Richard Henderson 42a268c241 tcg: Change translator-side labels to a pointer
This is improved type checking for the translators -- it's no longer
possible to accidentally swap arguments to the branch functions.

Note that the code generating backends still manipulate labels as int.

With notable exceptions, the scope of the change is just a few lines
for each target, so it's not worth building extra machinery to do this
change in per-target increments.

Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Edgar E. Iglesias <edgar.iglesias@gmail.com>
Cc: Michael Walle <michael@walle.cc>
Cc: Leon Alrae <leon.alrae@imgtec.com>
Cc: Anthony Green <green@moxielogic.com>
Cc: Jia Liu <proljc@gmail.com>
Cc: Alexander Graf <agraf@suse.de>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: Blue Swirl <blauwirbel@gmail.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Reviewed-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Signed-off-by: Richard Henderson <rth@twiddle.net>
2015-03-13 12:28:18 -07:00

2140 lines
59 KiB
C

/*
* UniCore32 translation
*
* Copyright (C) 2010-2012 Guan Xuetao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation, or (at your option) any
* later version. See the COPYING file in the top-level directory.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "disas/disas.h"
#include "tcg-op.h"
#include "qemu/log.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "exec/helper-gen.h"
#include "trace-tcg.h"
/* internal defines */
typedef struct DisasContext {
target_ulong pc;
int is_jmp;
/* Nonzero if this instruction has been conditionally skipped. */
int condjmp;
/* The label that will be jumped to when the instruction is skipped. */
TCGLabel *condlabel;
struct TranslationBlock *tb;
int singlestep_enabled;
#ifndef CONFIG_USER_ONLY
int user;
#endif
} DisasContext;
#ifndef CONFIG_USER_ONLY
#define IS_USER(s) (s->user)
#else
#define IS_USER(s) 1
#endif
/* These instructions trap after executing, so defer them until after the
conditional executions state has been updated. */
#define DISAS_SYSCALL 5
static TCGv_ptr cpu_env;
static TCGv_i32 cpu_R[32];
/* FIXME: These should be removed. */
static TCGv cpu_F0s, cpu_F1s;
static TCGv_i64 cpu_F0d, cpu_F1d;
#include "exec/gen-icount.h"
static const char *regnames[] = {
"r00", "r01", "r02", "r03", "r04", "r05", "r06", "r07",
"r08", "r09", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "pc" };
/* initialize TCG globals. */
void uc32_translate_init(void)
{
int i;
cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");
for (i = 0; i < 32; i++) {
cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0,
offsetof(CPUUniCore32State, regs[i]), regnames[i]);
}
}
static int num_temps;
/* Allocate a temporary variable. */
static TCGv_i32 new_tmp(void)
{
num_temps++;
return tcg_temp_new_i32();
}
/* Release a temporary variable. */
static void dead_tmp(TCGv tmp)
{
tcg_temp_free(tmp);
num_temps--;
}
static inline TCGv load_cpu_offset(int offset)
{
TCGv tmp = new_tmp();
tcg_gen_ld_i32(tmp, cpu_env, offset);
return tmp;
}
#define load_cpu_field(name) load_cpu_offset(offsetof(CPUUniCore32State, name))
static inline void store_cpu_offset(TCGv var, int offset)
{
tcg_gen_st_i32(var, cpu_env, offset);
dead_tmp(var);
}
#define store_cpu_field(var, name) \
store_cpu_offset(var, offsetof(CPUUniCore32State, name))
/* Set a variable to the value of a CPU register. */
static void load_reg_var(DisasContext *s, TCGv var, int reg)
{
if (reg == 31) {
uint32_t addr;
/* normaly, since we updated PC */
addr = (long)s->pc;
tcg_gen_movi_i32(var, addr);
} else {
tcg_gen_mov_i32(var, cpu_R[reg]);
}
}
/* Create a new temporary and set it to the value of a CPU register. */
static inline TCGv load_reg(DisasContext *s, int reg)
{
TCGv tmp = new_tmp();
load_reg_var(s, tmp, reg);
return tmp;
}
/* Set a CPU register. The source must be a temporary and will be
marked as dead. */
static void store_reg(DisasContext *s, int reg, TCGv var)
{
if (reg == 31) {
tcg_gen_andi_i32(var, var, ~3);
s->is_jmp = DISAS_JUMP;
}
tcg_gen_mov_i32(cpu_R[reg], var);
dead_tmp(var);
}
/* Value extensions. */
#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
#define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
#define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
#define UCOP_REG_M (((insn) >> 0) & 0x1f)
#define UCOP_REG_N (((insn) >> 19) & 0x1f)
#define UCOP_REG_D (((insn) >> 14) & 0x1f)
#define UCOP_REG_S (((insn) >> 9) & 0x1f)
#define UCOP_REG_LO (((insn) >> 14) & 0x1f)
#define UCOP_REG_HI (((insn) >> 9) & 0x1f)
#define UCOP_SH_OP (((insn) >> 6) & 0x03)
#define UCOP_SH_IM (((insn) >> 9) & 0x1f)
#define UCOP_OPCODES (((insn) >> 25) & 0x0f)
#define UCOP_IMM_9 (((insn) >> 0) & 0x1ff)
#define UCOP_IMM10 (((insn) >> 0) & 0x3ff)
#define UCOP_IMM14 (((insn) >> 0) & 0x3fff)
#define UCOP_COND (((insn) >> 25) & 0x0f)
#define UCOP_CMOV_COND (((insn) >> 19) & 0x0f)
#define UCOP_CPNUM (((insn) >> 10) & 0x0f)
#define UCOP_UCF64_FMT (((insn) >> 24) & 0x03)
#define UCOP_UCF64_FUNC (((insn) >> 6) & 0x0f)
#define UCOP_UCF64_COND (((insn) >> 6) & 0x0f)
#define UCOP_SET(i) ((insn) & (1 << (i)))
#define UCOP_SET_P UCOP_SET(28)
#define UCOP_SET_U UCOP_SET(27)
#define UCOP_SET_B UCOP_SET(26)
#define UCOP_SET_W UCOP_SET(25)
#define UCOP_SET_L UCOP_SET(24)
#define UCOP_SET_S UCOP_SET(24)
#define ILLEGAL cpu_abort(CPU(cpu), \
"Illegal UniCore32 instruction %x at line %d!", \
insn, __LINE__)
#ifndef CONFIG_USER_ONLY
static void disas_cp0_insn(CPUUniCore32State *env, DisasContext *s,
uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
TCGv tmp, tmp2, tmp3;
if ((insn & 0xfe000000) == 0xe0000000) {
tmp2 = new_tmp();
tmp3 = new_tmp();
tcg_gen_movi_i32(tmp2, UCOP_REG_N);
tcg_gen_movi_i32(tmp3, UCOP_IMM10);
if (UCOP_SET_L) {
tmp = new_tmp();
gen_helper_cp0_get(tmp, cpu_env, tmp2, tmp3);
store_reg(s, UCOP_REG_D, tmp);
} else {
tmp = load_reg(s, UCOP_REG_D);
gen_helper_cp0_set(cpu_env, tmp, tmp2, tmp3);
dead_tmp(tmp);
}
dead_tmp(tmp2);
dead_tmp(tmp3);
return;
}
ILLEGAL;
}
static void disas_ocd_insn(CPUUniCore32State *env, DisasContext *s,
uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
TCGv tmp;
if ((insn & 0xff003fff) == 0xe1000400) {
/*
* movc rd, pp.nn, #imm9
* rd: UCOP_REG_D
* nn: UCOP_REG_N (must be 0)
* imm9: 0
*/
if (UCOP_REG_N == 0) {
tmp = new_tmp();
tcg_gen_movi_i32(tmp, 0);
store_reg(s, UCOP_REG_D, tmp);
return;
} else {
ILLEGAL;
}
}
if ((insn & 0xff003fff) == 0xe0000401) {
/*
* movc pp.nn, rn, #imm9
* rn: UCOP_REG_D
* nn: UCOP_REG_N (must be 1)
* imm9: 1
*/
if (UCOP_REG_N == 1) {
tmp = load_reg(s, UCOP_REG_D);
gen_helper_cp1_putc(tmp);
dead_tmp(tmp);
return;
} else {
ILLEGAL;
}
}
ILLEGAL;
}
#endif
static inline void gen_set_asr(TCGv var, uint32_t mask)
{
TCGv tmp_mask = tcg_const_i32(mask);
gen_helper_asr_write(cpu_env, var, tmp_mask);
tcg_temp_free_i32(tmp_mask);
}
/* Set NZCV flags from the high 4 bits of var. */
#define gen_set_nzcv(var) gen_set_asr(var, ASR_NZCV)
static void gen_exception(int excp)
{
TCGv tmp = new_tmp();
tcg_gen_movi_i32(tmp, excp);
gen_helper_exception(cpu_env, tmp);
dead_tmp(tmp);
}
#define gen_set_CF(var) tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, CF))
/* Set CF to the top bit of var. */
static void gen_set_CF_bit31(TCGv var)
{
TCGv tmp = new_tmp();
tcg_gen_shri_i32(tmp, var, 31);
gen_set_CF(tmp);
dead_tmp(tmp);
}
/* Set N and Z flags from var. */
static inline void gen_logic_CC(TCGv var)
{
tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, NF));
tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, ZF));
}
/* dest = T0 + T1 + CF. */
static void gen_add_carry(TCGv dest, TCGv t0, TCGv t1)
{
TCGv tmp;
tcg_gen_add_i32(dest, t0, t1);
tmp = load_cpu_field(CF);
tcg_gen_add_i32(dest, dest, tmp);
dead_tmp(tmp);
}
/* dest = T0 - T1 + CF - 1. */
static void gen_sub_carry(TCGv dest, TCGv t0, TCGv t1)
{
TCGv tmp;
tcg_gen_sub_i32(dest, t0, t1);
tmp = load_cpu_field(CF);
tcg_gen_add_i32(dest, dest, tmp);
tcg_gen_subi_i32(dest, dest, 1);
dead_tmp(tmp);
}
static void shifter_out_im(TCGv var, int shift)
{
TCGv tmp = new_tmp();
if (shift == 0) {
tcg_gen_andi_i32(tmp, var, 1);
} else {
tcg_gen_shri_i32(tmp, var, shift);
if (shift != 31) {
tcg_gen_andi_i32(tmp, tmp, 1);
}
}
gen_set_CF(tmp);
dead_tmp(tmp);
}
/* Shift by immediate. Includes special handling for shift == 0. */
static inline void gen_uc32_shift_im(TCGv var, int shiftop, int shift,
int flags)
{
switch (shiftop) {
case 0: /* LSL */
if (shift != 0) {
if (flags) {
shifter_out_im(var, 32 - shift);
}
tcg_gen_shli_i32(var, var, shift);
}
break;
case 1: /* LSR */
if (shift == 0) {
if (flags) {
tcg_gen_shri_i32(var, var, 31);
gen_set_CF(var);
}
tcg_gen_movi_i32(var, 0);
} else {
if (flags) {
shifter_out_im(var, shift - 1);
}
tcg_gen_shri_i32(var, var, shift);
}
break;
case 2: /* ASR */
if (shift == 0) {
shift = 32;
}
if (flags) {
shifter_out_im(var, shift - 1);
}
if (shift == 32) {
shift = 31;
}
tcg_gen_sari_i32(var, var, shift);
break;
case 3: /* ROR/RRX */
if (shift != 0) {
if (flags) {
shifter_out_im(var, shift - 1);
}
tcg_gen_rotri_i32(var, var, shift); break;
} else {
TCGv tmp = load_cpu_field(CF);
if (flags) {
shifter_out_im(var, 0);
}
tcg_gen_shri_i32(var, var, 1);
tcg_gen_shli_i32(tmp, tmp, 31);
tcg_gen_or_i32(var, var, tmp);
dead_tmp(tmp);
}
}
};
static inline void gen_uc32_shift_reg(TCGv var, int shiftop,
TCGv shift, int flags)
{
if (flags) {
switch (shiftop) {
case 0:
gen_helper_shl_cc(var, cpu_env, var, shift);
break;
case 1:
gen_helper_shr_cc(var, cpu_env, var, shift);
break;
case 2:
gen_helper_sar_cc(var, cpu_env, var, shift);
break;
case 3:
gen_helper_ror_cc(var, cpu_env, var, shift);
break;
}
} else {
switch (shiftop) {
case 0:
gen_helper_shl(var, var, shift);
break;
case 1:
gen_helper_shr(var, var, shift);
break;
case 2:
gen_helper_sar(var, var, shift);
break;
case 3:
tcg_gen_andi_i32(shift, shift, 0x1f);
tcg_gen_rotr_i32(var, var, shift);
break;
}
}
dead_tmp(shift);
}
static void gen_test_cc(int cc, TCGLabel *label)
{
TCGv tmp;
TCGv tmp2;
TCGLabel *inv;
switch (cc) {
case 0: /* eq: Z */
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
break;
case 1: /* ne: !Z */
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
break;
case 2: /* cs: C */
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
break;
case 3: /* cc: !C */
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
break;
case 4: /* mi: N */
tmp = load_cpu_field(NF);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
case 5: /* pl: !N */
tmp = load_cpu_field(NF);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
break;
case 6: /* vs: V */
tmp = load_cpu_field(VF);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
case 7: /* vc: !V */
tmp = load_cpu_field(VF);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
break;
case 8: /* hi: C && !Z */
inv = gen_new_label();
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
dead_tmp(tmp);
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
gen_set_label(inv);
break;
case 9: /* ls: !C || Z */
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
dead_tmp(tmp);
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
break;
case 10: /* ge: N == V -> N ^ V == 0 */
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
break;
case 11: /* lt: N != V -> N ^ V != 0 */
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
case 12: /* gt: !Z && N == V */
inv = gen_new_label();
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
dead_tmp(tmp);
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
gen_set_label(inv);
break;
case 13: /* le: Z || N != V */
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
dead_tmp(tmp);
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
default:
fprintf(stderr, "Bad condition code 0x%x\n", cc);
abort();
}
dead_tmp(tmp);
}
static const uint8_t table_logic_cc[16] = {
1, /* and */ 1, /* xor */ 0, /* sub */ 0, /* rsb */
0, /* add */ 0, /* adc */ 0, /* sbc */ 0, /* rsc */
1, /* andl */ 1, /* xorl */ 0, /* cmp */ 0, /* cmn */
1, /* orr */ 1, /* mov */ 1, /* bic */ 1, /* mvn */
};
/* Set PC state from an immediate address. */
static inline void gen_bx_im(DisasContext *s, uint32_t addr)
{
s->is_jmp = DISAS_UPDATE;
tcg_gen_movi_i32(cpu_R[31], addr & ~3);
}
/* Set PC state from var. var is marked as dead. */
static inline void gen_bx(DisasContext *s, TCGv var)
{
s->is_jmp = DISAS_UPDATE;
tcg_gen_andi_i32(cpu_R[31], var, ~3);
dead_tmp(var);
}
static inline void store_reg_bx(DisasContext *s, int reg, TCGv var)
{
store_reg(s, reg, var);
}
static inline TCGv gen_ld8s(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld8s(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld8u(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld8u(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld16s(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld16s(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld16u(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld16u(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld32(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld32u(tmp, addr, index);
return tmp;
}
static inline void gen_st8(TCGv val, TCGv addr, int index)
{
tcg_gen_qemu_st8(val, addr, index);
dead_tmp(val);
}
static inline void gen_st16(TCGv val, TCGv addr, int index)
{
tcg_gen_qemu_st16(val, addr, index);
dead_tmp(val);
}
static inline void gen_st32(TCGv val, TCGv addr, int index)
{
tcg_gen_qemu_st32(val, addr, index);
dead_tmp(val);
}
static inline void gen_set_pc_im(uint32_t val)
{
tcg_gen_movi_i32(cpu_R[31], val);
}
/* Force a TB lookup after an instruction that changes the CPU state. */
static inline void gen_lookup_tb(DisasContext *s)
{
tcg_gen_movi_i32(cpu_R[31], s->pc & ~1);
s->is_jmp = DISAS_UPDATE;
}
static inline void gen_add_data_offset(DisasContext *s, unsigned int insn,
TCGv var)
{
int val;
TCGv offset;
if (UCOP_SET(29)) {
/* immediate */
val = UCOP_IMM14;
if (!UCOP_SET_U) {
val = -val;
}
if (val != 0) {
tcg_gen_addi_i32(var, var, val);
}
} else {
/* shift/register */
offset = load_reg(s, UCOP_REG_M);
gen_uc32_shift_im(offset, UCOP_SH_OP, UCOP_SH_IM, 0);
if (!UCOP_SET_U) {
tcg_gen_sub_i32(var, var, offset);
} else {
tcg_gen_add_i32(var, var, offset);
}
dead_tmp(offset);
}
}
static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn,
TCGv var)
{
int val;
TCGv offset;
if (UCOP_SET(26)) {
/* immediate */
val = (insn & 0x1f) | ((insn >> 4) & 0x3e0);
if (!UCOP_SET_U) {
val = -val;
}
if (val != 0) {
tcg_gen_addi_i32(var, var, val);
}
} else {
/* register */
offset = load_reg(s, UCOP_REG_M);
if (!UCOP_SET_U) {
tcg_gen_sub_i32(var, var, offset);
} else {
tcg_gen_add_i32(var, var, offset);
}
dead_tmp(offset);
}
}
static inline long ucf64_reg_offset(int reg)
{
if (reg & 1) {
return offsetof(CPUUniCore32State, ucf64.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.upper);
} else {
return offsetof(CPUUniCore32State, ucf64.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.lower);
}
}
#define ucf64_gen_ld32(reg) load_cpu_offset(ucf64_reg_offset(reg))
#define ucf64_gen_st32(var, reg) store_cpu_offset(var, ucf64_reg_offset(reg))
/* UniCore-F64 single load/store I_offset */
static void do_ucf64_ldst_i(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
int offset;
TCGv tmp;
TCGv addr;
addr = load_reg(s, UCOP_REG_N);
if (!UCOP_SET_P && !UCOP_SET_W) {
ILLEGAL;
}
if (UCOP_SET_P) {
offset = UCOP_IMM10 << 2;
if (!UCOP_SET_U) {
offset = -offset;
}
if (offset != 0) {
tcg_gen_addi_i32(addr, addr, offset);
}
}
if (UCOP_SET_L) { /* load */
tmp = gen_ld32(addr, IS_USER(s));
ucf64_gen_st32(tmp, UCOP_REG_D);
} else { /* store */
tmp = ucf64_gen_ld32(UCOP_REG_D);
gen_st32(tmp, addr, IS_USER(s));
}
if (!UCOP_SET_P) {
offset = UCOP_IMM10 << 2;
if (!UCOP_SET_U) {
offset = -offset;
}
if (offset != 0) {
tcg_gen_addi_i32(addr, addr, offset);
}
}
if (UCOP_SET_W) {
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
}
/* UniCore-F64 load/store multiple words */
static void do_ucf64_ldst_m(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
unsigned int i;
int j, n, freg;
TCGv tmp;
TCGv addr;
if (UCOP_REG_D != 0) {
ILLEGAL;
}
if (UCOP_REG_N == 31) {
ILLEGAL;
}
if ((insn << 24) == 0) {
ILLEGAL;
}
addr = load_reg(s, UCOP_REG_N);
n = 0;
for (i = 0; i < 8; i++) {
if (UCOP_SET(i)) {
n++;
}
}
if (UCOP_SET_U) {
if (UCOP_SET_P) { /* pre increment */
tcg_gen_addi_i32(addr, addr, 4);
} /* unnecessary to do anything when post increment */
} else {
if (UCOP_SET_P) { /* pre decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
} else { /* post decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
}
}
freg = ((insn >> 8) & 3) << 3; /* freg should be 0, 8, 16, 24 */
for (i = 0, j = 0; i < 8; i++, freg++) {
if (!UCOP_SET(i)) {
continue;
}
if (UCOP_SET_L) { /* load */
tmp = gen_ld32(addr, IS_USER(s));
ucf64_gen_st32(tmp, freg);
} else { /* store */
tmp = ucf64_gen_ld32(freg);
gen_st32(tmp, addr, IS_USER(s));
}
j++;
/* unnecessary to add after the last transfer */
if (j != n) {
tcg_gen_addi_i32(addr, addr, 4);
}
}
if (UCOP_SET_W) { /* write back */
if (UCOP_SET_U) {
if (!UCOP_SET_P) { /* post increment */
tcg_gen_addi_i32(addr, addr, 4);
} /* unnecessary to do anything when pre increment */
} else {
if (UCOP_SET_P) {
/* pre decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
} else {
/* post decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
}
}
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
}
/* UniCore-F64 mrc/mcr */
static void do_ucf64_trans(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
TCGv tmp;
if ((insn & 0xfe0003ff) == 0xe2000000) {
/* control register */
if ((UCOP_REG_N != UC32_UCF64_FPSCR) || (UCOP_REG_D == 31)) {
ILLEGAL;
}
if (UCOP_SET(24)) {
/* CFF */
tmp = new_tmp();
gen_helper_ucf64_get_fpscr(tmp, cpu_env);
store_reg(s, UCOP_REG_D, tmp);
} else {
/* CTF */
tmp = load_reg(s, UCOP_REG_D);
gen_helper_ucf64_set_fpscr(cpu_env, tmp);
dead_tmp(tmp);
gen_lookup_tb(s);
}
return;
}
if ((insn & 0xfe0003ff) == 0xe0000000) {
/* general register */
if (UCOP_REG_D == 31) {
ILLEGAL;
}
if (UCOP_SET(24)) { /* MFF */
tmp = ucf64_gen_ld32(UCOP_REG_N);
store_reg(s, UCOP_REG_D, tmp);
} else { /* MTF */
tmp = load_reg(s, UCOP_REG_D);
ucf64_gen_st32(tmp, UCOP_REG_N);
}
return;
}
if ((insn & 0xfb000000) == 0xe9000000) {
/* MFFC */
if (UCOP_REG_D != 31) {
ILLEGAL;
}
if (UCOP_UCF64_COND & 0x8) {
ILLEGAL;
}
tmp = new_tmp();
tcg_gen_movi_i32(tmp, UCOP_UCF64_COND);
if (UCOP_SET(26)) {
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, tmp, cpu_env);
} else {
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, tmp, cpu_env);
}
dead_tmp(tmp);
return;
}
ILLEGAL;
}
/* UniCore-F64 convert instructions */
static void do_ucf64_fcvt(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
if (UCOP_UCF64_FMT == 3) {
ILLEGAL;
}
if (UCOP_REG_N != 0) {
ILLEGAL;
}
switch (UCOP_UCF64_FUNC) {
case 0: /* cvt.s */
switch (UCOP_UCF64_FMT) {
case 1 /* d */:
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_df2sf(cpu_F0s, cpu_F0d, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
case 2 /* w */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_si2sf(cpu_F0s, cpu_F0s, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
default /* s */:
ILLEGAL;
break;
}
break;
case 1: /* cvt.d */
switch (UCOP_UCF64_FMT) {
case 0 /* s */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_sf2df(cpu_F0d, cpu_F0s, cpu_env);
tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
case 2 /* w */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_si2df(cpu_F0d, cpu_F0s, cpu_env);
tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
default /* d */:
ILLEGAL;
break;
}
break;
case 4: /* cvt.w */
switch (UCOP_UCF64_FMT) {
case 0 /* s */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_sf2si(cpu_F0s, cpu_F0s, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
case 1 /* d */:
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_df2si(cpu_F0s, cpu_F0d, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
default /* w */:
ILLEGAL;
break;
}
break;
default:
ILLEGAL;
}
}
/* UniCore-F64 compare instructions */
static void do_ucf64_fcmp(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
if (UCOP_SET(25)) {
ILLEGAL;
}
if (UCOP_REG_D != 0) {
ILLEGAL;
}
ILLEGAL; /* TODO */
if (UCOP_SET(24)) {
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
/* gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, cpu_env); */
} else {
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
/* gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, cpu_env); */
}
}
#define gen_helper_ucf64_movs(x, y) do { } while (0)
#define gen_helper_ucf64_movd(x, y) do { } while (0)
#define UCF64_OP1(name) do { \
if (UCOP_REG_N != 0) { \
ILLEGAL; \
} \
switch (UCOP_UCF64_FMT) { \
case 0 /* s */: \
tcg_gen_ld_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##s(cpu_F0s, cpu_F0s); \
tcg_gen_st_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 1 /* d */: \
tcg_gen_ld_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##d(cpu_F0d, cpu_F0d); \
tcg_gen_st_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 2 /* w */: \
ILLEGAL; \
break; \
} \
} while (0)
#define UCF64_OP2(name) do { \
switch (UCOP_UCF64_FMT) { \
case 0 /* s */: \
tcg_gen_ld_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_N)); \
tcg_gen_ld_i32(cpu_F1s, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##s(cpu_F0s, \
cpu_F0s, cpu_F1s, cpu_env); \
tcg_gen_st_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 1 /* d */: \
tcg_gen_ld_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_N)); \
tcg_gen_ld_i64(cpu_F1d, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##d(cpu_F0d, \
cpu_F0d, cpu_F1d, cpu_env); \
tcg_gen_st_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 2 /* w */: \
ILLEGAL; \
break; \
} \
} while (0)
/* UniCore-F64 data processing */
static void do_ucf64_datap(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
if (UCOP_UCF64_FMT == 3) {
ILLEGAL;
}
switch (UCOP_UCF64_FUNC) {
case 0: /* add */
UCF64_OP2(add);
break;
case 1: /* sub */
UCF64_OP2(sub);
break;
case 2: /* mul */
UCF64_OP2(mul);
break;
case 4: /* div */
UCF64_OP2(div);
break;
case 5: /* abs */
UCF64_OP1(abs);
break;
case 6: /* mov */
UCF64_OP1(mov);
break;
case 7: /* neg */
UCF64_OP1(neg);
break;
default:
ILLEGAL;
}
}
/* Disassemble an F64 instruction */
static void disas_ucf64_insn(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
if (!UCOP_SET(29)) {
if (UCOP_SET(26)) {
do_ucf64_ldst_m(env, s, insn);
} else {
do_ucf64_ldst_i(env, s, insn);
}
} else {
if (UCOP_SET(5)) {
switch ((insn >> 26) & 0x3) {
case 0:
do_ucf64_datap(env, s, insn);
break;
case 1:
ILLEGAL;
break;
case 2:
do_ucf64_fcvt(env, s, insn);
break;
case 3:
do_ucf64_fcmp(env, s, insn);
break;
}
} else {
do_ucf64_trans(env, s, insn);
}
}
}
static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest)
{
TranslationBlock *tb;
tb = s->tb;
if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
tcg_gen_goto_tb(n);
gen_set_pc_im(dest);
tcg_gen_exit_tb((uintptr_t)tb + n);
} else {
gen_set_pc_im(dest);
tcg_gen_exit_tb(0);
}
}
static inline void gen_jmp(DisasContext *s, uint32_t dest)
{
if (unlikely(s->singlestep_enabled)) {
/* An indirect jump so that we still trigger the debug exception. */
gen_bx_im(s, dest);
} else {
gen_goto_tb(s, 0, dest);
s->is_jmp = DISAS_TB_JUMP;
}
}
/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
static int gen_set_psr(DisasContext *s, uint32_t mask, int bsr, TCGv t0)
{
TCGv tmp;
if (bsr) {
/* ??? This is also undefined in system mode. */
if (IS_USER(s)) {
return 1;
}
tmp = load_cpu_field(bsr);
tcg_gen_andi_i32(tmp, tmp, ~mask);
tcg_gen_andi_i32(t0, t0, mask);
tcg_gen_or_i32(tmp, tmp, t0);
store_cpu_field(tmp, bsr);
} else {
gen_set_asr(t0, mask);
}
dead_tmp(t0);
gen_lookup_tb(s);
return 0;
}
/* Generate an old-style exception return. Marks pc as dead. */
static void gen_exception_return(DisasContext *s, TCGv pc)
{
TCGv tmp;
store_reg(s, 31, pc);
tmp = load_cpu_field(bsr);
gen_set_asr(tmp, 0xffffffff);
dead_tmp(tmp);
s->is_jmp = DISAS_UPDATE;
}
static void disas_coproc_insn(CPUUniCore32State *env, DisasContext *s,
uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
switch (UCOP_CPNUM) {
#ifndef CONFIG_USER_ONLY
case 0:
disas_cp0_insn(env, s, insn);
break;
case 1:
disas_ocd_insn(env, s, insn);
break;
#endif
case 2:
disas_ucf64_insn(env, s, insn);
break;
default:
/* Unknown coprocessor. */
cpu_abort(CPU(cpu), "Unknown coprocessor!");
}
}
/* data processing instructions */
static void do_datap(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
TCGv tmp;
TCGv tmp2;
int logic_cc;
if (UCOP_OPCODES == 0x0f || UCOP_OPCODES == 0x0d) {
if (UCOP_SET(23)) { /* CMOV instructions */
if ((UCOP_CMOV_COND == 0xe) || (UCOP_CMOV_COND == 0xf)) {
ILLEGAL;
}
/* if not always execute, we generate a conditional jump to
next instruction */
s->condlabel = gen_new_label();
gen_test_cc(UCOP_CMOV_COND ^ 1, s->condlabel);
s->condjmp = 1;
}
}
logic_cc = table_logic_cc[UCOP_OPCODES] & (UCOP_SET_S >> 24);
if (UCOP_SET(29)) {
unsigned int val;
/* immediate operand */
val = UCOP_IMM_9;
if (UCOP_SH_IM) {
val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM));
}
tmp2 = new_tmp();
tcg_gen_movi_i32(tmp2, val);
if (logic_cc && UCOP_SH_IM) {
gen_set_CF_bit31(tmp2);
}
} else {
/* register */
tmp2 = load_reg(s, UCOP_REG_M);
if (UCOP_SET(5)) {
tmp = load_reg(s, UCOP_REG_S);
gen_uc32_shift_reg(tmp2, UCOP_SH_OP, tmp, logic_cc);
} else {
gen_uc32_shift_im(tmp2, UCOP_SH_OP, UCOP_SH_IM, logic_cc);
}
}
if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) {
tmp = load_reg(s, UCOP_REG_N);
} else {
TCGV_UNUSED(tmp);
}
switch (UCOP_OPCODES) {
case 0x00:
tcg_gen_and_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x01:
tcg_gen_xor_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x02:
if (UCOP_SET_S && UCOP_REG_D == 31) {
/* SUBS r31, ... is used for exception return. */
if (IS_USER(s)) {
ILLEGAL;
}
gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2);
gen_exception_return(s, tmp);
} else {
if (UCOP_SET_S) {
gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2);
} else {
tcg_gen_sub_i32(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
}
break;
case 0x03:
if (UCOP_SET_S) {
gen_helper_sub_cc(tmp, cpu_env, tmp2, tmp);
} else {
tcg_gen_sub_i32(tmp, tmp2, tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x04:
if (UCOP_SET_S) {
gen_helper_add_cc(tmp, cpu_env, tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x05:
if (UCOP_SET_S) {
gen_helper_adc_cc(tmp, cpu_env, tmp, tmp2);
} else {
gen_add_carry(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x06:
if (UCOP_SET_S) {
gen_helper_sbc_cc(tmp, cpu_env, tmp, tmp2);
} else {
gen_sub_carry(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x07:
if (UCOP_SET_S) {
gen_helper_sbc_cc(tmp, cpu_env, tmp2, tmp);
} else {
gen_sub_carry(tmp, tmp2, tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x08:
if (UCOP_SET_S) {
tcg_gen_and_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
}
dead_tmp(tmp);
break;
case 0x09:
if (UCOP_SET_S) {
tcg_gen_xor_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
}
dead_tmp(tmp);
break;
case 0x0a:
if (UCOP_SET_S) {
gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2);
}
dead_tmp(tmp);
break;
case 0x0b:
if (UCOP_SET_S) {
gen_helper_add_cc(tmp, cpu_env, tmp, tmp2);
}
dead_tmp(tmp);
break;
case 0x0c:
tcg_gen_or_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x0d:
if (logic_cc && UCOP_REG_D == 31) {
/* MOVS r31, ... is used for exception return. */
if (IS_USER(s)) {
ILLEGAL;
}
gen_exception_return(s, tmp2);
} else {
if (logic_cc) {
gen_logic_CC(tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp2);
}
break;
case 0x0e:
tcg_gen_andc_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
default:
case 0x0f:
tcg_gen_not_i32(tmp2, tmp2);
if (logic_cc) {
gen_logic_CC(tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp2);
break;
}
if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) {
dead_tmp(tmp2);
}
}
/* multiply */
static void do_mult(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
TCGv tmp, tmp2, tmp3, tmp4;
if (UCOP_SET(27)) {
/* 64 bit mul */
tmp = load_reg(s, UCOP_REG_M);
tmp2 = load_reg(s, UCOP_REG_N);
if (UCOP_SET(26)) {
tcg_gen_muls2_i32(tmp, tmp2, tmp, tmp2);
} else {
tcg_gen_mulu2_i32(tmp, tmp2, tmp, tmp2);
}
if (UCOP_SET(25)) { /* mult accumulate */
tmp3 = load_reg(s, UCOP_REG_LO);
tmp4 = load_reg(s, UCOP_REG_HI);
tcg_gen_add2_i32(tmp, tmp2, tmp, tmp2, tmp3, tmp4);
dead_tmp(tmp3);
dead_tmp(tmp4);
}
store_reg(s, UCOP_REG_LO, tmp);
store_reg(s, UCOP_REG_HI, tmp2);
} else {
/* 32 bit mul */
tmp = load_reg(s, UCOP_REG_M);
tmp2 = load_reg(s, UCOP_REG_N);
tcg_gen_mul_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
if (UCOP_SET(25)) {
/* Add */
tmp2 = load_reg(s, UCOP_REG_S);
tcg_gen_add_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
}
if (UCOP_SET_S) {
gen_logic_CC(tmp);
}
store_reg(s, UCOP_REG_D, tmp);
}
}
/* miscellaneous instructions */
static void do_misc(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
unsigned int val;
TCGv tmp;
if ((insn & 0xffffffe0) == 0x10ffc120) {
/* Trivial implementation equivalent to bx. */
tmp = load_reg(s, UCOP_REG_M);
gen_bx(s, tmp);
return;
}
if ((insn & 0xfbffc000) == 0x30ffc000) {
/* PSR = immediate */
val = UCOP_IMM_9;
if (UCOP_SH_IM) {
val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM));
}
tmp = new_tmp();
tcg_gen_movi_i32(tmp, val);
if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) {
ILLEGAL;
}
return;
}
if ((insn & 0xfbffffe0) == 0x12ffc020) {
/* PSR.flag = reg */
tmp = load_reg(s, UCOP_REG_M);
if (gen_set_psr(s, ASR_NZCV, UCOP_SET_B, tmp)) {
ILLEGAL;
}
return;
}
if ((insn & 0xfbffffe0) == 0x10ffc020) {
/* PSR = reg */
tmp = load_reg(s, UCOP_REG_M);
if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) {
ILLEGAL;
}
return;
}
if ((insn & 0xfbf83fff) == 0x10f80000) {
/* reg = PSR */
if (UCOP_SET_B) {
if (IS_USER(s)) {
ILLEGAL;
}
tmp = load_cpu_field(bsr);
} else {
tmp = new_tmp();
gen_helper_asr_read(tmp, cpu_env);
}
store_reg(s, UCOP_REG_D, tmp);
return;
}
if ((insn & 0xfbf83fe0) == 0x12f80120) {
/* clz */
tmp = load_reg(s, UCOP_REG_M);
if (UCOP_SET(26)) {
gen_helper_clo(tmp, tmp);
} else {
gen_helper_clz(tmp, tmp);
}
store_reg(s, UCOP_REG_D, tmp);
return;
}
/* otherwise */
ILLEGAL;
}
/* load/store I_offset and R_offset */
static void do_ldst_ir(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
unsigned int mmu_idx;
TCGv tmp;
TCGv tmp2;
tmp2 = load_reg(s, UCOP_REG_N);
mmu_idx = (IS_USER(s) || (!UCOP_SET_P && UCOP_SET_W));
/* immediate */
if (UCOP_SET_P) {
gen_add_data_offset(s, insn, tmp2);
}
if (UCOP_SET_L) {
/* load */
if (UCOP_SET_B) {
tmp = gen_ld8u(tmp2, mmu_idx);
} else {
tmp = gen_ld32(tmp2, mmu_idx);
}
} else {
/* store */
tmp = load_reg(s, UCOP_REG_D);
if (UCOP_SET_B) {
gen_st8(tmp, tmp2, mmu_idx);
} else {
gen_st32(tmp, tmp2, mmu_idx);
}
}
if (!UCOP_SET_P) {
gen_add_data_offset(s, insn, tmp2);
store_reg(s, UCOP_REG_N, tmp2);
} else if (UCOP_SET_W) {
store_reg(s, UCOP_REG_N, tmp2);
} else {
dead_tmp(tmp2);
}
if (UCOP_SET_L) {
/* Complete the load. */
if (UCOP_REG_D == 31) {
gen_bx(s, tmp);
} else {
store_reg(s, UCOP_REG_D, tmp);
}
}
}
/* SWP instruction */
static void do_swap(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
TCGv addr;
TCGv tmp;
TCGv tmp2;
if ((insn & 0xff003fe0) != 0x40000120) {
ILLEGAL;
}
/* ??? This is not really atomic. However we know
we never have multiple CPUs running in parallel,
so it is good enough. */
addr = load_reg(s, UCOP_REG_N);
tmp = load_reg(s, UCOP_REG_M);
if (UCOP_SET_B) {
tmp2 = gen_ld8u(addr, IS_USER(s));
gen_st8(tmp, addr, IS_USER(s));
} else {
tmp2 = gen_ld32(addr, IS_USER(s));
gen_st32(tmp, addr, IS_USER(s));
}
dead_tmp(addr);
store_reg(s, UCOP_REG_D, tmp2);
}
/* load/store hw/sb */
static void do_ldst_hwsb(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
TCGv addr;
TCGv tmp;
if (UCOP_SH_OP == 0) {
do_swap(env, s, insn);
return;
}
addr = load_reg(s, UCOP_REG_N);
if (UCOP_SET_P) {
gen_add_datah_offset(s, insn, addr);
}
if (UCOP_SET_L) { /* load */
switch (UCOP_SH_OP) {
case 1:
tmp = gen_ld16u(addr, IS_USER(s));
break;
case 2:
tmp = gen_ld8s(addr, IS_USER(s));
break;
default: /* see do_swap */
case 3:
tmp = gen_ld16s(addr, IS_USER(s));
break;
}
} else { /* store */
if (UCOP_SH_OP != 1) {
ILLEGAL;
}
tmp = load_reg(s, UCOP_REG_D);
gen_st16(tmp, addr, IS_USER(s));
}
/* Perform base writeback before the loaded value to
ensure correct behavior with overlapping index registers. */
if (!UCOP_SET_P) {
gen_add_datah_offset(s, insn, addr);
store_reg(s, UCOP_REG_N, addr);
} else if (UCOP_SET_W) {
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
if (UCOP_SET_L) {
/* Complete the load. */
store_reg(s, UCOP_REG_D, tmp);
}
}
/* load/store multiple words */
static void do_ldst_m(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
unsigned int val, i, mmu_idx;
int j, n, reg, user, loaded_base;
TCGv tmp;
TCGv tmp2;
TCGv addr;
TCGv loaded_var;
if (UCOP_SET(7)) {
ILLEGAL;
}
/* XXX: store correct base if write back */
user = 0;
if (UCOP_SET_B) { /* S bit in instruction table */
if (IS_USER(s)) {
ILLEGAL; /* only usable in supervisor mode */
}
if (UCOP_SET(18) == 0) { /* pc reg */
user = 1;
}
}
mmu_idx = (IS_USER(s) || (!UCOP_SET_P && UCOP_SET_W));
addr = load_reg(s, UCOP_REG_N);
/* compute total size */
loaded_base = 0;
TCGV_UNUSED(loaded_var);
n = 0;
for (i = 0; i < 6; i++) {
if (UCOP_SET(i)) {
n++;
}
}
for (i = 9; i < 19; i++) {
if (UCOP_SET(i)) {
n++;
}
}
/* XXX: test invalid n == 0 case ? */
if (UCOP_SET_U) {
if (UCOP_SET_P) {
/* pre increment */
tcg_gen_addi_i32(addr, addr, 4);
} else {
/* post increment */
}
} else {
if (UCOP_SET_P) {
/* pre decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
} else {
/* post decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
}
}
j = 0;
reg = UCOP_SET(6) ? 16 : 0;
for (i = 0; i < 19; i++, reg++) {
if (i == 6) {
i = i + 3;
}
if (UCOP_SET(i)) {
if (UCOP_SET_L) { /* load */
tmp = gen_ld32(addr, mmu_idx);
if (reg == 31) {
gen_bx(s, tmp);
} else if (user) {
tmp2 = tcg_const_i32(reg);
gen_helper_set_user_reg(cpu_env, tmp2, tmp);
tcg_temp_free_i32(tmp2);
dead_tmp(tmp);
} else if (reg == UCOP_REG_N) {
loaded_var = tmp;
loaded_base = 1;
} else {
store_reg(s, reg, tmp);
}
} else { /* store */
if (reg == 31) {
/* special case: r31 = PC + 4 */
val = (long)s->pc;
tmp = new_tmp();
tcg_gen_movi_i32(tmp, val);
} else if (user) {
tmp = new_tmp();
tmp2 = tcg_const_i32(reg);
gen_helper_get_user_reg(tmp, cpu_env, tmp2);
tcg_temp_free_i32(tmp2);
} else {
tmp = load_reg(s, reg);
}
gen_st32(tmp, addr, mmu_idx);
}
j++;
/* no need to add after the last transfer */
if (j != n) {
tcg_gen_addi_i32(addr, addr, 4);
}
}
}
if (UCOP_SET_W) { /* write back */
if (UCOP_SET_U) {
if (UCOP_SET_P) {
/* pre increment */
} else {
/* post increment */
tcg_gen_addi_i32(addr, addr, 4);
}
} else {
if (UCOP_SET_P) {
/* pre decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
} else {
/* post decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
}
}
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
if (loaded_base) {
store_reg(s, UCOP_REG_N, loaded_var);
}
if (UCOP_SET_B && !user) {
/* Restore ASR from BSR. */
tmp = load_cpu_field(bsr);
gen_set_asr(tmp, 0xffffffff);
dead_tmp(tmp);
s->is_jmp = DISAS_UPDATE;
}
}
/* branch (and link) */
static void do_branch(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
unsigned int val;
int32_t offset;
TCGv tmp;
if (UCOP_COND == 0xf) {
ILLEGAL;
}
if (UCOP_COND != 0xe) {
/* if not always execute, we generate a conditional jump to
next instruction */
s->condlabel = gen_new_label();
gen_test_cc(UCOP_COND ^ 1, s->condlabel);
s->condjmp = 1;
}
val = (int32_t)s->pc;
if (UCOP_SET_L) {
tmp = new_tmp();
tcg_gen_movi_i32(tmp, val);
store_reg(s, 30, tmp);
}
offset = (((int32_t)insn << 8) >> 8);
val += (offset << 2); /* unicore is pc+4 */
gen_jmp(s, val);
}
static void disas_uc32_insn(CPUUniCore32State *env, DisasContext *s)
{
UniCore32CPU *cpu = uc32_env_get_cpu(env);
unsigned int insn;
if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) {
tcg_gen_debug_insn_start(s->pc);
}
insn = cpu_ldl_code(env, s->pc);
s->pc += 4;
/* UniCore instructions class:
* AAAB BBBC xxxx xxxx xxxx xxxD xxEx xxxx
* AAA : see switch case
* BBBB : opcodes or cond or PUBW
* C : S OR L
* D : 8
* E : 5
*/
switch (insn >> 29) {
case 0x0:
if (UCOP_SET(5) && UCOP_SET(8) && !UCOP_SET(28)) {
do_mult(env, s, insn);
break;
}
if (UCOP_SET(8)) {
do_misc(env, s, insn);
break;
}
case 0x1:
if (((UCOP_OPCODES >> 2) == 2) && !UCOP_SET_S) {
do_misc(env, s, insn);
break;
}
do_datap(env, s, insn);
break;
case 0x2:
if (UCOP_SET(8) && UCOP_SET(5)) {
do_ldst_hwsb(env, s, insn);
break;
}
if (UCOP_SET(8) || UCOP_SET(5)) {
ILLEGAL;
}
case 0x3:
do_ldst_ir(env, s, insn);
break;
case 0x4:
if (UCOP_SET(8)) {
ILLEGAL; /* extended instructions */
}
do_ldst_m(env, s, insn);
break;
case 0x5:
do_branch(env, s, insn);
break;
case 0x6:
/* Coprocessor. */
disas_coproc_insn(env, s, insn);
break;
case 0x7:
if (!UCOP_SET(28)) {
disas_coproc_insn(env, s, insn);
break;
}
if ((insn & 0xff000000) == 0xff000000) { /* syscall */
gen_set_pc_im(s->pc);
s->is_jmp = DISAS_SYSCALL;
break;
}
ILLEGAL;
}
}
/* generate intermediate code in gen_opc_buf and gen_opparam_buf for
basic block 'tb'. If search_pc is TRUE, also generate PC
information for each intermediate instruction. */
static inline void gen_intermediate_code_internal(UniCore32CPU *cpu,
TranslationBlock *tb, bool search_pc)
{
CPUState *cs = CPU(cpu);
CPUUniCore32State *env = &cpu->env;
DisasContext dc1, *dc = &dc1;
CPUBreakpoint *bp;
int j, lj;
target_ulong pc_start;
uint32_t next_page_start;
int num_insns;
int max_insns;
/* generate intermediate code */
num_temps = 0;
pc_start = tb->pc;
dc->tb = tb;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->condjmp = 0;
cpu_F0s = tcg_temp_new_i32();
cpu_F1s = tcg_temp_new_i32();
cpu_F0d = tcg_temp_new_i64();
cpu_F1d = tcg_temp_new_i64();
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
lj = -1;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
#ifndef CONFIG_USER_ONLY
if ((env->uncached_asr & ASR_M) == ASR_MODE_USER) {
dc->user = 1;
} else {
dc->user = 0;
}
#endif
gen_tb_start(tb);
do {
if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
if (bp->pc == dc->pc) {
gen_set_pc_im(dc->pc);
gen_exception(EXCP_DEBUG);
dc->is_jmp = DISAS_JUMP;
/* Advance PC so that clearing the breakpoint will
invalidate this TB. */
dc->pc += 2; /* FIXME */
goto done_generating;
}
}
}
if (search_pc) {
j = tcg_op_buf_count();
if (lj < j) {
lj++;
while (lj < j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
}
tcg_ctx.gen_opc_pc[lj] = dc->pc;
tcg_ctx.gen_opc_instr_start[lj] = 1;
tcg_ctx.gen_opc_icount[lj] = num_insns;
}
if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
disas_uc32_insn(env, dc);
if (num_temps) {
fprintf(stderr, "Internal resource leak before %08x\n", dc->pc);
num_temps = 0;
}
if (dc->condjmp && !dc->is_jmp) {
gen_set_label(dc->condlabel);
dc->condjmp = 0;
}
/* Translation stops when a conditional branch is encountered.
* Otherwise the subsequent code could get translated several times.
* Also stop translation when a page boundary is reached. This
* ensures prefetch aborts occur at the right place. */
num_insns++;
} while (!dc->is_jmp && !tcg_op_buf_full() &&
!cs->singlestep_enabled &&
!singlestep &&
dc->pc < next_page_start &&
num_insns < max_insns);
if (tb->cflags & CF_LAST_IO) {
if (dc->condjmp) {
/* FIXME: This can theoretically happen with self-modifying
code. */
cpu_abort(cs, "IO on conditional branch instruction");
}
gen_io_end();
}
/* At this stage dc->condjmp will only be set when the skipped
instruction was a conditional branch or trap, and the PC has
already been written. */
if (unlikely(cs->singlestep_enabled)) {
/* Make sure the pc is updated, and raise a debug exception. */
if (dc->condjmp) {
if (dc->is_jmp == DISAS_SYSCALL) {
gen_exception(UC32_EXCP_PRIV);
} else {
gen_exception(EXCP_DEBUG);
}
gen_set_label(dc->condlabel);
}
if (dc->condjmp || !dc->is_jmp) {
gen_set_pc_im(dc->pc);
dc->condjmp = 0;
}
if (dc->is_jmp == DISAS_SYSCALL && !dc->condjmp) {
gen_exception(UC32_EXCP_PRIV);
} else {
gen_exception(EXCP_DEBUG);
}
} else {
/* While branches must always occur at the end of an IT block,
there are a few other things that can cause us to terminate
the TB in the middel of an IT block:
- Exception generating instructions (bkpt, swi, undefined).
- Page boundaries.
- Hardware watchpoints.
Hardware breakpoints have already been handled and skip this code.
*/
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
case DISAS_SYSCALL:
gen_exception(UC32_EXCP_PRIV);
break;
}
if (dc->condjmp) {
gen_set_label(dc->condlabel);
gen_goto_tb(dc, 1, dc->pc);
dc->condjmp = 0;
}
}
done_generating:
gen_tb_end(tb, num_insns);
#ifdef DEBUG_DISAS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log("----------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(env, pc_start, dc->pc - pc_start, 0);
qemu_log("\n");
}
#endif
if (search_pc) {
j = tcg_op_buf_count();
lj++;
while (lj <= j) {
tcg_ctx.gen_opc_instr_start[lj++] = 0;
}
} else {
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
}
void gen_intermediate_code(CPUUniCore32State *env, TranslationBlock *tb)
{
gen_intermediate_code_internal(uc32_env_get_cpu(env), tb, false);
}
void gen_intermediate_code_pc(CPUUniCore32State *env, TranslationBlock *tb)
{
gen_intermediate_code_internal(uc32_env_get_cpu(env), tb, true);
}
static const char *cpu_mode_names[16] = {
"USER", "REAL", "INTR", "PRIV", "UM14", "UM15", "UM16", "TRAP",
"UM18", "UM19", "UM1A", "EXTN", "UM1C", "UM1D", "UM1E", "SUSR"
};
#undef UCF64_DUMP_STATE
#ifdef UCF64_DUMP_STATE
static void cpu_dump_state_ucf64(CPUUniCore32State *env, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
int i;
union {
uint32_t i;
float s;
} s0, s1;
CPU_DoubleU d;
/* ??? This assumes float64 and double have the same layout.
Oh well, it's only debug dumps. */
union {
float64 f64;
double d;
} d0;
for (i = 0; i < 16; i++) {
d.d = env->ucf64.regs[i];
s0.i = d.l.lower;
s1.i = d.l.upper;
d0.f64 = d.d;
cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g)",
i * 2, (int)s0.i, s0.s,
i * 2 + 1, (int)s1.i, s1.s);
cpu_fprintf(f, " d%02d=%" PRIx64 "(%8g)\n",
i, (uint64_t)d0.f64, d0.d);
}
cpu_fprintf(f, "FPSCR: %08x\n", (int)env->ucf64.xregs[UC32_UCF64_FPSCR]);
}
#else
#define cpu_dump_state_ucf64(env, file, pr, flags) do { } while (0)
#endif
void uc32_cpu_dump_state(CPUState *cs, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
UniCore32CPU *cpu = UNICORE32_CPU(cs);
CPUUniCore32State *env = &cpu->env;
int i;
uint32_t psr;
for (i = 0; i < 32; i++) {
cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3) {
cpu_fprintf(f, "\n");
} else {
cpu_fprintf(f, " ");
}
}
psr = cpu_asr_read(env);
cpu_fprintf(f, "PSR=%08x %c%c%c%c %s\n",
psr,
psr & (1 << 31) ? 'N' : '-',
psr & (1 << 30) ? 'Z' : '-',
psr & (1 << 29) ? 'C' : '-',
psr & (1 << 28) ? 'V' : '-',
cpu_mode_names[psr & 0xf]);
cpu_dump_state_ucf64(env, f, cpu_fprintf, flags);
}
void restore_state_to_opc(CPUUniCore32State *env, TranslationBlock *tb, int pc_pos)
{
env->regs[31] = tcg_ctx.gen_opc_pc[pc_pos];
}