet(buf->str);
|
|
|
|
/* disable single step if it was enabled */
|
|
cpu_single_step(cpu, 0);
|
|
}
|
|
#endif
|
|
|
|
/* Send a gdb syscall request.
|
|
This accepts limited printf-style format specifiers, specifically:
|
|
%x - target_ulong argument printed in hex.
|
|
%lx - 64-bit argument printed in hex.
|
|
%s - string pointer (target_ulong) and length (int) pair. */
|
|
void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
|
|
{
|
|
char *p;
|
|
char *p_end;
|
|
target_ulong addr;
|
|
uint64_t i64;
|
|
|
|
if (!gdbserver_state.init) {
|
|
return;
|
|
}
|
|
|
|
gdbserver_state.current_syscall_cb = cb;
|
|
#ifndef CONFIG_USER_ONLY
|
|
vm_stop(RUN_STATE_DEBUG);
|
|
#endif
|
|
p = &gdbserver_state.syscall_buf[0];
|
|
p_end = &gdbserver_state.syscall_buf[sizeof(gdbserver_state.syscall_buf)];
|
|
*(p++) = 'F';
|
|
while (*fmt) {
|
|
if (*fmt == '%') {
|
|
fmt++;
|
|
switch (*fmt++) {
|
|
case 'x':
|
|
addr = va_arg(va, target_ulong);
|
|
p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
|
|
break;
|
|
case 'l':
|
|
if (*(fmt++) != 'x')
|
|
goto bad_format;
|
|
i64 = va_arg(va, uint64_t);
|
|
p += snprintf(p, p_end - p, "%" PRIx64, i64);
|
|
break;
|
|
case 's':
|
|
addr = va_arg(va, target_ulong);
|
|
p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
|
|
addr, va_arg(va, int));
|
|
break;
|
|
default:
|
|
bad_format:
|
|
error_report("gdbstub: Bad syscall format string '%s'",
|
|
fmt - 1);
|
|
break;
|
|
}
|
|
} else {
|
|
*(p++) = *(fmt++);
|
|
}
|
|
}
|
|
*p = 0;
|
|
#ifdef CONFIG_USER_ONLY
|
|
put_packet(gdbserver_state.syscall_buf);
|
|
/* Return control to gdb for it to process the syscall request.
|
|
* Since the protocol requires that gdb hands control back to us
|
|
* using a "here are the results" F packet, we don't need to check
|
|
* gdb_handlesig's return value (which is the signal to deliver if
|
|
* execution was resumed via a continue packet).
|
|
*/
|
|
gdb_handlesig(gdbserver_state.c_cpu, 0);
|
|
#else
|
|
/* In this case wait to send the syscall packet until notification that
|
|
the CPU has stopped. This must be done because if the packet is sent
|
|
now the reply from the syscall request could be received while the CPU
|
|
is still in the running state, which can cause packets to be dropped
|
|
and state transition 'T' packets to be sent while the syscall is still
|
|
being processed. */
|
|
qemu_cpu_kick(gdbserver_state.c_cpu);
|
|
#endif
|
|
}
|
|
|
|
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
|
|
{
|
|
va_list va;
|
|
|
|
va_start(va, fmt);
|
|
gdb_do_syscallv(cb, fmt, va);
|
|
va_end(va);
|
|
}
|
|
|
|
static void gdb_read_byte(uint8_t ch)
|
|
{
|
|
uint8_t reply;
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (gdbserver_state.last_packet->len) {
|
|
/* Waiting for a response to the last packet. If we see the start
|
|
of a new command then abandon the previous response. */
|
|
if (ch == '-') {
|
|
trace_gdbstub_err_got_nack();
|
|
put_buffer(gdbserver_state.last_packet->data,
|
|
gdbserver_state.last_packet->len);
|
|
} else if (ch == '+') {
|
|
trace_gdbstub_io_got_ack();
|
|
} else {
|
|
trace_gdbstub_io_got_unexpected(ch);
|
|
}
|
|
|
|
if (ch == '+' || ch == '$') {
|
|
g_byte_array_set_size(gdbserver_state.last_packet, 0);
|
|
}
|
|
if (ch != '$')
|
|
return;
|
|
}
|
|
if (runstate_is_running()) {
|
|
/* when the CPU is running, we cannot do anything except stop
|
|
it when receiving a char */
|
|
vm_stop(RUN_STATE_PAUSED);
|
|
} else
|
|
#endif
|
|
{
|
|
switch(gdbserver_state.state) {
|
|
case RS_IDLE:
|
|
if (ch == '$') {
|
|
/* start of command packet */
|
|
gdbserver_state.line_buf_index = 0;
|
|
gdbserver_state.line_sum = 0;
|
|
gdbserver_state.state = RS_GETLINE;
|
|
} else {
|
|
trace_gdbstub_err_garbage(ch);
|
|
}
|
|
break;
|
|
case RS_GETLINE:
|
|
if (ch == '}') {
|
|
/* start escape sequence */
|
|
gdbserver_state.state = RS_GETLINE_ESC;
|
|
gdbserver_state.line_sum += ch;
|
|
} else if (ch == '*') {
|
|
/* start run length encoding sequence */
|
|
gdbserver_state.state = RS_GETLINE_RLE;
|
|
gdbserver_state.line_sum += ch;
|
|
} else if (ch == '#') {
|
|
/* end of command, start of checksum*/
|
|
gdbserver_state.state = RS_CHKSUM1;
|
|
} else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
|
|
trace_gdbstub_err_overrun();
|
|
gdbserver_state.state = RS_IDLE;
|
|
} else {
|
|
/* unescaped command character */
|
|
gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch;
|
|
gdbserver_state.line_sum += ch;
|
|
}
|
|
break;
|
|
case RS_GETLINE_ESC:
|
|
if (ch == '#') {
|
|
/* unexpected end of command in escape sequence */
|
|
gdbserver_state.state = RS_CHKSUM1;
|
|
} else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) {
|
|
/* command buffer overrun */
|
|
trace_gdbstub_err_overrun();
|
|
gdbserver_state.state = RS_IDLE;
|
|
} else {
|
|
/* parse escaped character and leave escape state */
|
|
gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20;
|
|
gdbserver_state.line_sum += ch;
|
|
gdbserver_state.state = RS_GETLINE;
|
|
}
|
|
break;
|
|
case RS_GETLINE_RLE:
|
|
/*
|
|
* Run-length encoding is explained in "Debugging with GDB /
|
|
* Appendix E GDB Remote Serial Protocol / Overview".
|
|
*/
|
|
if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
|
|
/* invalid RLE count encoding */
|
|
trace_gdbstub_err_invalid_repeat(ch);
|
|
gdbserver_state.state = RS_GETLINE;
|
|
} else {
|
|
/* decode repeat length */
|
|
int repeat = ch - ' ' + 3;
|
|
if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) {
|
|
/* that many repeats would overrun the command buffer */
|
|
trace_gdbstub_err_overrun();
|
|
gdbserver_state.state = RS_IDLE;
|
|
} else if (gdbserver_state.line_buf_index < 1) {
|
|
/* got a repeat but we have nothing to repeat */
|
|
trace_gdbstub_err_invalid_rle();
|
|
gdbserver_state.state = RS_GETLINE;
|
|
} else {
|
|
/* repeat the last character */
|
|
memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index,
|
|
gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat);
|
|
gdbserver_state.line_buf_index += repeat;
|
|
gdbserver_state.line_sum += ch;
|
|
gdbserver_state.state = RS_GETLINE;
|
|
}
|
|
}
|
|
break;
|
|
case RS_CHKSUM1:
|
|
/* get high hex digit of checksum */
|
|
if (!isxdigit(ch)) {
|
|
trace_gdbstub_err_checksum_invalid(ch);
|
|
gdbserver_state.state = RS_GETLINE;
|
|
break;
|
|
}
|
|
gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0';
|
|
gdbserver_state.line_csum = fromhex(ch) << 4;
|
|
gdbserver_state.state = RS_CHKSUM2;
|
|
break;
|
|
case RS_CHKSUM2:
|
|
/* get low hex digit of checksum */
|
|
if (!isxdigit(ch)) {
|
|
trace_gdbstub_err_checksum_invalid(ch);
|
|
gdbserver_state.state = RS_GETLINE;
|
|
break;
|
|
}
|
|
gdbserver_state.line_csum |= fromhex(ch);
|
|
|
|
if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) {
|
|
trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum);
|
|
/* send NAK reply */
|
|
reply = '-';
|
|
put_buffer(&reply, 1);
|
|
gdbserver_state.state = RS_IDLE;
|
|
} else {
|
|
/* send ACK reply */
|
|
reply = '+';
|
|
put_buffer(&reply, 1);
|
|
gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf);
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited. */
|
|
void gdb_exit(int code)
|
|
{
|
|
char buf[4];
|
|
|
|
if (!gdbserver_state.init) {
|
|
return;
|
|
}
|
|
#ifdef CONFIG_USER_ONLY
|
|
if (gdbserver_state.socket_path) {
|
|
unlink(gdbserver_state.socket_path);
|
|
}
|
|
if (gdbserver_state.fd < 0) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
trace_gdbstub_op_exiting((uint8_t)code);
|
|
|
|
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
|
|
put_packet(buf);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
qemu_chr_fe_deinit(&gdbserver_state.chr, true);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create the process that will contain all the "orphan" CPUs (that are not
|
|
* part of a CPU cluster). Note that if this process contains no CPUs, it won't
|
|
* be attachable and thus will be invisible to the user.
|
|
*/
|
|
static void create_default_process(GDBState *s)
|
|
{
|
|
GDBProcess *process;
|
|
int max_pid = 0;
|
|
|
|
if (gdbserver_state.process_num) {
|
|
max_pid = s->processes[s->process_num - 1].pid;
|
|
}
|
|
|
|
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
|
|
process = &s->processes[s->process_num - 1];
|
|
|
|
/* We need an available PID slot for this process */
|
|
assert(max_pid < UINT32_MAX);
|
|
|
|
process->pid = max_pid + 1;
|
|
process->attached = false;
|
|
process->target_xml[0] = '\0';
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
int
|
|
gdb_handlesig(CPUState *cpu, int sig)
|
|
{
|
|
char buf[256];
|
|
int n;
|
|
|
|
if (!gdbserver_state.init || gdbserver_state.fd < 0) {
|
|
return sig;
|
|
}
|
|
|
|
/* disable single step if it was enabled */
|
|
cpu_single_step(cpu, 0);
|
|
tb_flush(cpu);
|
|
|
|
if (sig != 0) {
|
|
gdb_set_stop_cpu(cpu);
|
|
g_string_printf(gdbserver_state.str_buf,
|
|
"T%02xthread:", target_signal_to_gdb(sig));
|
|
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
|
|
g_string_append_c(gdbserver_state.str_buf, ';');
|
|
put_strbuf();
|
|
}
|
|
/* put_packet() might have detected that the peer terminated the
|
|
connection. */
|
|
if (gdbserver_state.fd < 0) {
|
|
return sig;
|
|
}
|
|
|
|
sig = 0;
|
|
gdbserver_state.state = RS_IDLE;
|
|
gdbserver_state.running_state = 0;
|
|
while (gdbserver_state.running_state == 0) {
|
|
n = read(gdbserver_state.fd, buf, 256);
|
|
if (n > 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
gdb_read_byte(buf[i]);
|
|
}
|
|
} else {
|
|
/* XXX: Connection closed. Should probably wait for another
|
|
connection before continuing. */
|
|
if (n == 0) {
|
|
close(gdbserver_state.fd);
|
|
}
|
|
gdbserver_state.fd = -1;
|
|
return sig;
|
|
}
|
|
}
|
|
sig = gdbserver_state.signal;
|
|
gdbserver_state.signal = 0;
|
|
return sig;
|
|
}
|
|
|
|
/* Tell the remote gdb that the process has exited due to SIG. */
|
|
void gdb_signalled(CPUArchState *env, int sig)
|
|
{
|
|
char buf[4];
|
|
|
|
if (!gdbserver_state.init || gdbserver_state.fd < 0) {
|
|
return;
|
|
}
|
|
|
|
snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
|
|
put_packet(buf);
|
|
}
|
|
|
|
static void gdb_accept_init(int fd)
|
|
{
|
|
init_gdbserver_state();
|
|
create_default_process(&gdbserver_state);
|
|
gdbserver_state.processes[0].attached = true;
|
|
gdbserver_state.c_cpu = gdb_first_attached_cpu();
|
|
gdbserver_state.g_cpu = gdbserver_state.c_cpu;
|
|
gdbserver_state.fd = fd;
|
|
gdb_has_xml = false;
|
|
}
|
|
|
|
static bool gdb_accept_socket(int gdb_fd)
|
|
{
|
|
int fd;
|
|
|
|
for(;;) {
|
|
fd = accept(gdb_fd, NULL, NULL);
|
|
if (fd < 0 && errno != EINTR) {
|
|
perror("accept socket");
|
|
return false;
|
|
} else if (fd >= 0) {
|
|
qemu_set_cloexec(fd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
gdb_accept_init(fd);
|
|
return true;
|
|
}
|
|
|
|
static int gdbserver_open_socket(const char *path)
|
|
{
|
|
struct sockaddr_un sockaddr = {};
|
|
int fd, ret;
|
|
|
|
fd = socket(AF_UNIX, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
perror("create socket");
|
|
return -1;
|
|
}
|
|
|
|
sockaddr.sun_family = AF_UNIX;
|
|
pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
|
|
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret < 0) {
|
|
perror("bind socket");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
ret = listen(fd, 1);
|
|
if (ret < 0) {
|
|
perror("listen socket");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
static bool gdb_accept_tcp(int gdb_fd)
|
|
{
|
|
struct sockaddr_in sockaddr = {};
|
|
socklen_t len;
|
|
int fd;
|
|
|
|
for(;;) {
|
|
len = sizeof(sockaddr);
|
|
fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
|
|
if (fd < 0 && errno != EINTR) {
|
|
perror("accept");
|
|
return false;
|
|
} else if (fd >= 0) {
|
|
qemu_set_cloexec(fd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set short latency */
|
|
if (socket_set_nodelay(fd)) {
|
|
perror("setsockopt");
|
|
close(fd);
|
|
return false;
|
|
}
|
|
|
|
gdb_accept_init(fd);
|
|
return true;
|
|
}
|
|
|
|
static int gdbserver_open_port(int port)
|
|
{
|
|
struct sockaddr_in sockaddr;
|
|
int fd, ret;
|
|
|
|
fd = socket(PF_INET, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
perror("socket");
|
|
return -1;
|
|
}
|
|
qemu_set_cloexec(fd);
|
|
|
|
socket_set_fast_reuse(fd);
|
|
|
|
sockaddr.sin_family = AF_INET;
|
|
sockaddr.sin_port = htons(port);
|
|
sockaddr.sin_addr.s_addr = 0;
|
|
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret < 0) {
|
|
perror("bind");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
ret = listen(fd, 1);
|
|
if (ret < 0) {
|
|
perror("listen");
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
return fd;
|
|
}
|
|
|
|
int gdbserver_start(const char *port_or_path)
|
|
{
|
|
int port = g_ascii_strtoull(port_or_path, NULL, 10);
|
|
int gdb_fd;
|
|
|
|
if (port > 0) {
|
|
gdb_fd = gdbserver_open_port(port);
|
|
} else {
|
|
gdb_fd = gdbserver_open_socket(port_or_path);
|
|
}
|
|
|
|
if (gdb_fd < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (port > 0 && gdb_accept_tcp(gdb_fd)) {
|
|
return 0;
|
|
} else if (gdb_accept_socket(gdb_fd)) {
|
|
gdbserver_state.socket_path = g_strdup(port_or_path);
|
|
return 0;
|
|
}
|
|
|
|
/* gone wrong */
|
|
close(gdb_fd);
|
|
return -1;
|
|
}
|
|
|
|
/* Disable gdb stub for child processes. */
|
|
void gdbserver_fork(CPUState *cpu)
|
|
{
|
|
if (!gdbserver_state.init || gdbserver_state.fd < 0) {
|
|
return;
|
|
}
|
|
close(gdbserver_state.fd);
|
|
gdbserver_state.fd = -1;
|
|
cpu_breakpoint_remove_all(cpu, BP_GDB);
|
|
cpu_watchpoint_remove_all(cpu, BP_GDB);
|
|
}
|
|
#else
|
|
static int gdb_chr_can_receive(void *opaque)
|
|
{
|
|
/* We can handle an arbitrarily large amount of data.
|
|
Pick the maximum packet size, which is as good as anything. */
|
|
return MAX_PACKET_LENGTH;
|
|
}
|
|
|
|
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
gdb_read_byte(buf[i]);
|
|
}
|
|
}
|
|
|
|
static void gdb_chr_event(void *opaque, QEMUChrEvent event)
|
|
{
|
|
int i;
|
|
GDBState *s = (GDBState *) opaque;
|
|
|
|
switch (event) {
|
|
case CHR_EVENT_OPENED:
|
|
/* Start with first process attached, others detached */
|
|
for (i = 0; i < s->process_num; i++) {
|
|
s->processes[i].attached = !i;
|
|
}
|
|
|
|
s->c_cpu = gdb_first_attached_cpu();
|
|
s->g_cpu = s->c_cpu;
|
|
|
|
vm_stop(RUN_STATE_PAUSED);
|
|
replay_gdb_attached();
|
|
gdb_has_xml = false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
|
|
{
|
|
g_autoptr(GString) hex_buf = g_string_new("O");
|
|
memtohex(hex_buf, buf, len);
|
|
put_packet(hex_buf->str);
|
|
return len;
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
static void gdb_sigterm_handler(int signal)
|
|
{
|
|
if (runstate_is_running()) {
|
|
vm_stop(RUN_STATE_PAUSED);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
|
|
bool *be_opened, Error **errp)
|
|
{
|
|
*be_opened = false;
|
|
}
|
|
|
|
static void char_gdb_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
ChardevClass *cc = CHARDEV_CLASS(oc);
|
|
|
|
cc->internal = true;
|
|
cc->open = gdb_monitor_open;
|
|
cc->chr_write = gdb_monitor_write;
|
|
}
|
|
|
|
#define TYPE_CHARDEV_GDB "chardev-gdb"
|
|
|
|
static const TypeInfo char_gdb_type_info = {
|
|
.name = TYPE_CHARDEV_GDB,
|
|
.parent = TYPE_CHARDEV,
|
|
.class_init = char_gdb_class_init,
|
|
};
|
|
|
|
static int find_cpu_clusters(Object *child, void *opaque)
|
|
{
|
|
if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
|
|
GDBState *s = (GDBState *) opaque;
|
|
CPUClusterState *cluster = CPU_CLUSTER(child);
|
|
GDBProcess *process;
|
|
|
|
s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
|
|
|
|
process = &s->processes[s->process_num - 1];
|
|
|
|
/*
|
|
* GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
|
|
* runtime, we enforce here that the machine does not use a cluster ID
|
|
* that would lead to PID 0.
|
|
*/
|
|
assert(cluster->cluster_id != UINT32_MAX);
|
|
process->pid = cluster->cluster_id + 1;
|
|
process->attached = false;
|
|
process->target_xml[0] = '\0';
|
|
|
|
return 0;
|
|
}
|
|
|
|
return object_child_foreach(child, find_cpu_clusters, opaque);
|
|
}
|
|
|
|
static int pid_order(const void *a, const void *b)
|
|
{
|
|
GDBProcess *pa = (GDBProcess *) a;
|
|
GDBProcess *pb = (GDBProcess *) b;
|
|
|
|
if (pa->pid < pb->pid) {
|
|
return -1;
|
|
} else if (pa->pid > pb->pid) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void create_processes(GDBState *s)
|
|
{
|
|
object_child_foreach(object_get_root(), find_cpu_clusters, s);
|
|
|
|
if (gdbserver_state.processes) {
|
|
/* Sort by PID */
|
|
qsort(gdbserver_state.processes, gdbserver_state.process_num, sizeof(gdbserver_state.processes[0]), pid_order);
|
|
}
|
|
|
|
create_default_process(s);
|
|
}
|
|
|
|
int gdbserver_start(const char *device)
|
|
{
|
|
trace_gdbstub_op_start(device);
|
|
|
|
char gdbstub_device_name[128];
|
|
Chardev *chr = NULL;
|
|
Chardev *mon_chr;
|
|
|
|
if (!first_cpu) {
|
|
error_report("gdbstub: meaningless to attach gdb to a "
|
|
"machine without any CPU.");
|
|
return -1;
|
|
}
|
|
|
|
if (kvm_enabled() && !kvm_supports_guest_debug()) {
|
|
error_report("gdbstub: KVM doesn't support guest debugging");
|
|
return -1;
|
|
}
|
|
|
|
if (!device)
|
|
return -1;
|
|
if (strcmp(device, "none") != 0) {
|
|
if (strstart(device, "tcp:", NULL)) {
|
|
/* enforce required TCP attributes */
|
|
snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
|
|
"%s,wait=off,nodelay=on,server=on", device);
|
|
device = gdbstub_device_name;
|
|
}
|
|
#ifndef _WIN32
|
|
else if (strcmp(device, "stdio") == 0) {
|
|
struct sigaction act;
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = gdb_sigterm_handler;
|
|
sigaction(SIGINT, &act, NULL);
|
|
}
|
|
#endif
|
|
/*
|
|
* FIXME: it's a bit weird to allow using a mux chardev here
|
|
* and implicitly setup a monitor. We may want to break this.
|
|
*/
|
|
chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
|
|
if (!chr)
|
|
return -1;
|
|
}
|
|
|
|
if (!gdbserver_state.init) {
|
|
init_gdbserver_state();
|
|
|
|
qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
|
|
|
|
/* Initialize a monitor terminal for gdb */
|
|
mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
|
|
NULL, NULL, &error_abort);
|
|
monitor_init_hmp(mon_chr, false, &error_abort);
|
|
} else {
|
|
qemu_chr_fe_deinit(&gdbserver_state.chr, true);
|
|
mon_chr = gdbserver_state.mon_chr;
|
|
reset_gdbserver_state();
|
|
}
|
|
|
|
create_processes(&gdbserver_state);
|
|
|
|
if (chr) {
|
|
qemu_chr_fe_init(&gdbserver_state.chr, chr, &error_abort);
|
|
qemu_chr_fe_set_handlers(&gdbserver_state.chr, gdb_chr_can_receive,
|
|
gdb_chr_receive, gdb_chr_event,
|
|
NULL, &gdbserver_state, NULL, true);
|
|
}
|
|
gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
|
|
gdbserver_state.mon_chr = mon_chr;
|
|
gdbserver_state.current_syscall_cb = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void register_types(void)
|
|
{
|
|
type_register_static(&char_gdb_type_info);
|
|
}
|
|
|
|
type_init(register_types);
|
|
#endif
|