qemu-e2k/hw/ppc/spapr.c
Greg Kurz 332f7721cb spapr: introduce helpers to migrate HPT chunks and the end marker
This consolidates some duplicated code in a dedicated helpers.

Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2017-09-27 13:05:41 +10:00

3993 lines
127 KiB
C

/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2010 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "hw/hw.h"
#include "qemu/log.h"
#include "hw/fw-path-provider.h"
#include "elf.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/block-backend.h"
#include "sysemu/cpus.h"
#include "sysemu/hw_accel.h"
#include "kvm_ppc.h"
#include "migration/misc.h"
#include "migration/global_state.h"
#include "migration/register.h"
#include "mmu-hash64.h"
#include "mmu-book3s-v3.h"
#include "qom/cpu.h"
#include "hw/boards.h"
#include "hw/ppc/ppc.h"
#include "hw/loader.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
#include "hw/pci/msi.h"
#include "hw/pci/pci.h"
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
#include "hw/virtio/vhost-scsi-common.h"
#include "exec/address-spaces.h"
#include "hw/usb.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "hw/nmi.h"
#include "hw/intc/intc.h"
#include "hw/compat.h"
#include "qemu/cutils.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "qmp-commands.h"
#include <libfdt.h>
/* SLOF memory layout:
*
* SLOF raw image loaded at 0, copies its romfs right below the flat
* device-tree, then position SLOF itself 31M below that
*
* So we set FW_OVERHEAD to 40MB which should account for all of that
* and more
*
* We load our kernel at 4M, leaving space for SLOF initial image
*/
#define FDT_MAX_SIZE 0x100000
#define RTAS_MAX_SIZE 0x10000
#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
#define FW_MAX_SIZE 0x400000
#define FW_FILE_NAME "slof.bin"
#define FW_OVERHEAD 0x2800000
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
#define MIN_RMA_SLOF 128UL
#define PHANDLE_XICP 0x00001111
static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
const char *type_ics,
int nr_irqs, Error **errp)
{
Error *local_err = NULL;
Object *obj;
obj = object_new(type_ics);
object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
&error_abort);
object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
if (local_err) {
goto error;
}
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
goto error;
}
return ICS_SIMPLE(obj);
error:
error_propagate(errp, local_err);
return NULL;
}
static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
{
/* Dummy entries correspond to unused ICPState objects in older QEMUs,
* and newer QEMUs don't even have them. In both cases, we don't want
* to send anything on the wire.
*/
return false;
}
static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
.name = "icp/server",
.version_id = 1,
.minimum_version_id = 1,
.needed = pre_2_10_vmstate_dummy_icp_needed,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(4), /* uint32_t xirr */
VMSTATE_UNUSED(1), /* uint8_t pending_priority */
VMSTATE_UNUSED(1), /* uint8_t mfrr */
VMSTATE_END_OF_LIST()
},
};
static void pre_2_10_vmstate_register_dummy_icp(int i)
{
vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
(void *)(uintptr_t) i);
}
static void pre_2_10_vmstate_unregister_dummy_icp(int i)
{
vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
(void *)(uintptr_t) i);
}
static inline int xics_max_server_number(void)
{
return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
}
static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
if (kvm_enabled()) {
if (machine_kernel_irqchip_allowed(machine) &&
!xics_kvm_init(spapr, errp)) {
spapr->icp_type = TYPE_KVM_ICP;
spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
}
if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
error_prepend(errp, "kernel_irqchip requested but unavailable: ");
return;
}
}
if (!spapr->ics) {
xics_spapr_init(spapr);
spapr->icp_type = TYPE_ICP;
spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
if (!spapr->ics) {
return;
}
}
if (smc->pre_2_10_has_unused_icps) {
int i;
for (i = 0; i < xics_max_server_number(); i++) {
/* Dummy entries get deregistered when real ICPState objects
* are registered during CPU core hotplug.
*/
pre_2_10_vmstate_register_dummy_icp(i);
}
}
}
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
int smt_threads)
{
int i, ret = 0;
uint32_t servers_prop[smt_threads];
uint32_t gservers_prop[smt_threads * 2];
int index = spapr_vcpu_id(cpu);
if (cpu->compat_pvr) {
ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
if (ret < 0) {
return ret;
}
}
/* Build interrupt servers and gservers properties */
for (i = 0; i < smt_threads; i++) {
servers_prop[i] = cpu_to_be32(index + i);
/* Hack, direct the group queues back to cpu 0 */
gservers_prop[i*2] = cpu_to_be32(index + i);
gservers_prop[i*2 + 1] = 0;
}
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(servers_prop));
if (ret < 0) {
return ret;
}
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
gservers_prop, sizeof(gservers_prop));
return ret;
}
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
{
int index = spapr_vcpu_id(cpu);
uint32_t associativity[] = {cpu_to_be32(0x5),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(cpu->node_id),
cpu_to_be32(index)};
/* Advertise NUMA via ibm,associativity */
return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
sizeof(associativity));
}
/* Populate the "ibm,pa-features" property */
static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
bool legacy_guest)
{
uint8_t pa_features_206[] = { 6, 0,
0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
uint8_t pa_features_207[] = { 24, 0,
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
uint8_t pa_features_300[] = { 66, 0,
/* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
/* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
/* 6: DS207 */
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
/* 16: Vector */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
/* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
/* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
/* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
/* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
/* 42: PM, 44: PC RA, 46: SC vec'd */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
/* 48: SIMD, 50: QP BFP, 52: String */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
/* 54: DecFP, 56: DecI, 58: SHA */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
/* 60: NM atomic, 62: RNG */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
};
uint8_t *pa_features;
size_t pa_size;
switch (POWERPC_MMU_VER(env->mmu_model)) {
case POWERPC_MMU_VER_2_06:
pa_features = pa_features_206;
pa_size = sizeof(pa_features_206);
break;
case POWERPC_MMU_VER_2_07:
pa_features = pa_features_207;
pa_size = sizeof(pa_features_207);
break;
case POWERPC_MMU_VER_3_00:
pa_features = pa_features_300;
pa_size = sizeof(pa_features_300);
break;
default:
return;
}
if (env->ci_large_pages) {
/*
* Note: we keep CI large pages off by default because a 64K capable
* guest provisioned with large pages might otherwise try to map a qemu
* framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
* even if that qemu runs on a 4k host.
* We dd this bit back here if we are confident this is not an issue
*/
pa_features[3] |= 0x20;
}
if (kvmppc_has_cap_htm() && pa_size > 24) {
pa_features[24] |= 0x80; /* Transactional memory support */
}
if (legacy_guest && pa_size > 40) {
/* Workaround for broken kernels that attempt (guest) radix
* mode when they can't handle it, if they see the radix bit set
* in pa-features. So hide it from them. */
pa_features[40 + 2] &= ~0x80; /* Radix MMU */
}
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
{
int ret = 0, offset, cpus_offset;
CPUState *cs;
char cpu_model[32];
int smt = kvmppc_smt_threads();
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int index = spapr_vcpu_id(cpu);
int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
if ((index % smt) != 0) {
continue;
}
snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0) {
cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
"cpus");
if (cpus_offset < 0) {
return cpus_offset;
}
}
offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
if (offset < 0) {
offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
if (offset < 0) {
return offset;
}
}
ret = fdt_setprop(fdt, offset, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop));
if (ret < 0) {
return ret;
}
if (nb_numa_nodes > 1) {
ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
if (ret < 0) {
return ret;
}
}
ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
if (ret < 0) {
return ret;
}
spapr_populate_pa_features(env, fdt, offset,
spapr->cas_legacy_guest_workaround);
}
return ret;
}
static hwaddr spapr_node0_size(MachineState *machine)
{
if (nb_numa_nodes) {
int i;
for (i = 0; i < nb_numa_nodes; ++i) {
if (numa_info[i].node_mem) {
return MIN(pow2floor(numa_info[i].node_mem),
machine->ram_size);
}
}
}
return machine->ram_size;
}
static void add_str(GString *s, const gchar *s1)
{
g_string_append_len(s, s1, strlen(s1) + 1);
}
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
hwaddr size)
{
uint32_t associativity[] = {
cpu_to_be32(0x4), /* length */
cpu_to_be32(0x0), cpu_to_be32(0x0),
cpu_to_be32(0x0), cpu_to_be32(nodeid)
};
char mem_name[32];
uint64_t mem_reg_property[2];
int off;
mem_reg_property[0] = cpu_to_be64(start);
mem_reg_property[1] = cpu_to_be64(size);
sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
off = fdt_add_subnode(fdt, 0, mem_name);
_FDT(off);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
sizeof(associativity))));
return off;
}
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
hwaddr mem_start, node_size;
int i, nb_nodes = nb_numa_nodes;
NodeInfo *nodes = numa_info;
NodeInfo ramnode;
/* No NUMA nodes, assume there is just one node with whole RAM */
if (!nb_numa_nodes) {
nb_nodes = 1;
ramnode.node_mem = machine->ram_size;
nodes = &ramnode;
}
for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
if (!nodes[i].node_mem) {
continue;
}
if (mem_start >= machine->ram_size) {
node_size = 0;
} else {
node_size = nodes[i].node_mem;
if (node_size > machine->ram_size - mem_start) {
node_size = machine->ram_size - mem_start;
}
}
if (!mem_start) {
/* ppc_spapr_init() checks for rma_size <= node0_size already */
spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
mem_start += spapr->rma_size;
node_size -= spapr->rma_size;
}
for ( ; node_size; ) {
hwaddr sizetmp = pow2floor(node_size);
/* mem_start != 0 here */
if (ctzl(mem_start) < ctzl(sizetmp)) {
sizetmp = 1ULL << ctzl(mem_start);
}
spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
node_size -= sizetmp;
mem_start += sizetmp;
}
}
return 0;
}
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
sPAPRMachineState *spapr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
int index = spapr_vcpu_id(cpu);
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
: SPAPR_TIMEBASE_FREQ;
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
uint32_t page_sizes_prop[64];
size_t page_sizes_prop_size;
uint32_t vcpus_per_socket = smp_threads * smp_cores;
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
sPAPRDRConnector *drc;
int drc_index;
uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
int i;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
if (drc) {
drc_index = spapr_drc_index(drc);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
}
_FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
env->icache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
env->icache_line_size)));
if (pcc->l1_dcache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
pcc->l1_dcache_size)));
} else {
warn_report("Unknown L1 dcache size for cpu");
}
if (pcc->l1_icache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
pcc->l1_icache_size)));
} else {
warn_report("Unknown L1 icache size for cpu");
}
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
_FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
if (env->spr_cb[SPR_PURR].oea_read) {
_FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
}
if (env->mmu_model & POWERPC_MMU_1TSEG) {
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/* Advertise VMX/VSX (vector extensions) if available
* 0 / no property == no vector extensions
* 1 == VMX / Altivec available
* 2 == VSX available */
if (env->insns_flags & PPC_ALTIVEC) {
uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
}
/* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available */
if (env->insns_flags2 & PPC2_DFP) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
}
page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
sizeof(page_sizes_prop));
if (page_sizes_prop_size) {
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
page_sizes_prop, page_sizes_prop_size)));
}
spapr_populate_pa_features(env, fdt, offset, false);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
cs->cpu_index / vcpus_per_socket)));
_FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop))));
if (nb_numa_nodes > 1) {
_FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
}
_FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
if (pcc->radix_page_info) {
for (i = 0; i < pcc->radix_page_info->count; i++) {
radix_AP_encodings[i] =
cpu_to_be32(pcc->radix_page_info->entries[i]);
}
_FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
radix_AP_encodings,
pcc->radix_page_info->count *
sizeof(radix_AP_encodings[0]))));
}
}
static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
CPUState *cs;
int cpus_offset;
char *nodename;
int smt = kvmppc_smt_threads();
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
_FDT(cpus_offset);
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
/*
* We walk the CPUs in reverse order to ensure that CPU DT nodes
* created by fdt_add_subnode() end up in the right order in FDT
* for the guest kernel the enumerate the CPUs correctly.
*/
CPU_FOREACH_REVERSE(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
int index = spapr_vcpu_id(cpu);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int offset;
if ((index % smt) != 0) {
continue;
}
nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
g_free(nodename);
_FDT(offset);
spapr_populate_cpu_dt(cs, fdt, offset, spapr);
}
}
/*
* Adds ibm,dynamic-reconfiguration-memory node.
* Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
* of this device tree node.
*/
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
int ret, i, offset;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
uint32_t nr_lmbs = (spapr->hotplug_memory.base +
memory_region_size(&spapr->hotplug_memory.mr)) /
lmb_size;
uint32_t *int_buf, *cur_index, buf_len;
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
/*
* Don't create the node if there is no hotpluggable memory
*/
if (machine->ram_size == machine->maxram_size) {
return 0;
}
/*
* Allocate enough buffer size to fit in ibm,dynamic-memory
* or ibm,associativity-lookup-arrays
*/
buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
* sizeof(uint32_t);
cur_index = int_buf = g_malloc0(buf_len);
offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
sizeof(prop_lmb_size));
if (ret < 0) {
goto out;
}
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
if (ret < 0) {
goto out;
}
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
if (ret < 0) {
goto out;
}
/* ibm,dynamic-memory */
int_buf[0] = cpu_to_be32(nr_lmbs);
cur_index++;
for (i = 0; i < nr_lmbs; i++) {
uint64_t addr = i * lmb_size;
uint32_t *dynamic_memory = cur_index;
if (i >= hotplug_lmb_start) {
sPAPRDRConnector *drc;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
g_assert(drc);
dynamic_memory[0] = cpu_to_be32(addr >> 32);
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
if (memory_region_present(get_system_memory(), addr)) {
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
} else {
dynamic_memory[5] = cpu_to_be32(0);
}
} else {
/*
* LMB information for RMA, boot time RAM and gap b/n RAM and
* hotplug memory region -- all these are marked as reserved
* and as having no valid DRC.
*/
dynamic_memory[0] = cpu_to_be32(addr >> 32);
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
dynamic_memory[2] = cpu_to_be32(0);
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
dynamic_memory[4] = cpu_to_be32(-1);
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
SPAPR_LMB_FLAGS_DRC_INVALID);
}
cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
}
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
if (ret < 0) {
goto out;
}
/* ibm,associativity-lookup-arrays */
cur_index = int_buf;
int_buf[0] = cpu_to_be32(nr_nodes);
int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
cur_index += 2;
for (i = 0; i < nr_nodes; i++) {
uint32_t associativity[] = {
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(i)
};
memcpy(cur_index, associativity, sizeof(associativity));
cur_index += 4;
}
ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
(cur_index - int_buf) * sizeof(uint32_t));
out:
g_free(int_buf);
return ret;
}
static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
sPAPROptionVector *ov5_updates)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
int ret = 0, offset;
/* Generate ibm,dynamic-reconfiguration-memory node if required */
if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
g_assert(smc->dr_lmb_enabled);
ret = spapr_populate_drconf_memory(spapr, fdt);
if (ret) {
goto out;
}
}
offset = fdt_path_offset(fdt, "/chosen");
if (offset < 0) {
offset = fdt_add_subnode(fdt, 0, "chosen");
if (offset < 0) {
return offset;
}
}
ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
"ibm,architecture-vec-5");
out:
return ret;
}
static bool spapr_hotplugged_dev_before_cas(void)
{
Object *drc_container, *obj;
ObjectProperty *prop;
ObjectPropertyIterator iter;
drc_container = container_get(object_get_root(), "/dr-connector");
object_property_iter_init(&iter, drc_container);
while ((prop = object_property_iter_next(&iter))) {
if (!strstart(prop->type, "link<", NULL)) {
continue;
}
obj = object_property_get_link(drc_container, prop->name, NULL);
if (spapr_drc_needed(obj)) {
return true;
}
}
return false;
}
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
target_ulong addr, target_ulong size,
sPAPROptionVector *ov5_updates)
{
void *fdt, *fdt_skel;
sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
if (spapr_hotplugged_dev_before_cas()) {
return 1;
}
size -= sizeof(hdr);
/* Create skeleton */
fdt_skel = g_malloc0(size);
_FDT((fdt_create(fdt_skel, size)));
_FDT((fdt_begin_node(fdt_skel, "")));
_FDT((fdt_end_node(fdt_skel)));
_FDT((fdt_finish(fdt_skel)));
fdt = g_malloc0(size);
_FDT((fdt_open_into(fdt_skel, fdt, size)));
g_free(fdt_skel);
/* Fixup cpu nodes */
_FDT((spapr_fixup_cpu_dt(fdt, spapr)));
if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
return -1;
}
/* Pack resulting tree */
_FDT((fdt_pack(fdt)));
if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
trace_spapr_cas_failed(size);
return -1;
}
cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
g_free(fdt);
return 0;
}
static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
{
int rtas;
GString *hypertas = g_string_sized_new(256);
GString *qemu_hypertas = g_string_sized_new(256);
uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
memory_region_size(&spapr->hotplug_memory.mr);
uint32_t lrdr_capacity[] = {
cpu_to_be32(max_hotplug_addr >> 32),
cpu_to_be32(max_hotplug_addr & 0xffffffff),
0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
cpu_to_be32(max_cpus / smp_threads),
};
_FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
/* hypertas */
add_str(hypertas, "hcall-pft");
add_str(hypertas, "hcall-term");
add_str(hypertas, "hcall-dabr");
add_str(hypertas, "hcall-interrupt");
add_str(hypertas, "hcall-tce");
add_str(hypertas, "hcall-vio");
add_str(hypertas, "hcall-splpar");
add_str(hypertas, "hcall-bulk");
add_str(hypertas, "hcall-set-mode");
add_str(hypertas, "hcall-sprg0");
add_str(hypertas, "hcall-copy");
add_str(hypertas, "hcall-debug");
add_str(qemu_hypertas, "hcall-memop1");
if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
add_str(hypertas, "hcall-multi-tce");
}
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
add_str(hypertas, "hcall-hpt-resize");
}
_FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
hypertas->str, hypertas->len));
g_string_free(hypertas, TRUE);
_FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
qemu_hypertas->str, qemu_hypertas->len));
g_string_free(qemu_hypertas, TRUE);
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
refpoints, sizeof(refpoints)));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
RTAS_ERROR_LOG_MAX));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
RTAS_EVENT_SCAN_RATE));
if (msi_nonbroken) {
_FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
}
/*
* According to PAPR, rtas ibm,os-term does not guarantee a return
* back to the guest cpu.
*
* While an additional ibm,extended-os-term property indicates
* that rtas call return will always occur. Set this property.
*/
_FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
_FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
lrdr_capacity, sizeof(lrdr_capacity)));
spapr_dt_rtas_tokens(fdt, rtas);
}
/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
* that the guest may request and thus the valid values for bytes 24..26 of
* option vector 5: */
static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
{
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
char val[2 * 4] = {
23, 0x00, /* Xive mode, filled in below. */
24, 0x00, /* Hash/Radix, filled in below. */
25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
26, 0x40, /* Radix options: GTSE == yes. */
};
if (kvm_enabled()) {
if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
val[3] = 0x80; /* OV5_MMU_BOTH */
} else if (kvmppc_has_cap_mmu_radix()) {
val[3] = 0x40; /* OV5_MMU_RADIX_300 */
} else {
val[3] = 0x00; /* Hash */
}
} else {
if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
/* V3 MMU supports both hash and radix (with dynamic switching) */
val[3] = 0xC0;
} else {
/* Otherwise we can only do hash */
val[3] = 0x00;
}
}
_FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
val, sizeof(val)));
}
static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
int chosen;
const char *boot_device = machine->boot_order;
char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
size_t cb = 0;
char *bootlist = get_boot_devices_list(&cb, true);
_FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
_FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
spapr->initrd_base));
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
spapr->initrd_base + spapr->initrd_size));
if (spapr->kernel_size) {
uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
cpu_to_be64(spapr->kernel_size) };
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
&kprop, sizeof(kprop)));
if (spapr->kernel_le) {
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
}
}
if (boot_menu) {
_FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
}
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
if (cb && bootlist) {
int i;
for (i = 0; i < cb; i++) {
if (bootlist[i] == '\n') {
bootlist[i] = ' ';
}
}
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
}
if (boot_device && strlen(boot_device)) {
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
}
if (!spapr->has_graphics && stdout_path) {
_FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
}
spapr_dt_ov5_platform_support(fdt, chosen);
g_free(stdout_path);
g_free(bootlist);
}
static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
{
/* The /hypervisor node isn't in PAPR - this is a hack to allow PR
* KVM to work under pHyp with some guest co-operation */
int hypervisor;
uint8_t hypercall[16];
_FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
/* indicate KVM hypercall interface */
_FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
if (kvmppc_has_cap_fixup_hcalls()) {
/*
* Older KVM versions with older guest kernels were broken
* with the magic page, don't allow the guest to map it.
*/
if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
sizeof(hypercall))) {
_FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
hypercall, sizeof(hypercall)));
}
}
}
static void *spapr_build_fdt(sPAPRMachineState *spapr,
hwaddr rtas_addr,
hwaddr rtas_size)
{
MachineState *machine = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(machine);
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
int ret;
void *fdt;
sPAPRPHBState *phb;
char *buf;
fdt = g_malloc0(FDT_MAX_SIZE);
_FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
/* Root node */
_FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
_FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
_FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
/*
* Add info to guest to indentify which host is it being run on
* and what is the uuid of the guest
*/
if (kvmppc_get_host_model(&buf)) {
_FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
g_free(buf);
}
if (kvmppc_get_host_serial(&buf)) {
_FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
g_free(buf);
}
buf = qemu_uuid_unparse_strdup(&qemu_uuid);
_FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
if (qemu_uuid_set) {
_FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
}
g_free(buf);
if (qemu_get_vm_name()) {
_FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
qemu_get_vm_name()));
}
_FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
_FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
/* /interrupt controller */
spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
ret = spapr_populate_memory(spapr, fdt);
if (ret < 0) {
error_report("couldn't setup memory nodes in fdt");
exit(1);
}
/* /vdevice */
spapr_dt_vdevice(spapr->vio_bus, fdt);
if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
ret = spapr_rng_populate_dt(fdt);
if (ret < 0) {
error_report("could not set up rng device in the fdt");
exit(1);
}
}
QLIST_FOREACH(phb, &spapr->phbs, list) {
ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
if (ret < 0) {
error_report("couldn't setup PCI devices in fdt");
exit(1);
}
}
/* cpus */
spapr_populate_cpus_dt_node(fdt, spapr);
if (smc->dr_lmb_enabled) {
_FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
}
if (mc->has_hotpluggable_cpus) {
int offset = fdt_path_offset(fdt, "/cpus");
ret = spapr_drc_populate_dt(fdt, offset, NULL,
SPAPR_DR_CONNECTOR_TYPE_CPU);
if (ret < 0) {
error_report("Couldn't set up CPU DR device tree properties");
exit(1);
}
}
/* /event-sources */
spapr_dt_events(spapr, fdt);
/* /rtas */
spapr_dt_rtas(spapr, fdt);
/* /chosen */
spapr_dt_chosen(spapr, fdt);
/* /hypervisor */
if (kvm_enabled()) {
spapr_dt_hypervisor(spapr, fdt);
}
/* Build memory reserve map */
if (spapr->kernel_size) {
_FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
}
if (spapr->initrd_size) {
_FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
}
/* ibm,client-architecture-support updates */
ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
if (ret < 0) {
error_report("couldn't setup CAS properties fdt");
exit(1);
}
return fdt;
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
/* The TCG path should also be holding the BQL at this point */
g_assert(qemu_mutex_iothread_locked());
if (msr_pr) {
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
env->gpr[3] = H_PRIVILEGE;
} else {
env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
}
}
static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
return spapr->patb_entry;
}
#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
/*
* Get the fd to access the kernel htab, re-opening it if necessary
*/
static int get_htab_fd(sPAPRMachineState *spapr)
{
Error *local_err = NULL;
if (spapr->htab_fd >= 0) {
return spapr->htab_fd;
}
spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
if (spapr->htab_fd < 0) {
error_report_err(local_err);
}
return spapr->htab_fd;
}
void close_htab_fd(sPAPRMachineState *spapr)
{
if (spapr->htab_fd >= 0) {
close(spapr->htab_fd);
}
spapr->htab_fd = -1;
}
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
}
static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
hwaddr ptex, int n)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
if (!spapr->htab) {
/*
* HTAB is controlled by KVM. Fetch into temporary buffer
*/
ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
kvmppc_read_hptes(hptes, ptex, n);
return hptes;
}
/*
* HTAB is controlled by QEMU. Just point to the internally
* accessible PTEG.
*/
return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
}
static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
const ppc_hash_pte64_t *hptes,
hwaddr ptex, int n)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
g_free((void *)hptes);
}
/* Nothing to do for qemu managed HPT */
}
static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
uint64_t pte0, uint64_t pte1)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
hwaddr offset = ptex * HASH_PTE_SIZE_64;
if (!spapr->htab) {
kvmppc_write_hpte(ptex, pte0, pte1);
} else {
stq_p(spapr->htab + offset, pte0);
stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
}
}
int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
int shift;
/* We aim for a hash table of size 1/128 the size of RAM (rounded
* up). The PAPR recommendation is actually 1/64 of RAM size, but
* that's much more than is needed for Linux guests */
shift = ctz64(pow2ceil(ramsize)) - 7;
shift = MAX(shift, 18); /* Minimum architected size */
shift = MIN(shift, 46); /* Maximum architected size */
return shift;
}
void spapr_free_hpt(sPAPRMachineState *spapr)
{
g_free(spapr->htab);
spapr->htab = NULL;
spapr->htab_shift = 0;
close_htab_fd(spapr);
}
void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
Error **errp)
{
long rc;
/* Clean up any HPT info from a previous boot */
spapr_free_hpt(spapr);
rc = kvmppc_reset_htab(shift);
if (rc < 0) {
/* kernel-side HPT needed, but couldn't allocate one */
error_setg_errno(errp, errno,
"Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
shift);
/* This is almost certainly fatal, but if the caller really
* wants to carry on with shift == 0, it's welcome to try */
} else if (rc > 0) {
/* kernel-side HPT allocated */
if (rc != shift) {
error_setg(errp,
"Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
shift, rc);
}
spapr->htab_shift = shift;
spapr->htab = NULL;
} else {
/* kernel-side HPT not needed, allocate in userspace instead */
size_t size = 1ULL << shift;
int i;
spapr->htab = qemu_memalign(size, size);
if (!spapr->htab) {
error_setg_errno(errp, errno,
"Could not allocate HPT of order %d", shift);
return;
}
memset(spapr->htab, 0, size);
spapr->htab_shift = shift;
for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
DIRTY_HPTE(HPTE(spapr->htab, i));
}
}
}
void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
{
int hpt_shift;
if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
|| (spapr->cas_reboot
&& !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
} else {
hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
}
spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
if (spapr->vrma_adjust) {
spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
spapr->htab_shift);
}
/* We're setting up a hash table, so that means we're not radix */
spapr->patb_entry = 0;
}
static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
bool matched = false;
if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
matched = true;
}
if (!matched) {
error_report("Device %s is not supported by this machine yet.",
qdev_fw_name(DEVICE(sbdev)));
exit(1);
}
}
static void ppc_spapr_reset(void)
{
MachineState *machine = MACHINE(qdev_get_machine());
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
PowerPCCPU *first_ppc_cpu;
uint32_t rtas_limit;
hwaddr rtas_addr, fdt_addr;
void *fdt;
int rc;
/* Check for unknown sysbus devices */
foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
/* If using KVM with radix mode available, VCPUs can be started
* without a HPT because KVM will start them in radix mode.
* Set the GR bit in PATB so that we know there is no HPT. */
spapr->patb_entry = PATBE1_GR;
} else {
spapr_setup_hpt_and_vrma(spapr);
}
qemu_devices_reset();
spapr_clear_pending_events(spapr);
/*
* We place the device tree and RTAS just below either the top of the RMA,
* or just below 2GB, whichever is lowere, so that it can be
* processed with 32-bit real mode code if necessary
*/
rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
rtas_addr = rtas_limit - RTAS_MAX_SIZE;
fdt_addr = rtas_addr - FDT_MAX_SIZE;
/* if this reset wasn't generated by CAS, we should reset our
* negotiated options and start from scratch */
if (!spapr->cas_reboot) {
spapr_ovec_cleanup(spapr->ov5_cas);
spapr->ov5_cas = spapr_ovec_new();
ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
}
fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
spapr_load_rtas(spapr, fdt, rtas_addr);
rc = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
assert(rc == 0);
if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
fdt_totalsize(fdt), FDT_MAX_SIZE);
exit(1);
}
/* Load the fdt */
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
g_free(fdt);
/* Set up the entry state */
first_ppc_cpu = POWERPC_CPU(first_cpu);
first_ppc_cpu->env.gpr[3] = fdt_addr;
first_ppc_cpu->env.gpr[5] = 0;
first_cpu->halted = 0;
first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
spapr->cas_reboot = false;
}
static void spapr_create_nvram(sPAPRMachineState *spapr)
{
DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
}
qdev_init_nofail(dev);
spapr->nvram = (struct sPAPRNVRAM *)dev;
}
static void spapr_rtc_create(sPAPRMachineState *spapr)
{
object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
&error_fatal);
object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
&error_fatal);
object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
"date", &error_fatal);
}
/* Returns whether we want to use VGA or not */
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
{
switch (vga_interface_type) {
case VGA_NONE:
return false;
case VGA_DEVICE:
return true;
case VGA_STD:
case VGA_VIRTIO:
return pci_vga_init(pci_bus) != NULL;
default:
error_setg(errp,
"Unsupported VGA mode, only -vga std or -vga virtio is supported");
return false;
}
}
static int spapr_post_load(void *opaque, int version_id)
{
sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
int err = 0;
if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
icp_resend(ICP(cpu->intc));
}
}
/* In earlier versions, there was no separate qdev for the PAPR
* RTC, so the RTC offset was stored directly in sPAPREnvironment.
* So when migrating from those versions, poke the incoming offset
* value into the RTC device */
if (version_id < 3) {
err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
}
if (spapr->patb_entry) {
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
bool radix = !!(spapr->patb_entry & PATBE1_GR);
bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
if (err) {
error_report("Process table config unsupported by the host");
return -EINVAL;
}
}
return err;
}
static bool version_before_3(void *opaque, int version_id)
{
return version_id < 3;
}
static bool spapr_pending_events_needed(void *opaque)
{
sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
return !QTAILQ_EMPTY(&spapr->pending_events);
}
static const VMStateDescription vmstate_spapr_event_entry = {
.name = "spapr_event_log_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(summary, sPAPREventLogEntry),
VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
NULL, extended_length),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_pending_events = {
.name = "spapr_pending_events",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_pending_events_needed,
.fields = (VMStateField[]) {
VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
vmstate_spapr_event_entry, sPAPREventLogEntry, next),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_ov5_cas_needed(void *opaque)
{
sPAPRMachineState *spapr = opaque;
sPAPROptionVector *ov5_mask = spapr_ovec_new();
sPAPROptionVector *ov5_legacy = spapr_ovec_new();
sPAPROptionVector *ov5_removed = spapr_ovec_new();
bool cas_needed;
/* Prior to the introduction of sPAPROptionVector, we had two option
* vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
* Both of these options encode machine topology into the device-tree
* in such a way that the now-booted OS should still be able to interact
* appropriately with QEMU regardless of what options were actually
* negotiatied on the source side.
*
* As such, we can avoid migrating the CAS-negotiated options if these
* are the only options available on the current machine/platform.
* Since these are the only options available for pseries-2.7 and
* earlier, this allows us to maintain old->new/new->old migration
* compatibility.
*
* For QEMU 2.8+, there are additional CAS-negotiatable options available
* via default pseries-2.8 machines and explicit command-line parameters.
* Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
* of the actual CAS-negotiated values to continue working properly. For
* example, availability of memory unplug depends on knowing whether
* OV5_HP_EVT was negotiated via CAS.
*
* Thus, for any cases where the set of available CAS-negotiatable
* options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
* include the CAS-negotiated options in the migration stream.
*/
spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
/* spapr_ovec_diff returns true if bits were removed. we avoid using
* the mask itself since in the future it's possible "legacy" bits may be
* removed via machine options, which could generate a false positive
* that breaks migration.
*/
spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
spapr_ovec_cleanup(ov5_mask);
spapr_ovec_cleanup(ov5_legacy);
spapr_ovec_cleanup(ov5_removed);
return cas_needed;
}
static const VMStateDescription vmstate_spapr_ov5_cas = {
.name = "spapr_option_vector_ov5_cas",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_ov5_cas_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
vmstate_spapr_ovec, sPAPROptionVector),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_patb_entry_needed(void *opaque)
{
sPAPRMachineState *spapr = opaque;
return !!spapr->patb_entry;
}
static const VMStateDescription vmstate_spapr_patb_entry = {
.name = "spapr_patb_entry",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_patb_entry_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(patb_entry, sPAPRMachineState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr = {
.name = "spapr",
.version_id = 3,
.minimum_version_id = 1,
.post_load = spapr_post_load,
.fields = (VMStateField[]) {
/* used to be @next_irq */
VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
/* RTC offset */
VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_spapr_ov5_cas,
&vmstate_spapr_patb_entry,
&vmstate_spapr_pending_events,
NULL
}
};
static int htab_save_setup(QEMUFile *f, void *opaque)
{
sPAPRMachineState *spapr = opaque;
/* "Iteration" header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
} else {
qemu_put_be32(f, spapr->htab_shift);
}
if (spapr->htab) {
spapr->htab_save_index = 0;
spapr->htab_first_pass = true;
} else {
if (spapr->htab_shift) {
assert(kvm_enabled());
}
}
return 0;
}
static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
int chunkstart, int n_valid, int n_invalid)
{
qemu_put_be32(f, chunkstart);
qemu_put_be16(f, n_valid);
qemu_put_be16(f, n_invalid);
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
HASH_PTE_SIZE_64 * n_valid);
}
static void htab_save_end_marker(QEMUFile *f)
{
qemu_put_be32(f, 0);
qemu_put_be16(f, 0);
qemu_put_be16(f, 0);
}
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
int64_t max_ns)
{
bool has_timeout = max_ns != -1;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(spapr->htab_first_pass);
do {
int chunkstart;
/* Consume invalid HPTEs */
while ((index < htabslots)
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
}
/* Consume valid HPTEs */
chunkstart = index;
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
}
if (index > chunkstart) {
int n_valid = index - chunkstart;
htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
if (has_timeout &&
(qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
} while ((index < htabslots) && !qemu_file_rate_limit(f));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
spapr->htab_first_pass = false;
}
spapr->htab_save_index = index;
}
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
int64_t max_ns)
{
bool final = max_ns < 0;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int examined = 0, sent = 0;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(!spapr->htab_first_pass);
do {
int chunkstart, invalidstart;
/* Consume non-dirty HPTEs */
while ((index < htabslots)
&& !HPTE_DIRTY(HPTE(spapr->htab, index))) {
index++;
examined++;
}
chunkstart = index;
/* Consume valid dirty HPTEs */
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
invalidstart = index;
/* Consume invalid dirty HPTEs */
while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
if (index > chunkstart) {
int n_valid = invalidstart - chunkstart;
int n_invalid = index - invalidstart;
htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
sent += index - chunkstart;
if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
if (examined >= htabslots) {
break;
}
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
} while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
spapr->htab_save_index = index;
return (examined >= htabslots) && (sent == 0) ? 1 : 0;
}
#define MAX_ITERATION_NS 5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE 2048
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
sPAPRMachineState *spapr = opaque;
int fd;
int rc = 0;
/* Iteration header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
return 1;
} else {
qemu_put_be32(f, 0);
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = get_htab_fd(spapr);
if (fd < 0) {
return fd;
}
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
if (rc < 0) {
return rc;
}
} else if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
} else {
rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
}
htab_save_end_marker(f);
return rc;
}
static int htab_save_complete(QEMUFile *f, void *opaque)
{
sPAPRMachineState *spapr = opaque;
int fd;
/* Iteration header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
return 0;
} else {
qemu_put_be32(f, 0);
}
if (!spapr->htab) {
int rc;
assert(kvm_enabled());
fd = get_htab_fd(spapr);
if (fd < 0) {
return fd;
}
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
if (rc < 0) {
return rc;
}
} else {
if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, -1);
}
htab_save_later_pass(f, spapr, -1);
}
/* End marker */
htab_save_end_marker(f);
return 0;
}
static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
sPAPRMachineState *spapr = opaque;
uint32_t section_hdr;
int fd = -1;
Error *local_err = NULL;
if (version_id < 1 || version_id > 1) {
error_report("htab_load() bad version");
return -EINVAL;
}
section_hdr = qemu_get_be32(f);
if (section_hdr == -1) {
spapr_free_hpt(spapr);
return 0;
}
if (section_hdr) {
/* First section gives the htab size */
spapr_reallocate_hpt(spapr, section_hdr, &local_err);
if (local_err) {
error_report_err(local_err);
return -EINVAL;
}
return 0;
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = kvmppc_get_htab_fd(true, 0, &local_err);
if (fd < 0) {
error_report_err(local_err);
return fd;
}
}
while (true) {
uint32_t index;
uint16_t n_valid, n_invalid;
index = qemu_get_be32(f);
n_valid = qemu_get_be16(f);
n_invalid = qemu_get_be16(f);
if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
/* End of Stream */
break;
}
if ((index + n_valid + n_invalid) >
(HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
/* Bad index in stream */
error_report(
"htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
index, n_valid, n_invalid, spapr->htab_shift);
return -EINVAL;
}
if (spapr->htab) {
if (n_valid) {
qemu_get_buffer(f, HPTE(spapr->htab, index),
HASH_PTE_SIZE_64 * n_valid);
}
if (n_invalid) {
memset(HPTE(spapr->htab, index + n_valid), 0,
HASH_PTE_SIZE_64 * n_invalid);
}
} else {
int rc;
assert(fd >= 0);
rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
if (rc < 0) {
return rc;
}
}
}
if (!spapr->htab) {
assert(fd >= 0);
close(fd);
}
return 0;
}
static void htab_save_cleanup(void *opaque)
{
sPAPRMachineState *spapr = opaque;
close_htab_fd(spapr);
}
static SaveVMHandlers savevm_htab_handlers = {
.save_setup = htab_save_setup,
.save_live_iterate = htab_save_iterate,
.save_live_complete_precopy = htab_save_complete,
.save_cleanup = htab_save_cleanup,
.load_state = htab_load,
};
static void spapr_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
MachineState *machine = MACHINE(opaque);
machine->boot_order = g_strdup(boot_device);
}
static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
int i;
for (i = 0; i < nr_lmbs; i++) {
uint64_t addr;
addr = i * lmb_size + spapr->hotplug_memory.base;
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
addr / lmb_size);
}
}
/*
* If RAM size, maxmem size and individual node mem sizes aren't aligned
* to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
* since we can't support such unaligned sizes with DRCONF_MEMORY.
*/
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
{
int i;
if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
" is not aligned to %llu MiB",
machine->ram_size,
SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
return;
}
if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
" is not aligned to %llu MiB",
machine->ram_size,
SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
return;
}
for (i = 0; i < nb_numa_nodes; i++) {
if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp,
"Node %d memory size 0x%" PRIx64
" is not aligned to %llu MiB",
i, numa_info[i].node_mem,
SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
return;
}
}
}
/* find cpu slot in machine->possible_cpus by core_id */
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
int index = id / smp_threads;
if (index >= ms->possible_cpus->len) {
return NULL;
}
if (idx) {
*idx = index;
}
return &ms->possible_cpus->cpus[index];
}
static void spapr_init_cpus(sPAPRMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(machine);
char *type = spapr_get_cpu_core_type(machine->cpu_model);
int smt = kvmppc_smt_threads();
const CPUArchIdList *possible_cpus;
int boot_cores_nr = smp_cpus / smp_threads;
int i;
if (!type) {
error_report("Unable to find sPAPR CPU Core definition");
exit(1);
}
possible_cpus = mc->possible_cpu_arch_ids(machine);
if (mc->has_hotpluggable_cpus) {
if (smp_cpus % smp_threads) {
error_report("smp_cpus (%u) must be multiple of threads (%u)",
smp_cpus, smp_threads);
exit(1);
}
if (max_cpus % smp_threads) {
error_report("max_cpus (%u) must be multiple of threads (%u)",
max_cpus, smp_threads);
exit(1);
}
} else {
if (max_cpus != smp_cpus) {
error_report("This machine version does not support CPU hotplug");
exit(1);
}
boot_cores_nr = possible_cpus->len;
}
for (i = 0; i < possible_cpus->len; i++) {
int core_id = i * smp_threads;
if (mc->has_hotpluggable_cpus) {
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
(core_id / smp_threads) * smt);
}
if (i < boot_cores_nr) {
Object *core = object_new(type);
int nr_threads = smp_threads;
/* Handle the partially filled core for older machine types */
if ((i + 1) * smp_threads >= smp_cpus) {
nr_threads = smp_cpus - i * smp_threads;
}
object_property_set_int(core, nr_threads, "nr-threads",
&error_fatal);
object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
&error_fatal);
object_property_set_bool(core, true, "realized", &error_fatal);
}
}
g_free(type);
}
static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
{
Error *local_err = NULL;
bool vsmt_user = !!spapr->vsmt;
int kvm_smt = kvmppc_smt_threads();
int ret;
if (!kvm_enabled() && (smp_threads > 1)) {
error_setg(&local_err, "TCG cannot support more than 1 thread/core "
"on a pseries machine");
goto out;
}
if (!is_power_of_2(smp_threads)) {
error_setg(&local_err, "Cannot support %d threads/core on a pseries "
"machine because it must be a power of 2", smp_threads);
goto out;
}
/* Detemine the VSMT mode to use: */
if (vsmt_user) {
if (spapr->vsmt < smp_threads) {
error_setg(&local_err, "Cannot support VSMT mode %d"
" because it must be >= threads/core (%d)",
spapr->vsmt, smp_threads);
goto out;
}
/* In this case, spapr->vsmt has been set by the command line */
} else {
/* Choose a VSMT mode that may be higher than necessary but is
* likely to be compatible with hosts that don't have VSMT. */
spapr->vsmt = MAX(kvm_smt, smp_threads);
}
/* KVM: If necessary, set the SMT mode: */
if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
ret = kvmppc_set_smt_threads(spapr->vsmt);
if (ret) {
error_setg(&local_err,
"Failed to set KVM's VSMT mode to %d (errno %d)",
spapr->vsmt, ret);
if (!vsmt_user) {
error_append_hint(&local_err, "On PPC, a VM with %d threads/"
"core on a host with %d threads/core requires "
" the use of VSMT mode %d.\n",
smp_threads, kvm_smt, spapr->vsmt);
}
kvmppc_hint_smt_possible(&local_err);
goto out;
}
}
/* else TCG: nothing to do currently */
out:
error_propagate(errp, local_err);
}
/* pSeries LPAR / sPAPR hardware init */
static void ppc_spapr_init(MachineState *machine)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
PCIHostState *phb;
int i;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *rma_region;
void *rma = NULL;
hwaddr rma_alloc_size;
hwaddr node0_size = spapr_node0_size(machine);
long load_limit, fw_size;
char *filename;
Error *resize_hpt_err = NULL;
msi_nonbroken = true;
QLIST_INIT(&spapr->phbs);
QTAILQ_INIT(&spapr->pending_dimm_unplugs);
/* Check HPT resizing availability */
kvmppc_check_papr_resize_hpt(&resize_hpt_err);
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
/*
* If the user explicitly requested a mode we should either
* supply it, or fail completely (which we do below). But if
* it's not set explicitly, we reset our mode to something
* that works
*/
if (resize_hpt_err) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
error_free(resize_hpt_err);
resize_hpt_err = NULL;
} else {
spapr->resize_hpt = smc->resize_hpt_default;
}
}
assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
/*
* User requested HPT resize, but this host can't supply it. Bail out
*/
error_report_err(resize_hpt_err);
exit(1);
}
/* Allocate RMA if necessary */
rma_alloc_size = kvmppc_alloc_rma(&rma);
if (rma_alloc_size == -1) {
error_report("Unable to create RMA");
exit(1);
}
if (rma_alloc_size && (rma_alloc_size < node0_size)) {
spapr->rma_size = rma_alloc_size;
} else {
spapr->rma_size = node0_size;
/* With KVM, we don't actually know whether KVM supports an
* unbounded RMA (PR KVM) or is limited by the hash table size
* (HV KVM using VRMA), so we always assume the latter
*
* In that case, we also limit the initial allocations for RTAS
* etc... to 256M since we have no way to know what the VRMA size
* is going to be as it depends on the size of the hash table
* isn't determined yet.
*/
if (kvm_enabled()) {
spapr->vrma_adjust = 1;
spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
}
/* Actually we don't support unbounded RMA anymore since we
* added proper emulation of HV mode. The max we can get is
* 16G which also happens to be what we configure for PAPR
* mode so make sure we don't do anything bigger than that
*/
spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
}
if (spapr->rma_size > node0_size) {
error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
spapr->rma_size);
exit(1);
}
/* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
/* Set up Interrupt Controller before we create the VCPUs */
xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
/* Set up containers for ibm,client-set-architecture negotiated options */
spapr->ov5 = spapr_ovec_new();
spapr->ov5_cas = spapr_ovec_new();
if (smc->dr_lmb_enabled) {
spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
spapr_validate_node_memory(machine, &error_fatal);
}
spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
/* KVM and TCG always allow GTSE with radix... */
spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
}
/* ... but not with hash (currently). */
/* advertise support for dedicated HP event source to guests */
if (spapr->use_hotplug_event_source) {
spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
}
/* advertise support for HPT resizing */
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
}
/* init CPUs */
if (machine->cpu_model == NULL) {
machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
}
spapr_cpu_parse_features(spapr);
spapr_set_vsmt_mode(spapr, &error_fatal);
spapr_init_cpus(spapr);
if (kvm_enabled()) {
/* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
kvmppc_enable_logical_ci_hcalls();
kvmppc_enable_set_mode_hcall();
/* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
kvmppc_enable_clear_ref_mod_hcalls();
}
/* allocate RAM */
memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, 0, ram);
if (rma_alloc_size && rma) {
rma_region = g_new(MemoryRegion, 1);
memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
rma_alloc_size, rma);
vmstate_register_ram_global(rma_region);
memory_region_add_subregion(sysmem, 0, rma_region);
}
/* initialize hotplug memory address space */
if (machine->ram_size < machine->maxram_size) {
ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
/*
* Limit the number of hotpluggable memory slots to half the number
* slots that KVM supports, leaving the other half for PCI and other
* devices. However ensure that number of slots doesn't drop below 32.
*/
int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
SPAPR_MAX_RAM_SLOTS;
if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
max_memslots = SPAPR_MAX_RAM_SLOTS;
}
if (machine->ram_slots > max_memslots) {
error_report("Specified number of memory slots %"
PRIu64" exceeds max supported %d",
machine->ram_slots, max_memslots);
exit(1);
}
spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
SPAPR_HOTPLUG_MEM_ALIGN);
memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
"hotplug-memory", hotplug_mem_size);
memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
&spapr->hotplug_memory.mr);
}
if (smc->dr_lmb_enabled) {
spapr_create_lmb_dr_connectors(spapr);
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
if (!filename) {
error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
exit(1);
}
spapr->rtas_size = get_image_size(filename);
if (spapr->rtas_size < 0) {
error_report("Could not get size of LPAR rtas '%s'", filename);
exit(1);
}
spapr->rtas_blob = g_malloc(spapr->rtas_size);
if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
error_report("Could not load LPAR rtas '%s'", filename);
exit(1);
}
if (spapr->rtas_size > RTAS_MAX_SIZE) {
error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
(size_t)spapr->rtas_size, RTAS_MAX_SIZE);
exit(1);
}
g_free(filename);
/* Set up RTAS event infrastructure */
spapr_events_init(spapr);
/* Set up the RTC RTAS interfaces */
spapr_rtc_create(spapr);
/* Set up VIO bus */
spapr->vio_bus = spapr_vio_bus_init();
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
spapr_vty_create(spapr->vio_bus, serial_hds[i]);
}
}
/* We always have at least the nvram device on VIO */
spapr_create_nvram(spapr);
/* Set up PCI */
spapr_pci_rtas_init();
phb = spapr_create_phb(spapr, 0);
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("ibmveth");
}
if (strcmp(nd->model, "ibmveth") == 0) {
spapr_vlan_create(spapr->vio_bus, nd);
} else {
pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
}
}
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
spapr_vscsi_create(spapr->vio_bus);
}
/* Graphics */
if (spapr_vga_init(phb->bus, &error_fatal)) {
spapr->has_graphics = true;
machine->usb |= defaults_enabled() && !machine->usb_disabled;
}
if (machine->usb) {
if (smc->use_ohci_by_default) {
pci_create_simple(phb->bus, -1, "pci-ohci");
} else {
pci_create_simple(phb->bus, -1, "nec-usb-xhci");
}
if (spapr->has_graphics) {
USBBus *usb_bus = usb_bus_find(-1);
usb_create_simple(usb_bus, "usb-kbd");
usb_create_simple(usb_bus, "usb-mouse");
}
}
if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
error_report(
"pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
MIN_RMA_SLOF);
exit(1);
}
if (kernel_filename) {
uint64_t lowaddr = 0;
spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
NULL, NULL, &lowaddr, NULL, 1,
PPC_ELF_MACHINE, 0, 0);
if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
spapr->kernel_size = load_elf(kernel_filename,
translate_kernel_address, NULL, NULL,
&lowaddr, NULL, 0, PPC_ELF_MACHINE,
0, 0);
spapr->kernel_le = spapr->kernel_size > 0;
}
if (spapr->kernel_size < 0) {
error_report("error loading %s: %s", kernel_filename,
load_elf_strerror(spapr->kernel_size));
exit(1);
}
/* load initrd */
if (initrd_filename) {
/* Try to locate the initrd in the gap between the kernel
* and the firmware. Add a bit of space just in case
*/
spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
+ 0x1ffff) & ~0xffff;
spapr->initrd_size = load_image_targphys(initrd_filename,
spapr->initrd_base,
load_limit
- spapr->initrd_base);
if (spapr->initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
}
}
if (bios_name == NULL) {
bios_name = FW_FILE_NAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!filename) {
error_report("Could not find LPAR firmware '%s'", bios_name);
exit(1);
}
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
if (fw_size <= 0) {
error_report("Could not load LPAR firmware '%s'", filename);
exit(1);
}
g_free(filename);
/* FIXME: Should register things through the MachineState's qdev
* interface, this is a legacy from the sPAPREnvironment structure
* which predated MachineState but had a similar function */
vmstate_register(NULL, 0, &vmstate_spapr, spapr);
register_savevm_live(NULL, "spapr/htab", -1, 1,
&savevm_htab_handlers, spapr);
qemu_register_boot_set(spapr_boot_set, spapr);
if (kvm_enabled()) {
/* to stop and start vmclock */
qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
&spapr->tb);
kvmppc_spapr_enable_inkernel_multitce();
}
}
static int spapr_kvm_type(const char *vm_type)
{
if (!vm_type) {
return 0;
}
if (!strcmp(vm_type, "HV")) {
return 1;
}
if (!strcmp(vm_type, "PR")) {
return 2;
}
error_report("Unknown kvm-type specified '%s'", vm_type);
exit(1);
}
/*
* Implementation of an interface to adjust firmware path
* for the bootindex property handling.
*/
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
DeviceState *dev)
{
#define CAST(type, obj, name) \
((type *)object_dynamic_cast(OBJECT(obj), (name)))
SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
if (d) {
void *spapr = CAST(void, bus->parent, "spapr-vscsi");
VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
if (spapr) {
/*
* Replace "channel@0/disk@0,0" with "disk@8000000000000000":
* We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
* in the top 16 bits of the 64-bit LUN
*/
unsigned id = 0x8000 | (d->id << 8) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 48);
} else if (virtio) {
/*
* We use SRP luns of the form 01000000 | (target << 8) | lun
* in the top 32 bits of the 64-bit LUN
* Note: the quote above is from SLOF and it is wrong,
* the actual binding is:
* swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
*/
unsigned id = 0x1000000 | (d->id << 16) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
} else if (usb) {
/*
* We use SRP luns of the form 01000000 | (usb-port << 16) | lun
* in the top 32 bits of the 64-bit LUN
*/
unsigned usb_port = atoi(usb->port->path);
unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
}
}
/*
* SLOF probes the USB devices, and if it recognizes that the device is a
* storage device, it changes its name to "storage" instead of "usb-host",
* and additionally adds a child node for the SCSI LUN, so the correct
* boot path in SLOF is something like .../storage@1/disk@xxx" instead.
*/
if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
if (usb_host_dev_is_scsi_storage(usbdev)) {
return g_strdup_printf("storage@%s/disk", usbdev->port->path);
}
}
if (phb) {
/* Replace "pci" with "pci@800000020000000" */
return g_strdup_printf("pci@%"PRIX64, phb->buid);
}
if (vsc) {
/* Same logic as virtio above */
unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
}
if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
/* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
}
return NULL;
}
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->kvm_type);
}
static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->kvm_type);
spapr->kvm_type = g_strdup(value);
}
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
return spapr->use_hotplug_event_source;
}
static void spapr_set_modern_hotplug_events(Object *obj, bool value,
Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
spapr->use_hotplug_event_source = value;
}
static char *spapr_get_resize_hpt(Object *obj, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
switch (spapr->resize_hpt) {
case SPAPR_RESIZE_HPT_DEFAULT:
return g_strdup("default");
case SPAPR_RESIZE_HPT_DISABLED:
return g_strdup("disabled");
case SPAPR_RESIZE_HPT_ENABLED:
return g_strdup("enabled");
case SPAPR_RESIZE_HPT_REQUIRED:
return g_strdup("required");
}
g_assert_not_reached();
}
static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
if (strcmp(value, "default") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
} else if (strcmp(value, "disabled") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
} else if (strcmp(value, "enabled") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
} else if (strcmp(value, "required") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
} else {
error_setg(errp, "Bad value for \"resize-hpt\" property");
}
}
static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void spapr_machine_initfn(Object *obj)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
spapr->htab_fd = -1;
spapr->use_hotplug_event_source = true;
object_property_add_str(obj, "kvm-type",
spapr_get_kvm_type, spapr_set_kvm_type, NULL);
object_property_set_description(obj, "kvm-type",
"Specifies the KVM virtualization mode (HV, PR)",
NULL);
object_property_add_bool(obj, "modern-hotplug-events",
spapr_get_modern_hotplug_events,
spapr_set_modern_hotplug_events,
NULL);
object_property_set_description(obj, "modern-hotplug-events",
"Use dedicated hotplug event mechanism in"
" place of standard EPOW events when possible"
" (required for memory hot-unplug support)",
NULL);
ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
"Maximum permitted CPU compatibility mode",
&error_fatal);
object_property_add_str(obj, "resize-hpt",
spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
object_property_set_description(obj, "resize-hpt",
"Resizing of the Hash Page Table (enabled, disabled, required)",
NULL);
object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
object_property_set_description(obj, "vsmt",
"Virtual SMT: KVM behaves as if this were"
" the host's SMT mode", &error_abort);
}
static void spapr_machine_finalizefn(Object *obj)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->kvm_type);
}
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
{
cpu_synchronize_state(cs);
ppc_cpu_do_system_reset(cs);
}
static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
CPUState *cs;
CPU_FOREACH(cs) {
async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
}
}
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
uint32_t node, bool dedicated_hp_event_source,
Error **errp)
{
sPAPRDRConnector *drc;
uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
int i, fdt_offset, fdt_size;
void *fdt;
uint64_t addr = addr_start;
bool hotplugged = spapr_drc_hotplugged(dev);
Error *local_err = NULL;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
fdt = create_device_tree(&fdt_size);
fdt_offset = spapr_populate_memory_node(fdt, node, addr,
SPAPR_MEMORY_BLOCK_SIZE);
spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
if (local_err) {
while (addr > addr_start) {
addr -= SPAPR_MEMORY_BLOCK_SIZE;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
spapr_drc_detach(drc);
}
g_free(fdt);
error_propagate(errp, local_err);
return;
}
if (!hotplugged) {
spapr_drc_reset(drc);
}
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
/* send hotplug notification to the
* guest only in case of hotplugged memory
*/
if (hotplugged) {
if (dedicated_hp_event_source) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs,
spapr_drc_index(drc));
} else {
spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs);
}
}
}
static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
uint32_t node, Error **errp)
{
Error *local_err = NULL;
sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr;
uint64_t align, size, addr;
mr = ddc->get_memory_region(dimm, &local_err);
if (local_err) {
goto out;
}
align = memory_region_get_alignment(mr);
size = memory_region_size(mr);
pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
if (local_err) {
goto out;
}
addr = object_property_get_uint(OBJECT(dimm),
PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out_unplug;
}
spapr_add_lmbs(dev, addr, size, node,
spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
&local_err);
if (local_err) {
goto out_unplug;
}
return;
out_unplug:
pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
out:
error_propagate(errp, local_err);
}
static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr;
uint64_t size;
char *mem_dev;
mr = ddc->get_memory_region(dimm, errp);
if (!mr) {
return;
}
size = memory_region_size(mr);
if (size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Hotplugged memory size must be a multiple of "
"%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
return;
}
mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
error_setg(errp, "Memory backend has bad page size. "
"Use 'memory-backend-file' with correct mem-path.");
goto out;
}
out:
g_free(mem_dev);
}
struct sPAPRDIMMState {
PCDIMMDevice *dimm;
uint32_t nr_lmbs;
QTAILQ_ENTRY(sPAPRDIMMState) next;
};
static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
PCDIMMDevice *dimm)
{
sPAPRDIMMState *dimm_state = NULL;
QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
if (dimm_state->dimm == dimm) {
break;
}
}
return dimm_state;
}
static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
uint32_t nr_lmbs,
PCDIMMDevice *dimm)
{
sPAPRDIMMState *ds = NULL;
/*
* If this request is for a DIMM whose removal had failed earlier
* (due to guest's refusal to remove the LMBs), we would have this
* dimm already in the pending_dimm_unplugs list. In that
* case don't add again.
*/
ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
if (!ds) {
ds = g_malloc0(sizeof(sPAPRDIMMState));
ds->nr_lmbs = nr_lmbs;
ds->dimm = dimm;
QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
}
return ds;
}
static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
sPAPRDIMMState *dimm_state)
{
QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
g_free(dimm_state);
}
static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
PCDIMMDevice *dimm)
{
sPAPRDRConnector *drc;
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
uint64_t size = memory_region_size(mr);
uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
uint32_t avail_lmbs = 0;
uint64_t addr_start, addr;
int i;
addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&error_abort);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
if (drc->dev) {
avail_lmbs++;
}
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
}
/* Callback to be called during DRC release. */
void spapr_lmb_release(DeviceState *dev)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
/* This information will get lost if a migration occurs
* during the unplug process. In this case recover it. */
if (ds == NULL) {
ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
g_assert(ds);
/* The DRC being examined by the caller at least must be counted */
g_assert(ds->nr_lmbs);
}
if (--ds->nr_lmbs) {
return;
}
spapr_pending_dimm_unplugs_remove(spapr, ds);
/*
* Now that all the LMBs have been removed by the guest, call the
* pc-dimm unplug handler to cleanup up the pc-dimm device.
*/
pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
object_unparent(OBJECT(dev));
}
static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
Error *local_err = NULL;
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr;
uint32_t nr_lmbs;
uint64_t size, addr_start, addr;
int i;
sPAPRDRConnector *drc;
mr = ddc->get_memory_region(dimm, &local_err);
if (local_err) {
goto out;
}
size = memory_region_size(mr);
nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&local_err);
if (local_err) {
goto out;
}
spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
spapr_drc_detach(drc);
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs, spapr_drc_index(drc));
out:
error_propagate(errp, local_err);
}
static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
sPAPRMachineState *spapr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int id = spapr_vcpu_id(cpu);
void *fdt;
int offset, fdt_size;
char *nodename;
fdt = create_device_tree(&fdt_size);
nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
offset = fdt_add_subnode(fdt, 0, nodename);
spapr_populate_cpu_dt(cs, fdt, offset, spapr);
g_free(nodename);
*fdt_offset = offset;
return fdt;
}
/* Callback to be called during DRC release. */
void spapr_core_release(DeviceState *dev)
{
MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
CPUCore *cc = CPU_CORE(dev);
CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
if (smc->pre_2_10_has_unused_icps) {
sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
const char *typename = object_class_get_name(scc->cpu_class);
size_t size = object_type_get_instance_size(typename);
int i;
for (i = 0; i < cc->nr_threads; i++) {
CPUState *cs = CPU(sc->threads + i * size);
pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
}
}
assert(core_slot);
core_slot->cpu = NULL;
object_unparent(OBJECT(dev));
}
static
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
int index;
sPAPRDRConnector *drc;
CPUCore *cc = CPU_CORE(dev);
int smt = kvmppc_smt_threads();
if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
error_setg(errp, "Unable to find CPU core with core-id: %d",
cc->core_id);
return;
}
if (index == 0) {
error_setg(errp, "Boot CPU core may not be unplugged");
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
g_assert(drc);
spapr_drc_detach(drc);
spapr_hotplug_req_remove_by_index(drc);
}
static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(spapr);
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
CPUCore *cc = CPU_CORE(dev);
CPUState *cs = CPU(core->threads);
sPAPRDRConnector *drc;
Error *local_err = NULL;
int smt = kvmppc_smt_threads();
CPUArchId *core_slot;
int index;
bool hotplugged = spapr_drc_hotplugged(dev);
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
if (!core_slot) {
error_setg(errp, "Unable to find CPU core with core-id: %d",
cc->core_id);
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
g_assert(drc || !mc->has_hotpluggable_cpus);
if (drc) {
void *fdt;
int fdt_offset;
fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
if (local_err) {
g_free(fdt);
error_propagate(errp, local_err);
return;
}
if (hotplugged) {
/*
* Send hotplug notification interrupt to the guest only
* in case of hotplugged CPUs.
*/
spapr_hotplug_req_add_by_index(drc);
} else {
spapr_drc_reset(drc);
}
}
core_slot->cpu = OBJECT(dev);
if (smc->pre_2_10_has_unused_icps) {
sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
const char *typename = object_class_get_name(scc->cpu_class);
size_t size = object_type_get_instance_size(typename);
int i;
for (i = 0; i < cc->nr_threads; i++) {
sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
void *obj = sc->threads + i * size;
cs = CPU(obj);
pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
}
}
}
static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
MachineState *machine = MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
Error *local_err = NULL;
CPUCore *cc = CPU_CORE(dev);
char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
const char *type = object_get_typename(OBJECT(dev));
CPUArchId *core_slot;
int index;
if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
error_setg(&local_err, "CPU hotplug not supported for this machine");
goto out;
}
if (strcmp(base_core_type, type)) {
error_setg(&local_err, "CPU core type should be %s", base_core_type);
goto out;
}
if (cc->core_id % smp_threads) {
error_setg(&local_err, "invalid core id %d", cc->core_id);
goto out;
}
/*
* In general we should have homogeneous threads-per-core, but old
* (pre hotplug support) machine types allow the last core to have
* reduced threads as a compatibility hack for when we allowed
* total vcpus not a multiple of threads-per-core.
*/
if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
error_setg(&local_err, "invalid nr-threads %d, must be %d",
cc->nr_threads, smp_threads);
goto out;
}
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
if (!core_slot) {
error_setg(&local_err, "core id %d out of range", cc->core_id);
goto out;
}
if (core_slot->cpu) {
error_setg(&local_err, "core %d already populated", cc->core_id);
goto out;
}
numa_cpu_pre_plug(core_slot, dev, &local_err);
out:
g_free(base_core_type);
error_propagate(errp, local_err);
}
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(hotplug_dev);
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
int node;
if (!smc->dr_lmb_enabled) {
error_setg(errp, "Memory hotplug not supported for this machine");
return;
}
node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
if (*errp) {
return;
}
if (node < 0 || node >= MAX_NODES) {
error_setg(errp, "Invaild node %d", node);
return;
}
/*
* Currently PowerPC kernel doesn't allow hot-adding memory to
* memory-less node, but instead will silently add the memory
* to the first node that has some memory. This causes two
* unexpected behaviours for the user.
*
* - Memory gets hotplugged to a different node than what the user
* specified.
* - Since pc-dimm subsystem in QEMU still thinks that memory belongs
* to memory-less node, a reboot will set things accordingly
* and the previously hotplugged memory now ends in the right node.
* This appears as if some memory moved from one node to another.
*
* So until kernel starts supporting memory hotplug to memory-less
* nodes, just prevent such attempts upfront in QEMU.
*/
if (nb_numa_nodes && !numa_info[node].node_mem) {
error_setg(errp, "Can't hotplug memory to memory-less node %d",
node);
return;
}
spapr_memory_plug(hotplug_dev, dev, node, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_plug(hotplug_dev, dev, errp);
}
}
static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(sms);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
spapr_memory_unplug_request(hotplug_dev, dev, errp);
} else {
/* NOTE: this means there is a window after guest reset, prior to
* CAS negotiation, where unplug requests will fail due to the
* capability not being detected yet. This is a bit different than
* the case with PCI unplug, where the events will be queued and
* eventually handled by the guest after boot
*/
error_setg(errp, "Memory hot unplug not supported for this guest");
}
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
if (!mc->has_hotpluggable_cpus) {
error_setg(errp, "CPU hot unplug not supported on this machine");
return;
}
spapr_core_unplug_request(hotplug_dev, dev, errp);
}
}
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_pre_plug(hotplug_dev, dev, errp);
}
}
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static CpuInstanceProperties
spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
{
CPUArchId *core_slot;
MachineClass *mc = MACHINE_GET_CLASS(machine);
/* make sure possible_cpu are intialized */
mc->possible_cpu_arch_ids(machine);
/* get CPU core slot containing thread that matches cpu_index */
core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
assert(core_slot);
return core_slot->props;
}
static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx / smp_cores % nb_numa_nodes;
}
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
{
int i;
int spapr_max_cores = max_cpus / smp_threads;
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (!mc->has_hotpluggable_cpus) {
spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
}
if (machine->possible_cpus) {
assert(machine->possible_cpus->len == spapr_max_cores);
return machine->possible_cpus;
}
machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * spapr_max_cores);
machine->possible_cpus->len = spapr_max_cores;
for (i = 0; i < machine->possible_cpus->len; i++) {
int core_id = i * smp_threads;
machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
machine->possible_cpus->cpus[i].arch_id = core_id;
machine->possible_cpus->cpus[i].props.has_core_id = true;
machine->possible_cpus->cpus[i].props.core_id = core_id;
}
return machine->possible_cpus;
}
static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns, Error **errp)
{
/*
* New-style PHB window placement.
*
* Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
* for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
* windows.
*
* Some guest kernels can't work with MMIO windows above 1<<46
* (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
*
* 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
* PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
* 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
* 1TiB 64-bit MMIO windows for each PHB.
*/
const uint64_t base_buid = 0x800000020000000ULL;
#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
SPAPR_PCI_MEM64_WIN_SIZE - 1)
int i;
/* Sanity check natural alignments */
QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
/* Sanity check bounds */
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
SPAPR_PCI_MEM32_WIN_SIZE);
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
SPAPR_PCI_MEM64_WIN_SIZE);
if (index >= SPAPR_MAX_PHBS) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
SPAPR_MAX_PHBS - 1);
return;
}
*buid = base_buid + index;
for (i = 0; i < n_dma; ++i) {
liobns[i] = SPAPR_PCI_LIOBN(index, i);
}
*pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
*mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
*mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
}
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
}
static void spapr_ics_resend(XICSFabric *dev)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
ics_resend(spapr->ics);
}
static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
{
PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
return cpu ? ICP(cpu->intc) : NULL;
}
static void spapr_pic_print_info(InterruptStatsProvider *obj,
Monitor *mon)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
icp_pic_print_info(ICP(cpu->intc), mon);
}
ics_pic_print_info(spapr->ics, mon);
}
int spapr_vcpu_id(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
if (kvm_enabled()) {
return kvm_arch_vcpu_id(cs);
} else {
return cs->cpu_index;
}
}
PowerPCCPU *spapr_find_cpu(int vcpu_id)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
if (spapr_vcpu_id(cpu) == vcpu_id) {
return cpu;
}
}
return NULL;
}
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
mc->desc = "pSeries Logical Partition (PAPR compliant)";
/*
* We set up the default / latest behaviour here. The class_init
* functions for the specific versioned machine types can override
* these details for backwards compatibility
*/
mc->init = ppc_spapr_init;
mc->reset = ppc_spapr_reset;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 1024;
mc->no_parallel = 1;
mc->default_boot_order = "";
mc->default_ram_size = 512 * M_BYTE;
mc->kvm_type = spapr_kvm_type;
mc->has_dynamic_sysbus = true;
mc->pci_allow_0_address = true;
mc->get_hotplug_handler = spapr_get_hotplug_handler;
hc->pre_plug = spapr_machine_device_pre_plug;
hc->plug = spapr_machine_device_plug;
mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
hc->unplug_request = spapr_machine_device_unplug_request;
smc->dr_lmb_enabled = true;
smc->tcg_default_cpu = "POWER8";
mc->has_hotpluggable_cpus = true;
smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
fwc->get_dev_path = spapr_get_fw_dev_path;
nc->nmi_monitor_handler = spapr_nmi;
smc->phb_placement = spapr_phb_placement;
vhc->hypercall = emulate_spapr_hypercall;
vhc->hpt_mask = spapr_hpt_mask;
vhc->map_hptes = spapr_map_hptes;
vhc->unmap_hptes = spapr_unmap_hptes;
vhc->store_hpte = spapr_store_hpte;
vhc->get_patbe = spapr_get_patbe;
xic->ics_get = spapr_ics_get;
xic->ics_resend = spapr_ics_resend;
xic->icp_get = spapr_icp_get;
ispc->print_info = spapr_pic_print_info;
/* Force NUMA node memory size to be a multiple of
* SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
* in which LMBs are represented and hot-added
*/
mc->numa_mem_align_shift = 28;
}
static const TypeInfo spapr_machine_info = {
.name = TYPE_SPAPR_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(sPAPRMachineState),
.instance_init = spapr_machine_initfn,
.instance_finalize = spapr_machine_finalizefn,
.class_size = sizeof(sPAPRMachineClass),
.class_init = spapr_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_FW_PATH_PROVIDER },
{ TYPE_NMI },
{ TYPE_HOTPLUG_HANDLER },
{ TYPE_PPC_VIRTUAL_HYPERVISOR },
{ TYPE_XICS_FABRIC },
{ TYPE_INTERRUPT_STATS_PROVIDER },
{ }
},
};
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
void *data) \
{ \
MachineClass *mc = MACHINE_CLASS(oc); \
spapr_machine_##suffix##_class_options(mc); \
if (latest) { \
mc->alias = "pseries"; \
mc->is_default = 1; \
} \
} \
static void spapr_machine_##suffix##_instance_init(Object *obj) \
{ \
MachineState *machine = MACHINE(obj); \
spapr_machine_##suffix##_instance_options(machine); \
} \
static const TypeInfo spapr_machine_##suffix##_info = { \
.name = MACHINE_TYPE_NAME("pseries-" verstr), \
.parent = TYPE_SPAPR_MACHINE, \
.class_init = spapr_machine_##suffix##_class_init, \
.instance_init = spapr_machine_##suffix##_instance_init, \
}; \
static void spapr_machine_register_##suffix(void) \
{ \
type_register(&spapr_machine_##suffix##_info); \
} \
type_init(spapr_machine_register_##suffix)
/*
* pseries-2.11
*/
static void spapr_machine_2_11_instance_options(MachineState *machine)
{
}
static void spapr_machine_2_11_class_options(MachineClass *mc)
{
/* Defaults for the latest behaviour inherited from the base class */
}
DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
/*
* pseries-2.10
*/
#define SPAPR_COMPAT_2_10 \
HW_COMPAT_2_10 \
static void spapr_machine_2_10_instance_options(MachineState *machine)
{
}
static void spapr_machine_2_10_class_options(MachineClass *mc)
{
spapr_machine_2_11_class_options(mc);
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
}
DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
/*
* pseries-2.9
*/
#define SPAPR_COMPAT_2_9 \
HW_COMPAT_2_9 \
{ \
.driver = TYPE_POWERPC_CPU, \
.property = "pre-2.10-migration", \
.value = "on", \
}, \
static void spapr_machine_2_9_instance_options(MachineState *machine)
{
spapr_machine_2_10_instance_options(machine);
}
static void spapr_machine_2_9_class_options(MachineClass *mc)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_10_class_options(mc);
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
smc->pre_2_10_has_unused_icps = true;
smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
}
DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
/*
* pseries-2.8
*/
#define SPAPR_COMPAT_2_8 \
HW_COMPAT_2_8 \
{ \
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
.property = "pcie-extended-configuration-space", \
.value = "off", \
},
static void spapr_machine_2_8_instance_options(MachineState *machine)
{
spapr_machine_2_9_instance_options(machine);
}
static void spapr_machine_2_8_class_options(MachineClass *mc)
{
spapr_machine_2_9_class_options(mc);
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
mc->numa_mem_align_shift = 23;
}
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
/*
* pseries-2.7
*/
#define SPAPR_COMPAT_2_7 \
HW_COMPAT_2_7 \
{ \
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
.property = "mem_win_size", \
.value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
}, \
{ \
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
.property = "mem64_win_size", \
.value = "0", \
}, \
{ \
.driver = TYPE_POWERPC_CPU, \
.property = "pre-2.8-migration", \
.value = "on", \
}, \
{ \
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
.property = "pre-2.8-migration", \
.value = "on", \
},
static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns, Error **errp)
{
/* Legacy PHB placement for pseries-2.7 and earlier machine types */
const uint64_t base_buid = 0x800000020000000ULL;
const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
const hwaddr pio_offset = 0x80000000; /* 2 GiB */
const uint32_t max_index = 255;
const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
uint64_t ram_top = MACHINE(spapr)->ram_size;
hwaddr phb0_base, phb_base;
int i;
/* Do we have hotpluggable memory? */
if (MACHINE(spapr)->maxram_size > ram_top) {
/* Can't just use maxram_size, because there may be an
* alignment gap between normal and hotpluggable memory
* regions */
ram_top = spapr->hotplug_memory.base +
memory_region_size(&spapr->hotplug_memory.mr);
}
phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
if (index > max_index) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
max_index);
return;
}
*buid = base_buid + index;
for (i = 0; i < n_dma; ++i) {
liobns[i] = SPAPR_PCI_LIOBN(index, i);
}
phb_base = phb0_base + index * phb_spacing;
*pio = phb_base + pio_offset;
*mmio32 = phb_base + mmio_offset;
/*
* We don't set the 64-bit MMIO window, relying on the PHB's
* fallback behaviour of automatically splitting a large "32-bit"
* window into contiguous 32-bit and 64-bit windows
*/
}
static void spapr_machine_2_7_instance_options(MachineState *machine)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
spapr_machine_2_8_instance_options(machine);
spapr->use_hotplug_event_source = false;
}
static void spapr_machine_2_7_class_options(MachineClass *mc)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_8_class_options(mc);
smc->tcg_default_cpu = "POWER7";
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
smc->phb_placement = phb_placement_2_7;
}
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
/*
* pseries-2.6
*/
#define SPAPR_COMPAT_2_6 \
HW_COMPAT_2_6 \
{ \
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
.property = "ddw",\
.value = stringify(off),\
},
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
spapr_machine_2_7_instance_options(machine);
}
static void spapr_machine_2_6_class_options(MachineClass *mc)
{
spapr_machine_2_7_class_options(mc);
mc->has_hotpluggable_cpus = false;
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
}
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
/*
* pseries-2.5
*/
#define SPAPR_COMPAT_2_5 \
HW_COMPAT_2_5 \
{ \
.driver = "spapr-vlan", \
.property = "use-rx-buffer-pools", \
.value = "off", \
},
static void spapr_machine_2_5_instance_options(MachineState *machine)
{
spapr_machine_2_6_instance_options(machine);
}
static void spapr_machine_2_5_class_options(MachineClass *mc)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_6_class_options(mc);
smc->use_ohci_by_default = true;
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
}
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
/*
* pseries-2.4
*/
#define SPAPR_COMPAT_2_4 \
HW_COMPAT_2_4
static void spapr_machine_2_4_instance_options(MachineState *machine)
{
spapr_machine_2_5_instance_options(machine);
}
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_5_class_options(mc);
smc->dr_lmb_enabled = false;
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
}
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
/*
* pseries-2.3
*/
#define SPAPR_COMPAT_2_3 \
HW_COMPAT_2_3 \
{\
.driver = "spapr-pci-host-bridge",\
.property = "dynamic-reconfiguration",\
.value = "off",\
},
static void spapr_machine_2_3_instance_options(MachineState *machine)
{
spapr_machine_2_4_instance_options(machine);
}
static void spapr_machine_2_3_class_options(MachineClass *mc)
{
spapr_machine_2_4_class_options(mc);
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
}
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
/*
* pseries-2.2
*/
#define SPAPR_COMPAT_2_2 \
HW_COMPAT_2_2 \
{\
.driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
.property = "mem_win_size",\
.value = "0x20000000",\
},
static void spapr_machine_2_2_instance_options(MachineState *machine)
{
spapr_machine_2_3_instance_options(machine);
machine->suppress_vmdesc = true;
}
static void spapr_machine_2_2_class_options(MachineClass *mc)
{
spapr_machine_2_3_class_options(mc);
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
}
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
/*
* pseries-2.1
*/
#define SPAPR_COMPAT_2_1 \
HW_COMPAT_2_1
static void spapr_machine_2_1_instance_options(MachineState *machine)
{
spapr_machine_2_2_instance_options(machine);
}
static void spapr_machine_2_1_class_options(MachineClass *mc)
{
spapr_machine_2_2_class_options(mc);
SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
}
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
static void spapr_machine_register_types(void)
{
type_register_static(&spapr_machine_info);
}
type_init(spapr_machine_register_types)