qemu-e2k/hw/ipack/tpci200.c
Juan Quintela 35d08458a9 savevm: Remove all the unneeded version_minimum_id_old (rest)
After previous Peter patch, they are redundant.  This way we don't
assign them except when needed.  Once there, there were lots of case
where the ".fields" indentation was wrong:

     .fields = (VMStateField []) {
and
     .fields =      (VMStateField []) {

Change all the combinations to:

     .fields = (VMStateField[]){

The biggest problem (appart from aesthetics) was that checkpatch complained
when we copy&pasted the code from one place to another.

Signed-off-by: Juan Quintela <quintela@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
2014-05-14 15:24:51 +02:00

672 lines
19 KiB
C

/*
* QEMU TEWS TPCI200 IndustryPack carrier emulation
*
* Copyright (C) 2012 Igalia, S.L.
* Author: Alberto Garcia <agarcia@igalia.com>
*
* This code is licensed under the GNU GPL v2 or (at your option) any
* later version.
*/
#include "hw/ipack/ipack.h"
#include "hw/pci/pci.h"
#include "qemu/bitops.h"
#include <stdio.h>
/* #define DEBUG_TPCI */
#ifdef DEBUG_TPCI
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, "TPCI200: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define N_MODULES 4
#define IP_ID_SPACE 2
#define IP_INT_SPACE 3
#define IP_IO_SPACE_ADDR_MASK 0x7F
#define IP_ID_SPACE_ADDR_MASK 0x3F
#define IP_INT_SPACE_ADDR_MASK 0x3F
#define STATUS_INT(IP, INTNO) BIT((IP) * 2 + (INTNO))
#define STATUS_TIME(IP) BIT((IP) + 12)
#define STATUS_ERR_ANY 0xF00
#define CTRL_CLKRATE BIT(0)
#define CTRL_RECOVER BIT(1)
#define CTRL_TIME_INT BIT(2)
#define CTRL_ERR_INT BIT(3)
#define CTRL_INT_EDGE(INTNO) BIT(4 + (INTNO))
#define CTRL_INT(INTNO) BIT(6 + (INTNO))
#define REG_REV_ID 0x00
#define REG_IP_A_CTRL 0x02
#define REG_IP_B_CTRL 0x04
#define REG_IP_C_CTRL 0x06
#define REG_IP_D_CTRL 0x08
#define REG_RESET 0x0A
#define REG_STATUS 0x0C
#define IP_N_FROM_REG(REG) ((REG) / 2 - 1)
typedef struct {
PCIDevice dev;
IPackBus bus;
MemoryRegion mmio;
MemoryRegion io;
MemoryRegion las0;
MemoryRegion las1;
MemoryRegion las2;
MemoryRegion las3;
bool big_endian[3];
uint8_t ctrl[N_MODULES];
uint16_t status;
uint8_t int_set;
} TPCI200State;
#define TYPE_TPCI200 "tpci200"
#define TPCI200(obj) \
OBJECT_CHECK(TPCI200State, (obj), TYPE_TPCI200)
static const uint8_t local_config_regs[] = {
0x00, 0xFF, 0xFF, 0x0F, 0x00, 0xFC, 0xFF, 0x0F, 0x00, 0x00, 0x00,
0x0E, 0x00, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x08, 0x01, 0x00, 0x00, 0x04, 0x01, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0xA0, 0x60, 0x41, 0xD4,
0xA2, 0x20, 0x41, 0x14, 0xA2, 0x20, 0x41, 0x14, 0xA2, 0x20, 0x01,
0x14, 0x00, 0x00, 0x00, 0x00, 0x81, 0x00, 0x00, 0x08, 0x01, 0x02,
0x00, 0x04, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x80, 0x02, 0x41,
0x00, 0x00, 0x00, 0x00, 0x40, 0x7A, 0x00, 0x52, 0x92, 0x24, 0x02
};
static void adjust_addr(bool big_endian, hwaddr *addr, unsigned size)
{
/* During 8 bit access in big endian mode,
odd and even addresses are swapped */
if (big_endian && size == 1) {
*addr ^= 1;
}
}
static uint64_t adjust_value(bool big_endian, uint64_t *val, unsigned size)
{
/* Local spaces only support 8/16 bit access,
* so there's no need to care for sizes > 2 */
if (big_endian && size == 2) {
*val = bswap16(*val);
}
return *val;
}
static void tpci200_set_irq(void *opaque, int intno, int level)
{
IPackDevice *ip = opaque;
IPackBus *bus = IPACK_BUS(qdev_get_parent_bus(DEVICE(ip)));
PCIDevice *pcidev = PCI_DEVICE(BUS(bus)->parent);
TPCI200State *dev = TPCI200(pcidev);
unsigned ip_n = ip->slot;
uint16_t prev_status = dev->status;
assert(ip->slot >= 0 && ip->slot < N_MODULES);
/* The requested interrupt must be enabled in the IP CONTROL
* register */
if (!(dev->ctrl[ip_n] & CTRL_INT(intno))) {
return;
}
/* Update the interrupt status in the IP STATUS register */
if (level) {
dev->status |= STATUS_INT(ip_n, intno);
} else {
dev->status &= ~STATUS_INT(ip_n, intno);
}
/* Return if there are no changes */
if (dev->status == prev_status) {
return;
}
DPRINTF("IP %u INT%u#: %u\n", ip_n, intno, level);
/* Check if the interrupt is edge sensitive */
if (dev->ctrl[ip_n] & CTRL_INT_EDGE(intno)) {
if (level) {
pci_set_irq(&dev->dev, !dev->int_set);
pci_set_irq(&dev->dev, dev->int_set);
}
} else {
unsigned i, j;
uint16_t level_status = dev->status;
/* Check if there are any level sensitive interrupts set by
removing the ones that are edge sensitive from the status
register */
for (i = 0; i < N_MODULES; i++) {
for (j = 0; j < 2; j++) {
if (dev->ctrl[i] & CTRL_INT_EDGE(j)) {
level_status &= ~STATUS_INT(i, j);
}
}
}
if (level_status && !dev->int_set) {
pci_irq_assert(&dev->dev);
dev->int_set = 1;
} else if (!level_status && dev->int_set) {
pci_irq_deassert(&dev->dev);
dev->int_set = 0;
}
}
}
static uint64_t tpci200_read_cfg(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
uint8_t ret = 0;
if (addr < ARRAY_SIZE(local_config_regs)) {
ret = local_config_regs[addr];
}
/* Endianness is stored in the first bit of these registers */
if ((addr == 0x2b && s->big_endian[0]) ||
(addr == 0x2f && s->big_endian[1]) ||
(addr == 0x33 && s->big_endian[2])) {
ret |= 1;
}
DPRINTF("Read from LCR 0x%x: 0x%x\n", (unsigned) addr, (unsigned) ret);
return ret;
}
static void tpci200_write_cfg(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
/* Endianness is stored in the first bit of these registers */
if (addr == 0x2b || addr == 0x2f || addr == 0x33) {
unsigned las = (addr - 0x2b) / 4;
s->big_endian[las] = val & 1;
DPRINTF("LAS%u big endian mode: %u\n", las, (unsigned) val & 1);
} else {
DPRINTF("Write to LCR 0x%x: 0x%x\n", (unsigned) addr, (unsigned) val);
}
}
static uint64_t tpci200_read_las0(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
uint64_t ret = 0;
switch (addr) {
case REG_REV_ID:
DPRINTF("Read REVISION ID\n"); /* Current value is 0x00 */
break;
case REG_IP_A_CTRL:
case REG_IP_B_CTRL:
case REG_IP_C_CTRL:
case REG_IP_D_CTRL:
{
unsigned ip_n = IP_N_FROM_REG(addr);
ret = s->ctrl[ip_n];
DPRINTF("Read IP %c CONTROL: 0x%x\n", 'A' + ip_n, (unsigned) ret);
}
break;
case REG_RESET:
DPRINTF("Read RESET\n"); /* Not implemented */
break;
case REG_STATUS:
ret = s->status;
DPRINTF("Read STATUS: 0x%x\n", (unsigned) ret);
break;
/* Reserved */
default:
DPRINTF("Unsupported read from LAS0 0x%x\n", (unsigned) addr);
break;
}
return adjust_value(s->big_endian[0], &ret, size);
}
static void tpci200_write_las0(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
adjust_value(s->big_endian[0], &val, size);
switch (addr) {
case REG_REV_ID:
DPRINTF("Write Revision ID: 0x%x\n", (unsigned) val); /* No effect */
break;
case REG_IP_A_CTRL:
case REG_IP_B_CTRL:
case REG_IP_C_CTRL:
case REG_IP_D_CTRL:
{
unsigned ip_n = IP_N_FROM_REG(addr);
s->ctrl[ip_n] = val;
DPRINTF("Write IP %c CONTROL: 0x%x\n", 'A' + ip_n, (unsigned) val);
}
break;
case REG_RESET:
DPRINTF("Write RESET: 0x%x\n", (unsigned) val); /* Not implemented */
break;
case REG_STATUS:
{
unsigned i;
for (i = 0; i < N_MODULES; i++) {
IPackDevice *ip = ipack_device_find(&s->bus, i);
if (ip != NULL) {
if (val & STATUS_INT(i, 0)) {
DPRINTF("Clear IP %c INT0# status\n", 'A' + i);
qemu_irq_lower(ip->irq[0]);
}
if (val & STATUS_INT(i, 1)) {
DPRINTF("Clear IP %c INT1# status\n", 'A' + i);
qemu_irq_lower(ip->irq[1]);
}
}
if (val & STATUS_TIME(i)) {
DPRINTF("Clear IP %c timeout\n", 'A' + i);
s->status &= ~STATUS_TIME(i);
}
}
if (val & STATUS_ERR_ANY) {
DPRINTF("Unexpected write to STATUS register: 0x%x\n",
(unsigned) val);
}
}
break;
/* Reserved */
default:
DPRINTF("Unsupported write to LAS0 0x%x: 0x%x\n",
(unsigned) addr, (unsigned) val);
break;
}
}
static uint64_t tpci200_read_las1(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
uint64_t ret = 0;
unsigned ip_n, space;
uint8_t offset;
adjust_addr(s->big_endian[1], &addr, size);
/*
* The address is divided into the IP module number (0-4), the IP
* address space (I/O, ID, INT) and the offset within that space.
*/
ip_n = addr >> 8;
space = (addr >> 6) & 3;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Read LAS1: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
switch (space) {
case IP_ID_SPACE:
offset = addr & IP_ID_SPACE_ADDR_MASK;
if (k->id_read) {
ret = k->id_read(ip, offset);
}
break;
case IP_INT_SPACE:
offset = addr & IP_INT_SPACE_ADDR_MASK;
/* Read address 0 to ACK IP INT0# and address 2 to ACK IP INT1# */
if (offset == 0 || offset == 2) {
unsigned intno = offset / 2;
bool int_set = s->status & STATUS_INT(ip_n, intno);
bool int_edge_sensitive = s->ctrl[ip_n] & CTRL_INT_EDGE(intno);
if (int_set && !int_edge_sensitive) {
qemu_irq_lower(ip->irq[intno]);
}
}
if (k->int_read) {
ret = k->int_read(ip, offset);
}
break;
default:
offset = addr & IP_IO_SPACE_ADDR_MASK;
if (k->io_read) {
ret = k->io_read(ip, offset);
}
break;
}
}
return adjust_value(s->big_endian[1], &ret, size);
}
static void tpci200_write_las1(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
unsigned ip_n, space;
uint8_t offset;
adjust_addr(s->big_endian[1], &addr, size);
adjust_value(s->big_endian[1], &val, size);
/*
* The address is divided into the IP module number, the IP
* address space (I/O, ID, INT) and the offset within that space.
*/
ip_n = addr >> 8;
space = (addr >> 6) & 3;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Write LAS1: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
switch (space) {
case IP_ID_SPACE:
offset = addr & IP_ID_SPACE_ADDR_MASK;
if (k->id_write) {
k->id_write(ip, offset, val);
}
break;
case IP_INT_SPACE:
offset = addr & IP_INT_SPACE_ADDR_MASK;
if (k->int_write) {
k->int_write(ip, offset, val);
}
break;
default:
offset = addr & IP_IO_SPACE_ADDR_MASK;
if (k->io_write) {
k->io_write(ip, offset, val);
}
break;
}
}
}
static uint64_t tpci200_read_las2(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
uint64_t ret = 0;
unsigned ip_n;
uint32_t offset;
adjust_addr(s->big_endian[2], &addr, size);
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
ip_n = addr >> 23;
offset = addr & 0x7fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Read LAS2: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_read16) {
ret = k->mem_read16(ip, offset);
}
}
return adjust_value(s->big_endian[2], &ret, size);
}
static void tpci200_write_las2(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
unsigned ip_n;
uint32_t offset;
adjust_addr(s->big_endian[2], &addr, size);
adjust_value(s->big_endian[2], &val, size);
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
ip_n = addr >> 23;
offset = addr & 0x7fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Write LAS2: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_write16) {
k->mem_write16(ip, offset, val);
}
}
}
static uint64_t tpci200_read_las3(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
uint64_t ret = 0;
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
unsigned ip_n = addr >> 22;
uint32_t offset = addr & 0x3fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Read LAS3: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_read8) {
ret = k->mem_read8(ip, offset);
}
}
return ret;
}
static void tpci200_write_las3(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
unsigned ip_n = addr >> 22;
uint32_t offset = addr & 0x3fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Write LAS3: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_write8) {
k->mem_write8(ip, offset, val);
}
}
}
static const MemoryRegionOps tpci200_cfg_ops = {
.read = tpci200_read_cfg,
.write = tpci200_write_cfg,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4
},
.impl = {
.min_access_size = 1,
.max_access_size = 1
}
};
static const MemoryRegionOps tpci200_las0_ops = {
.read = tpci200_read_las0,
.write = tpci200_write_las0,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 2,
.max_access_size = 2
}
};
static const MemoryRegionOps tpci200_las1_ops = {
.read = tpci200_read_las1,
.write = tpci200_write_las1,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 2
}
};
static const MemoryRegionOps tpci200_las2_ops = {
.read = tpci200_read_las2,
.write = tpci200_write_las2,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 2
}
};
static const MemoryRegionOps tpci200_las3_ops = {
.read = tpci200_read_las3,
.write = tpci200_write_las3,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1
}
};
static int tpci200_initfn(PCIDevice *pci_dev)
{
TPCI200State *s = TPCI200(pci_dev);
uint8_t *c = s->dev.config;
pci_set_word(c + PCI_COMMAND, 0x0003);
pci_set_word(c + PCI_STATUS, 0x0280);
pci_set_byte(c + PCI_INTERRUPT_PIN, 0x01); /* Interrupt pin A */
pci_set_byte(c + PCI_CAPABILITY_LIST, 0x40);
pci_set_long(c + 0x40, 0x48014801);
pci_set_long(c + 0x48, 0x00024C06);
pci_set_long(c + 0x4C, 0x00000003);
memory_region_init_io(&s->mmio, OBJECT(s), &tpci200_cfg_ops,
s, "tpci200_mmio", 128);
memory_region_init_io(&s->io, OBJECT(s), &tpci200_cfg_ops,
s, "tpci200_io", 128);
memory_region_init_io(&s->las0, OBJECT(s), &tpci200_las0_ops,
s, "tpci200_las0", 256);
memory_region_init_io(&s->las1, OBJECT(s), &tpci200_las1_ops,
s, "tpci200_las1", 1024);
memory_region_init_io(&s->las2, OBJECT(s), &tpci200_las2_ops,
s, "tpci200_las2", 1024*1024*32);
memory_region_init_io(&s->las3, OBJECT(s), &tpci200_las3_ops,
s, "tpci200_las3", 1024*1024*16);
pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
pci_register_bar(&s->dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las0);
pci_register_bar(&s->dev, 3, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las1);
pci_register_bar(&s->dev, 4, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las2);
pci_register_bar(&s->dev, 5, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las3);
ipack_bus_new_inplace(&s->bus, sizeof(s->bus), DEVICE(pci_dev), NULL,
N_MODULES, tpci200_set_irq);
return 0;
}
static void tpci200_exitfn(PCIDevice *pci_dev)
{
TPCI200State *s = TPCI200(pci_dev);
memory_region_destroy(&s->mmio);
memory_region_destroy(&s->io);
memory_region_destroy(&s->las0);
memory_region_destroy(&s->las1);
memory_region_destroy(&s->las2);
memory_region_destroy(&s->las3);
}
static const VMStateDescription vmstate_tpci200 = {
.name = "tpci200",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(dev, TPCI200State),
VMSTATE_BOOL_ARRAY(big_endian, TPCI200State, 3),
VMSTATE_UINT8_ARRAY(ctrl, TPCI200State, N_MODULES),
VMSTATE_UINT16(status, TPCI200State),
VMSTATE_UINT8(int_set, TPCI200State),
VMSTATE_END_OF_LIST()
}
};
static void tpci200_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = tpci200_initfn;
k->exit = tpci200_exitfn;
k->vendor_id = PCI_VENDOR_ID_TEWS;
k->device_id = PCI_DEVICE_ID_TEWS_TPCI200;
k->class_id = PCI_CLASS_BRIDGE_OTHER;
k->subsystem_vendor_id = PCI_VENDOR_ID_TEWS;
k->subsystem_id = 0x300A;
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
dc->desc = "TEWS TPCI200 IndustryPack carrier";
dc->vmsd = &vmstate_tpci200;
}
static const TypeInfo tpci200_info = {
.name = TYPE_TPCI200,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(TPCI200State),
.class_init = tpci200_class_init,
};
static void tpci200_register_types(void)
{
type_register_static(&tpci200_info);
}
type_init(tpci200_register_types)