qemu-e2k/softmmu_template.h
Paul Brook 355b194369 Split TLB addend and target_phys_addr_t
Historically the qemu tlb "addend" field was used for both RAM and IO accesses,
so needed to be able to hold both host addresses (unsigned long) and guest
physical addresses (target_phys_addr_t).  However since the introduction of
the iotlb field it has only been used for RAM accesses.

This means we can change the type of addend to unsigned long, and remove
associated hacks in the big-endian TCG backends.

We can also remove the host dependence from target_phys_addr_t.

Signed-off-by: Paul Brook <paul@codesourcery.com>
2010-04-05 00:28:53 +01:00

333 lines
12 KiB
C

/*
* Software MMU support
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu-timer.h"
#define DATA_SIZE (1 << SHIFT)
#if DATA_SIZE == 8
#define SUFFIX q
#define USUFFIX q
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define USUFFIX l
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define USUFFIX uw
#define DATA_TYPE uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define USUFFIX ub
#define DATA_TYPE uint8_t
#else
#error unsupported data size
#endif
#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE 2
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE 0
#define ADDR_READ addr_read
#endif
static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx,
void *retaddr);
static inline DATA_TYPE glue(io_read, SUFFIX)(target_phys_addr_t physaddr,
target_ulong addr,
void *retaddr)
{
DATA_TYPE res;
int index;
index = (physaddr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
env->mem_io_pc = (unsigned long)retaddr;
if (index > (IO_MEM_NOTDIRTY >> IO_MEM_SHIFT)
&& !can_do_io(env)) {
cpu_io_recompile(env, retaddr);
}
env->mem_io_vaddr = addr;
#if SHIFT <= 2
res = io_mem_read[index][SHIFT](io_mem_opaque[index], physaddr);
#else
#ifdef TARGET_WORDS_BIGENDIAN
res = (uint64_t)io_mem_read[index][2](io_mem_opaque[index], physaddr) << 32;
res |= io_mem_read[index][2](io_mem_opaque[index], physaddr + 4);
#else
res = io_mem_read[index][2](io_mem_opaque[index], physaddr);
res |= (uint64_t)io_mem_read[index][2](io_mem_opaque[index], physaddr + 4) << 32;
#endif
#endif /* SHIFT > 2 */
return res;
}
/* handle all cases except unaligned access which span two pages */
DATA_TYPE REGPARM glue(glue(__ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx)
{
DATA_TYPE res;
int index;
target_ulong tlb_addr;
target_phys_addr_t ioaddr;
unsigned long addend;
void *retaddr;
/* test if there is match for unaligned or IO access */
/* XXX: could done more in memory macro in a non portable way */
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
retaddr = GETPC();
ioaddr = env->iotlb[mmu_idx][index];
res = glue(io_read, SUFFIX)(ioaddr, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
/* slow unaligned access (it spans two pages or IO) */
do_unaligned_access:
retaddr = GETPC();
#ifdef ALIGNED_ONLY
do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
#endif
res = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr,
mmu_idx, retaddr);
} else {
/* unaligned/aligned access in the same page */
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0) {
retaddr = GETPC();
do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
}
#endif
addend = env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)(addr+addend));
}
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0)
do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
#endif
tlb_fill(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
goto redo;
}
return res;
}
/* handle all unaligned cases */
static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx,
void *retaddr)
{
DATA_TYPE res, res1, res2;
int index, shift;
target_phys_addr_t ioaddr;
unsigned long addend;
target_ulong tlb_addr, addr1, addr2;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
ioaddr = env->iotlb[mmu_idx][index];
res = glue(io_read, SUFFIX)(ioaddr, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
/* slow unaligned access (it spans two pages) */
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
res1 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr1,
mmu_idx, retaddr);
res2 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr2,
mmu_idx, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
#ifdef TARGET_WORDS_BIGENDIAN
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
#else
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
#endif
res = (DATA_TYPE)res;
} else {
/* unaligned/aligned access in the same page */
addend = env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)(addr+addend));
}
} else {
/* the page is not in the TLB : fill it */
tlb_fill(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
goto redo;
}
return res;
}
#ifndef SOFTMMU_CODE_ACCESS
static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(target_ulong addr,
DATA_TYPE val,
int mmu_idx,
void *retaddr);
static inline void glue(io_write, SUFFIX)(target_phys_addr_t physaddr,
DATA_TYPE val,
target_ulong addr,
void *retaddr)
{
int index;
index = (physaddr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
if (index > (IO_MEM_NOTDIRTY >> IO_MEM_SHIFT)
&& !can_do_io(env)) {
cpu_io_recompile(env, retaddr);
}
env->mem_io_vaddr = addr;
env->mem_io_pc = (unsigned long)retaddr;
#if SHIFT <= 2
io_mem_write[index][SHIFT](io_mem_opaque[index], physaddr, val);
#else
#ifdef TARGET_WORDS_BIGENDIAN
io_mem_write[index][2](io_mem_opaque[index], physaddr, val >> 32);
io_mem_write[index][2](io_mem_opaque[index], physaddr + 4, val);
#else
io_mem_write[index][2](io_mem_opaque[index], physaddr, val);
io_mem_write[index][2](io_mem_opaque[index], physaddr + 4, val >> 32);
#endif
#endif /* SHIFT > 2 */
}
void REGPARM glue(glue(__st, SUFFIX), MMUSUFFIX)(target_ulong addr,
DATA_TYPE val,
int mmu_idx)
{
target_phys_addr_t ioaddr;
unsigned long addend;
target_ulong tlb_addr;
void *retaddr;
int index;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
retaddr = GETPC();
ioaddr = env->iotlb[mmu_idx][index];
glue(io_write, SUFFIX)(ioaddr, val, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
retaddr = GETPC();
#ifdef ALIGNED_ONLY
do_unaligned_access(addr, 1, mmu_idx, retaddr);
#endif
glue(glue(slow_st, SUFFIX), MMUSUFFIX)(addr, val,
mmu_idx, retaddr);
} else {
/* aligned/unaligned access in the same page */
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0) {
retaddr = GETPC();
do_unaligned_access(addr, 1, mmu_idx, retaddr);
}
#endif
addend = env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)(addr+addend), val);
}
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0)
do_unaligned_access(addr, 1, mmu_idx, retaddr);
#endif
tlb_fill(addr, 1, mmu_idx, retaddr);
goto redo;
}
}
/* handles all unaligned cases */
static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(target_ulong addr,
DATA_TYPE val,
int mmu_idx,
void *retaddr)
{
target_phys_addr_t ioaddr;
unsigned long addend;
target_ulong tlb_addr;
int index, i;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
ioaddr = env->iotlb[mmu_idx][index];
glue(io_write, SUFFIX)(ioaddr, val, addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
/* XXX: not efficient, but simple */
/* Note: relies on the fact that tlb_fill() does not remove the
* previous page from the TLB cache. */
for(i = DATA_SIZE - 1; i >= 0; i--) {
#ifdef TARGET_WORDS_BIGENDIAN
glue(slow_stb, MMUSUFFIX)(addr + i, val >> (((DATA_SIZE - 1) * 8) - (i * 8)),
mmu_idx, retaddr);
#else
glue(slow_stb, MMUSUFFIX)(addr + i, val >> (i * 8),
mmu_idx, retaddr);
#endif
}
} else {
/* aligned/unaligned access in the same page */
addend = env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)(addr+addend), val);
}
} else {
/* the page is not in the TLB : fill it */
tlb_fill(addr, 1, mmu_idx, retaddr);
goto redo;
}
}
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
#undef READ_ACCESS_TYPE
#undef SHIFT
#undef DATA_TYPE
#undef SUFFIX
#undef USUFFIX
#undef DATA_SIZE
#undef ADDR_READ