b8994faf2a
Implement the century byte in the RTC emulation, and test that it works. This leads to some annoying compatibility code because we need to treat a value of 2000 for the base_year property as "use the century byte properly" (which would be a value of 0). The century byte will now be always-zero, rather than always-20, for the MIPS Magnum machine whose base_year is 1980. Commit 42fc73a (Support epoch of 1980 in RTC emulation for MIPS Magnum, 2009-01-24) correctly said: With an epoch of 1980 and a year of 2009, one could argue that [the century byte] should hold either 0, 1, 19 or 20. NT 3.50 on MIPS does not read the century byte. so I picked the simplest and most sensible implementation which is to return 0 for 1980-2079, 1 for 2080-2179 and so on. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
354 lines
9.0 KiB
C
354 lines
9.0 KiB
C
/*
|
|
* QTest testcase for the MC146818 real-time clock
|
|
*
|
|
* Copyright IBM, Corp. 2012
|
|
*
|
|
* Authors:
|
|
* Anthony Liguori <aliguori@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
#include "libqtest.h"
|
|
#include "hw/mc146818rtc_regs.h"
|
|
|
|
#include <glib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
static uint8_t base = 0x70;
|
|
|
|
static int bcd2dec(int value)
|
|
{
|
|
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
|
|
}
|
|
|
|
static int dec2bcd(int value)
|
|
{
|
|
return ((value / 10) << 4) | (value % 10);
|
|
}
|
|
|
|
static uint8_t cmos_read(uint8_t reg)
|
|
{
|
|
outb(base + 0, reg);
|
|
return inb(base + 1);
|
|
}
|
|
|
|
static void cmos_write(uint8_t reg, uint8_t val)
|
|
{
|
|
outb(base + 0, reg);
|
|
outb(base + 1, val);
|
|
}
|
|
|
|
static int tm_cmp(struct tm *lhs, struct tm *rhs)
|
|
{
|
|
time_t a, b;
|
|
struct tm d1, d2;
|
|
|
|
memcpy(&d1, lhs, sizeof(d1));
|
|
memcpy(&d2, rhs, sizeof(d2));
|
|
|
|
a = mktime(&d1);
|
|
b = mktime(&d2);
|
|
|
|
if (a < b) {
|
|
return -1;
|
|
} else if (a > b) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
static void print_tm(struct tm *tm)
|
|
{
|
|
printf("%04d-%02d-%02d %02d:%02d:%02d\n",
|
|
tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
|
|
tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
|
|
}
|
|
#endif
|
|
|
|
static void cmos_get_date_time(struct tm *date)
|
|
{
|
|
int base_year = 2000, hour_offset;
|
|
int sec, min, hour, mday, mon, year;
|
|
time_t ts;
|
|
struct tm dummy;
|
|
|
|
sec = cmos_read(RTC_SECONDS);
|
|
min = cmos_read(RTC_MINUTES);
|
|
hour = cmos_read(RTC_HOURS);
|
|
mday = cmos_read(RTC_DAY_OF_MONTH);
|
|
mon = cmos_read(RTC_MONTH);
|
|
year = cmos_read(RTC_YEAR);
|
|
|
|
if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
|
|
sec = bcd2dec(sec);
|
|
min = bcd2dec(min);
|
|
hour = bcd2dec(hour);
|
|
mday = bcd2dec(mday);
|
|
mon = bcd2dec(mon);
|
|
year = bcd2dec(year);
|
|
hour_offset = 80;
|
|
} else {
|
|
hour_offset = 0x80;
|
|
}
|
|
|
|
if ((cmos_read(0x0B) & REG_B_24H) == 0) {
|
|
if (hour >= hour_offset) {
|
|
hour -= hour_offset;
|
|
hour += 12;
|
|
}
|
|
}
|
|
|
|
ts = time(NULL);
|
|
localtime_r(&ts, &dummy);
|
|
|
|
date->tm_isdst = dummy.tm_isdst;
|
|
date->tm_sec = sec;
|
|
date->tm_min = min;
|
|
date->tm_hour = hour;
|
|
date->tm_mday = mday;
|
|
date->tm_mon = mon - 1;
|
|
date->tm_year = base_year + year - 1900;
|
|
date->tm_gmtoff = 0;
|
|
|
|
ts = mktime(date);
|
|
}
|
|
|
|
static void check_time(int wiggle)
|
|
{
|
|
struct tm start, date[4], end;
|
|
struct tm *datep;
|
|
time_t ts;
|
|
|
|
/*
|
|
* This check assumes a few things. First, we cannot guarantee that we get
|
|
* a consistent reading from the wall clock because we may hit an edge of
|
|
* the clock while reading. To work around this, we read four clock readings
|
|
* such that at least two of them should match. We need to assume that one
|
|
* reading is corrupt so we need four readings to ensure that we have at
|
|
* least two consecutive identical readings
|
|
*
|
|
* It's also possible that we'll cross an edge reading the host clock so
|
|
* simply check to make sure that the clock reading is within the period of
|
|
* when we expect it to be.
|
|
*/
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &start);
|
|
|
|
cmos_get_date_time(&date[0]);
|
|
cmos_get_date_time(&date[1]);
|
|
cmos_get_date_time(&date[2]);
|
|
cmos_get_date_time(&date[3]);
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &end);
|
|
|
|
if (tm_cmp(&date[0], &date[1]) == 0) {
|
|
datep = &date[0];
|
|
} else if (tm_cmp(&date[1], &date[2]) == 0) {
|
|
datep = &date[1];
|
|
} else if (tm_cmp(&date[2], &date[3]) == 0) {
|
|
datep = &date[2];
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
|
|
long t, s;
|
|
|
|
start.tm_isdst = datep->tm_isdst;
|
|
|
|
t = (long)mktime(datep);
|
|
s = (long)mktime(&start);
|
|
if (t < s) {
|
|
g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
|
|
} else {
|
|
g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
|
|
}
|
|
|
|
g_assert_cmpint(ABS(t - s), <=, wiggle);
|
|
}
|
|
}
|
|
|
|
static int wiggle = 2;
|
|
|
|
static void set_year_20xx(void)
|
|
{
|
|
/* Set BCD mode */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x11);
|
|
cmos_write(RTC_CENTURY, 0x20);
|
|
cmos_write(RTC_MONTH, 0x02);
|
|
cmos_write(RTC_DAY_OF_MONTH, 0x02);
|
|
cmos_write(RTC_HOURS, 0x02);
|
|
cmos_write(RTC_MINUTES, 0x04);
|
|
cmos_write(RTC_SECONDS, 0x58);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
|
|
|
|
/* Set a date in 2080 to ensure there is no year-2038 overflow. */
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x80);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
|
|
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x11);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
|
|
}
|
|
|
|
static void set_year_1980(void)
|
|
{
|
|
/* Set BCD mode */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
|
|
cmos_write(RTC_REG_A, 0x76);
|
|
cmos_write(RTC_YEAR, 0x80);
|
|
cmos_write(RTC_CENTURY, 0x19);
|
|
cmos_write(RTC_MONTH, 0x02);
|
|
cmos_write(RTC_DAY_OF_MONTH, 0x02);
|
|
cmos_write(RTC_HOURS, 0x02);
|
|
cmos_write(RTC_MINUTES, 0x04);
|
|
cmos_write(RTC_SECONDS, 0x58);
|
|
cmos_write(RTC_REG_A, 0x26);
|
|
|
|
g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
|
|
g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
|
|
g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
|
|
g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
|
|
g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
|
|
}
|
|
|
|
static void bcd_check_time(void)
|
|
{
|
|
/* Set BCD mode */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
|
|
check_time(wiggle);
|
|
}
|
|
|
|
static void dec_check_time(void)
|
|
{
|
|
/* Set DEC mode */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
|
|
check_time(wiggle);
|
|
}
|
|
|
|
static void set_alarm_time(struct tm *tm)
|
|
{
|
|
int sec;
|
|
|
|
sec = tm->tm_sec;
|
|
|
|
if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
|
|
sec = dec2bcd(sec);
|
|
}
|
|
|
|
cmos_write(RTC_SECONDS_ALARM, sec);
|
|
cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
|
|
cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
|
|
}
|
|
|
|
static void alarm_time(void)
|
|
{
|
|
struct tm now;
|
|
time_t ts;
|
|
int i;
|
|
|
|
ts = time(NULL);
|
|
gmtime_r(&ts, &now);
|
|
|
|
/* set DEC mode */
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
|
|
|
|
g_assert(!get_irq(RTC_ISA_IRQ));
|
|
cmos_read(RTC_REG_C);
|
|
|
|
now.tm_sec = (now.tm_sec + 2) % 60;
|
|
set_alarm_time(&now);
|
|
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
|
|
|
|
for (i = 0; i < 2 + wiggle; i++) {
|
|
if (get_irq(RTC_ISA_IRQ)) {
|
|
break;
|
|
}
|
|
|
|
clock_step(1000000000);
|
|
}
|
|
|
|
g_assert(get_irq(RTC_ISA_IRQ));
|
|
g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
|
|
g_assert(cmos_read(RTC_REG_C) == 0);
|
|
}
|
|
|
|
/* success if no crash or abort */
|
|
static void fuzz_registers(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
uint8_t reg, val;
|
|
|
|
reg = (uint8_t)g_test_rand_int_range(0, 16);
|
|
val = (uint8_t)g_test_rand_int_range(0, 256);
|
|
|
|
cmos_write(reg, val);
|
|
cmos_read(reg);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
QTestState *s = NULL;
|
|
int ret;
|
|
|
|
g_test_init(&argc, &argv, NULL);
|
|
|
|
s = qtest_start("-display none -rtc clock=vm");
|
|
qtest_irq_intercept_in(s, "ioapic");
|
|
|
|
qtest_add_func("/rtc/bcd/check-time", bcd_check_time);
|
|
qtest_add_func("/rtc/dec/check-time", dec_check_time);
|
|
qtest_add_func("/rtc/alarm-time", alarm_time);
|
|
qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
|
|
qtest_add_func("/rtc/set-year/1980", set_year_1980);
|
|
qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
|
|
ret = g_test_run();
|
|
|
|
if (s) {
|
|
qtest_quit(s);
|
|
}
|
|
|
|
return ret;
|
|
}
|