qemu-e2k/hw/esp.c

1195 lines
31 KiB
C

/*
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
* Copyright (c) 2012 Herve Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sysbus.h"
#include "pci.h"
#include "scsi.h"
#include "esp.h"
#include "trace.h"
#include "qemu-log.h"
/*
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
* also produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
*/
#define ESP_REGS 16
#define TI_BUFSZ 16
typedef struct ESPState ESPState;
struct ESPState {
uint8_t rregs[ESP_REGS];
uint8_t wregs[ESP_REGS];
qemu_irq irq;
uint8_t chip_id;
int32_t ti_size;
uint32_t ti_rptr, ti_wptr;
uint32_t status;
uint32_t dma;
uint8_t ti_buf[TI_BUFSZ];
SCSIBus bus;
SCSIDevice *current_dev;
SCSIRequest *current_req;
uint8_t cmdbuf[TI_BUFSZ];
uint32_t cmdlen;
uint32_t do_cmd;
/* The amount of data left in the current DMA transfer. */
uint32_t dma_left;
/* The size of the current DMA transfer. Zero if no transfer is in
progress. */
uint32_t dma_counter;
int dma_enabled;
uint32_t async_len;
uint8_t *async_buf;
ESPDMAMemoryReadWriteFunc dma_memory_read;
ESPDMAMemoryReadWriteFunc dma_memory_write;
void *dma_opaque;
void (*dma_cb)(ESPState *s);
};
#define ESP_TCLO 0x0
#define ESP_TCMID 0x1
#define ESP_FIFO 0x2
#define ESP_CMD 0x3
#define ESP_RSTAT 0x4
#define ESP_WBUSID 0x4
#define ESP_RINTR 0x5
#define ESP_WSEL 0x5
#define ESP_RSEQ 0x6
#define ESP_WSYNTP 0x6
#define ESP_RFLAGS 0x7
#define ESP_WSYNO 0x7
#define ESP_CFG1 0x8
#define ESP_RRES1 0x9
#define ESP_WCCF 0x9
#define ESP_RRES2 0xa
#define ESP_WTEST 0xa
#define ESP_CFG2 0xb
#define ESP_CFG3 0xc
#define ESP_RES3 0xd
#define ESP_TCHI 0xe
#define ESP_RES4 0xf
#define CMD_DMA 0x80
#define CMD_CMD 0x7f
#define CMD_NOP 0x00
#define CMD_FLUSH 0x01
#define CMD_RESET 0x02
#define CMD_BUSRESET 0x03
#define CMD_TI 0x10
#define CMD_ICCS 0x11
#define CMD_MSGACC 0x12
#define CMD_PAD 0x18
#define CMD_SATN 0x1a
#define CMD_RSTATN 0x1b
#define CMD_SEL 0x41
#define CMD_SELATN 0x42
#define CMD_SELATNS 0x43
#define CMD_ENSEL 0x44
#define CMD_DISSEL 0x45
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MO 0x06
#define STAT_MI 0x07
#define STAT_PIO_MASK 0x06
#define STAT_TC 0x10
#define STAT_PE 0x20
#define STAT_GE 0x40
#define STAT_INT 0x80
#define BUSID_DID 0x07
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_CD 0x4
#define CFG1_RESREPT 0x40
#define TCHI_FAS100A 0x4
#define TCHI_AM53C974 0x12
static void esp_raise_irq(ESPState *s)
{
if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
s->rregs[ESP_RSTAT] |= STAT_INT;
qemu_irq_raise(s->irq);
trace_esp_raise_irq();
}
}
static void esp_lower_irq(ESPState *s)
{
if (s->rregs[ESP_RSTAT] & STAT_INT) {
s->rregs[ESP_RSTAT] &= ~STAT_INT;
qemu_irq_lower(s->irq);
trace_esp_lower_irq();
}
}
static void esp_dma_enable(ESPState *s, int irq, int level)
{
if (level) {
s->dma_enabled = 1;
trace_esp_dma_enable();
if (s->dma_cb) {
s->dma_cb(s);
s->dma_cb = NULL;
}
} else {
trace_esp_dma_disable();
s->dma_enabled = 0;
}
}
static void esp_request_cancelled(SCSIRequest *req)
{
ESPState *s = req->hba_private;
if (req == s->current_req) {
scsi_req_unref(s->current_req);
s->current_req = NULL;
s->current_dev = NULL;
}
}
static uint32_t get_cmd(ESPState *s, uint8_t *buf)
{
uint32_t dmalen;
int target;
target = s->wregs[ESP_WBUSID] & BUSID_DID;
if (s->dma) {
dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
s->dma_memory_read(s->dma_opaque, buf, dmalen);
} else {
dmalen = s->ti_size;
memcpy(buf, s->ti_buf, dmalen);
buf[0] = buf[2] >> 5;
}
trace_esp_get_cmd(dmalen, target);
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
if (s->current_req) {
/* Started a new command before the old one finished. Cancel it. */
scsi_req_cancel(s->current_req);
s->async_len = 0;
}
s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
if (!s->current_dev) {
// No such drive
s->rregs[ESP_RSTAT] = 0;
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = SEQ_0;
esp_raise_irq(s);
return 0;
}
return dmalen;
}
static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid)
{
int32_t datalen;
int lun;
SCSIDevice *current_lun;
trace_esp_do_busid_cmd(busid);
lun = busid & 7;
current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun);
s->current_req = scsi_req_new(current_lun, 0, lun, buf, s);
datalen = scsi_req_enqueue(s->current_req);
s->ti_size = datalen;
if (datalen != 0) {
s->rregs[ESP_RSTAT] = STAT_TC;
s->dma_left = 0;
s->dma_counter = 0;
if (datalen > 0) {
s->rregs[ESP_RSTAT] |= STAT_DI;
} else {
s->rregs[ESP_RSTAT] |= STAT_DO;
}
scsi_req_continue(s->current_req);
}
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
static void do_cmd(ESPState *s, uint8_t *buf)
{
uint8_t busid = buf[0];
do_busid_cmd(s, &buf[1], busid);
}
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
int len;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_satn;
return;
}
len = get_cmd(s, buf);
if (len)
do_cmd(s, buf);
}
static void handle_s_without_atn(ESPState *s)
{
uint8_t buf[32];
int len;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_s_without_atn;
return;
}
len = get_cmd(s, buf);
if (len) {
do_busid_cmd(s, buf, 0);
}
}
static void handle_satn_stop(ESPState *s)
{
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_satn_stop;
return;
}
s->cmdlen = get_cmd(s, s->cmdbuf);
if (s->cmdlen) {
trace_esp_handle_satn_stop(s->cmdlen);
s->do_cmd = 1;
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
}
static void write_response(ESPState *s)
{
trace_esp_write_response(s->status);
s->ti_buf[0] = s->status;
s->ti_buf[1] = 0;
if (s->dma) {
s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
} else {
s->ti_size = 2;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[ESP_RFLAGS] = 2;
}
esp_raise_irq(s);
}
static void esp_dma_done(ESPState *s)
{
s->rregs[ESP_RSTAT] |= STAT_TC;
s->rregs[ESP_RINTR] = INTR_BS;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
s->rregs[ESP_TCLO] = 0;
s->rregs[ESP_TCMID] = 0;
esp_raise_irq(s);
}
static void esp_do_dma(ESPState *s)
{
uint32_t len;
int to_device;
to_device = (s->ti_size < 0);
len = s->dma_left;
if (s->do_cmd) {
trace_esp_do_dma(s->cmdlen, len);
s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
if (to_device) {
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
} else {
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
}
s->dma_left -= len;
s->async_buf += len;
s->async_len -= len;
if (to_device)
s->ti_size += len;
else
s->ti_size -= len;
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
/* If there is still data to be read from the device then
complete the DMA operation immediately. Otherwise defer
until the scsi layer has completed. */
if (to_device || s->dma_left != 0 || s->ti_size == 0) {
return;
}
}
/* Partially filled a scsi buffer. Complete immediately. */
esp_dma_done(s);
}
static void esp_command_complete(SCSIRequest *req, uint32_t status,
size_t resid)
{
ESPState *s = req->hba_private;
trace_esp_command_complete();
if (s->ti_size != 0) {
trace_esp_command_complete_unexpected();
}
s->ti_size = 0;
s->dma_left = 0;
s->async_len = 0;
if (status) {
trace_esp_command_complete_fail();
}
s->status = status;
s->rregs[ESP_RSTAT] = STAT_ST;
esp_dma_done(s);
if (s->current_req) {
scsi_req_unref(s->current_req);
s->current_req = NULL;
s->current_dev = NULL;
}
}
static void esp_transfer_data(SCSIRequest *req, uint32_t len)
{
ESPState *s = req->hba_private;
trace_esp_transfer_data(s->dma_left, s->ti_size);
s->async_len = len;
s->async_buf = scsi_req_get_buf(req);
if (s->dma_left) {
esp_do_dma(s);
} else if (s->dma_counter != 0 && s->ti_size <= 0) {
/* If this was the last part of a DMA transfer then the
completion interrupt is deferred to here. */
esp_dma_done(s);
}
}
static void handle_ti(ESPState *s)
{
uint32_t dmalen, minlen;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_ti;
return;
}
dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
if (dmalen==0) {
dmalen=0x10000;
}
s->dma_counter = dmalen;
if (s->do_cmd)
minlen = (dmalen < 32) ? dmalen : 32;
else if (s->ti_size < 0)
minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
else
minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
trace_esp_handle_ti(minlen);
if (s->dma) {
s->dma_left = minlen;
s->rregs[ESP_RSTAT] &= ~STAT_TC;
esp_do_dma(s);
} else if (s->do_cmd) {
trace_esp_handle_ti_cmd(s->cmdlen);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
}
static void esp_hard_reset(ESPState *s)
{
memset(s->rregs, 0, ESP_REGS);
memset(s->wregs, 0, ESP_REGS);
s->rregs[ESP_TCHI] = s->chip_id;
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->dma = 0;
s->do_cmd = 0;
s->dma_cb = NULL;
s->rregs[ESP_CFG1] = 7;
}
static void esp_soft_reset(ESPState *s)
{
qemu_irq_lower(s->irq);
esp_hard_reset(s);
}
static void parent_esp_reset(ESPState *s, int irq, int level)
{
if (level) {
esp_soft_reset(s);
}
}
static uint64_t esp_reg_read(ESPState *s, uint32_t saddr)
{
uint32_t old_val;
trace_esp_mem_readb(saddr, s->rregs[saddr]);
switch (saddr) {
case ESP_FIFO:
if (s->ti_size > 0) {
s->ti_size--;
if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
/* Data out. */
qemu_log_mask(LOG_UNIMP,
"esp: PIO data read not implemented\n");
s->rregs[ESP_FIFO] = 0;
} else {
s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
}
esp_raise_irq(s);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
s->ti_wptr = 0;
}
break;
case ESP_RINTR:
/* Clear sequence step, interrupt register and all status bits
except TC */
old_val = s->rregs[ESP_RINTR];
s->rregs[ESP_RINTR] = 0;
s->rregs[ESP_RSTAT] &= ~STAT_TC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_lower_irq(s);
return old_val;
default:
break;
}
return s->rregs[saddr];
}
static void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val)
{
trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
switch (saddr) {
case ESP_TCLO:
case ESP_TCMID:
s->rregs[ESP_RSTAT] &= ~STAT_TC;
break;
case ESP_FIFO:
if (s->do_cmd) {
s->cmdbuf[s->cmdlen++] = val & 0xff;
} else if (s->ti_size == TI_BUFSZ - 1) {
trace_esp_error_fifo_overrun();
} else {
s->ti_size++;
s->ti_buf[s->ti_wptr++] = val & 0xff;
}
break;
case ESP_CMD:
s->rregs[saddr] = val;
if (val & CMD_DMA) {
s->dma = 1;
/* Reload DMA counter. */
s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
} else {
s->dma = 0;
}
switch(val & CMD_CMD) {
case CMD_NOP:
trace_esp_mem_writeb_cmd_nop(val);
break;
case CMD_FLUSH:
trace_esp_mem_writeb_cmd_flush(val);
//s->ti_size = 0;
s->rregs[ESP_RINTR] = INTR_FC;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
break;
case CMD_RESET:
trace_esp_mem_writeb_cmd_reset(val);
esp_soft_reset(s);
break;
case CMD_BUSRESET:
trace_esp_mem_writeb_cmd_bus_reset(val);
s->rregs[ESP_RINTR] = INTR_RST;
if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
esp_raise_irq(s);
}
break;
case CMD_TI:
handle_ti(s);
break;
case CMD_ICCS:
trace_esp_mem_writeb_cmd_iccs(val);
write_response(s);
s->rregs[ESP_RINTR] = INTR_FC;
s->rregs[ESP_RSTAT] |= STAT_MI;
break;
case CMD_MSGACC:
trace_esp_mem_writeb_cmd_msgacc(val);
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
esp_raise_irq(s);
break;
case CMD_PAD:
trace_esp_mem_writeb_cmd_pad(val);
s->rregs[ESP_RSTAT] = STAT_TC;
s->rregs[ESP_RINTR] = INTR_FC;
s->rregs[ESP_RSEQ] = 0;
break;
case CMD_SATN:
trace_esp_mem_writeb_cmd_satn(val);
break;
case CMD_RSTATN:
trace_esp_mem_writeb_cmd_rstatn(val);
break;
case CMD_SEL:
trace_esp_mem_writeb_cmd_sel(val);
handle_s_without_atn(s);
break;
case CMD_SELATN:
trace_esp_mem_writeb_cmd_selatn(val);
handle_satn(s);
break;
case CMD_SELATNS:
trace_esp_mem_writeb_cmd_selatns(val);
handle_satn_stop(s);
break;
case CMD_ENSEL:
trace_esp_mem_writeb_cmd_ensel(val);
s->rregs[ESP_RINTR] = 0;
break;
case CMD_DISSEL:
trace_esp_mem_writeb_cmd_dissel(val);
s->rregs[ESP_RINTR] = 0;
esp_raise_irq(s);
break;
default:
trace_esp_error_unhandled_command(val);
break;
}
break;
case ESP_WBUSID ... ESP_WSYNO:
break;
case ESP_CFG1:
s->rregs[saddr] = val;
break;
case ESP_WCCF ... ESP_WTEST:
break;
case ESP_CFG2 ... ESP_RES4:
s->rregs[saddr] = val;
break;
default:
trace_esp_error_invalid_write(val, saddr);
return;
}
s->wregs[saddr] = val;
}
static bool esp_mem_accepts(void *opaque, target_phys_addr_t addr,
unsigned size, bool is_write)
{
return (size == 1) || (is_write && size == 4);
}
static const VMStateDescription vmstate_esp = {
.name ="esp",
.version_id = 3,
.minimum_version_id = 3,
.minimum_version_id_old = 3,
.fields = (VMStateField []) {
VMSTATE_BUFFER(rregs, ESPState),
VMSTATE_BUFFER(wregs, ESPState),
VMSTATE_INT32(ti_size, ESPState),
VMSTATE_UINT32(ti_rptr, ESPState),
VMSTATE_UINT32(ti_wptr, ESPState),
VMSTATE_BUFFER(ti_buf, ESPState),
VMSTATE_UINT32(status, ESPState),
VMSTATE_UINT32(dma, ESPState),
VMSTATE_BUFFER(cmdbuf, ESPState),
VMSTATE_UINT32(cmdlen, ESPState),
VMSTATE_UINT32(do_cmd, ESPState),
VMSTATE_UINT32(dma_left, ESPState),
VMSTATE_END_OF_LIST()
}
};
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
uint32_t it_shift;
ESPState esp;
} SysBusESPState;
static void sysbus_esp_mem_write(void *opaque, target_phys_addr_t addr,
uint64_t val, unsigned int size)
{
SysBusESPState *sysbus = opaque;
uint32_t saddr;
saddr = addr >> sysbus->it_shift;
esp_reg_write(&sysbus->esp, saddr, val);
}
static uint64_t sysbus_esp_mem_read(void *opaque, target_phys_addr_t addr,
unsigned int size)
{
SysBusESPState *sysbus = opaque;
uint32_t saddr;
saddr = addr >> sysbus->it_shift;
return esp_reg_read(&sysbus->esp, saddr);
}
static const MemoryRegionOps sysbus_esp_mem_ops = {
.read = sysbus_esp_mem_read,
.write = sysbus_esp_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.accepts = esp_mem_accepts,
};
void esp_init(target_phys_addr_t espaddr, int it_shift,
ESPDMAMemoryReadWriteFunc dma_memory_read,
ESPDMAMemoryReadWriteFunc dma_memory_write,
void *dma_opaque, qemu_irq irq, qemu_irq *reset,
qemu_irq *dma_enable)
{
DeviceState *dev;
SysBusDevice *s;
SysBusESPState *sysbus;
ESPState *esp;
dev = qdev_create(NULL, "esp");
sysbus = DO_UPCAST(SysBusESPState, busdev.qdev, dev);
esp = &sysbus->esp;
esp->dma_memory_read = dma_memory_read;
esp->dma_memory_write = dma_memory_write;
esp->dma_opaque = dma_opaque;
sysbus->it_shift = it_shift;
/* XXX for now until rc4030 has been changed to use DMA enable signal */
esp->dma_enabled = 1;
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, espaddr);
*reset = qdev_get_gpio_in(dev, 0);
*dma_enable = qdev_get_gpio_in(dev, 1);
}
static const struct SCSIBusInfo esp_scsi_info = {
.tcq = false,
.max_target = ESP_MAX_DEVS,
.max_lun = 7,
.transfer_data = esp_transfer_data,
.complete = esp_command_complete,
.cancel = esp_request_cancelled
};
static void sysbus_esp_gpio_demux(void *opaque, int irq, int level)
{
DeviceState *d = opaque;
SysBusESPState *sysbus = container_of(d, SysBusESPState, busdev.qdev);
ESPState *s = &sysbus->esp;
switch (irq) {
case 0:
parent_esp_reset(s, irq, level);
break;
case 1:
esp_dma_enable(opaque, irq, level);
break;
}
}
static int sysbus_esp_init(SysBusDevice *dev)
{
SysBusESPState *sysbus = FROM_SYSBUS(SysBusESPState, dev);
ESPState *s = &sysbus->esp;
sysbus_init_irq(dev, &s->irq);
assert(sysbus->it_shift != -1);
s->chip_id = TCHI_FAS100A;
memory_region_init_io(&sysbus->iomem, &sysbus_esp_mem_ops, sysbus,
"esp", ESP_REGS << sysbus->it_shift);
sysbus_init_mmio(dev, &sysbus->iomem);
qdev_init_gpio_in(&dev->qdev, sysbus_esp_gpio_demux, 2);
scsi_bus_new(&s->bus, &dev->qdev, &esp_scsi_info);
return scsi_bus_legacy_handle_cmdline(&s->bus);
}
static void sysbus_esp_hard_reset(DeviceState *dev)
{
SysBusESPState *sysbus = DO_UPCAST(SysBusESPState, busdev.qdev, dev);
esp_hard_reset(&sysbus->esp);
}
static const VMStateDescription vmstate_sysbus_esp_scsi = {
.name = "sysbusespscsi",
.version_id = 0,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState),
VMSTATE_END_OF_LIST()
}
};
static void sysbus_esp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = sysbus_esp_init;
dc->reset = sysbus_esp_hard_reset;
dc->vmsd = &vmstate_sysbus_esp_scsi;
}
static TypeInfo sysbus_esp_info = {
.name = "esp",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SysBusESPState),
.class_init = sysbus_esp_class_init,
};
#define DMA_CMD 0x0
#define DMA_STC 0x1
#define DMA_SPA 0x2
#define DMA_WBC 0x3
#define DMA_WAC 0x4
#define DMA_STAT 0x5
#define DMA_SMDLA 0x6
#define DMA_WMAC 0x7
#define DMA_CMD_MASK 0x03
#define DMA_CMD_DIAG 0x04
#define DMA_CMD_MDL 0x10
#define DMA_CMD_INTE_P 0x20
#define DMA_CMD_INTE_D 0x40
#define DMA_CMD_DIR 0x80
#define DMA_STAT_PWDN 0x01
#define DMA_STAT_ERROR 0x02
#define DMA_STAT_ABORT 0x04
#define DMA_STAT_DONE 0x08
#define DMA_STAT_SCSIINT 0x10
#define DMA_STAT_BCMBLT 0x20
#define SBAC_STATUS 0x1000
typedef struct PCIESPState {
PCIDevice dev;
MemoryRegion io;
uint32_t dma_regs[8];
uint32_t sbac;
ESPState esp;
} PCIESPState;
static void esp_pci_handle_idle(PCIESPState *pci, uint32_t val)
{
trace_esp_pci_dma_idle(val);
esp_dma_enable(&pci->esp, 0, 0);
}
static void esp_pci_handle_blast(PCIESPState *pci, uint32_t val)
{
trace_esp_pci_dma_blast(val);
qemu_log_mask(LOG_UNIMP, "am53c974: cmd BLAST not implemented\n");
}
static void esp_pci_handle_abort(PCIESPState *pci, uint32_t val)
{
trace_esp_pci_dma_abort(val);
if (pci->esp.current_req) {
scsi_req_cancel(pci->esp.current_req);
}
}
static void esp_pci_handle_start(PCIESPState *pci, uint32_t val)
{
trace_esp_pci_dma_start(val);
pci->dma_regs[DMA_WBC] = pci->dma_regs[DMA_STC];
pci->dma_regs[DMA_WAC] = pci->dma_regs[DMA_SPA];
pci->dma_regs[DMA_WMAC] = pci->dma_regs[DMA_SMDLA];
pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
| DMA_STAT_DONE | DMA_STAT_ABORT
| DMA_STAT_ERROR | DMA_STAT_PWDN);
esp_dma_enable(&pci->esp, 0, 1);
}
static void esp_pci_dma_write(PCIESPState *pci, uint32_t saddr, uint32_t val)
{
trace_esp_pci_dma_write(saddr, pci->dma_regs[saddr], val);
switch (saddr) {
case DMA_CMD:
pci->dma_regs[saddr] = val;
switch (val & DMA_CMD_MASK) {
case 0x0: /* IDLE */
esp_pci_handle_idle(pci, val);
break;
case 0x1: /* BLAST */
esp_pci_handle_blast(pci, val);
break;
case 0x2: /* ABORT */
esp_pci_handle_abort(pci, val);
break;
case 0x3: /* START */
esp_pci_handle_start(pci, val);
break;
default: /* can't happen */
abort();
}
break;
case DMA_STC:
case DMA_SPA:
case DMA_SMDLA:
pci->dma_regs[saddr] = val;
break;
case DMA_STAT:
if (!(pci->sbac & SBAC_STATUS)) {
/* clear some bits on write */
uint32_t mask = DMA_STAT_ERROR | DMA_STAT_ABORT | DMA_STAT_DONE;
pci->dma_regs[DMA_STAT] &= ~(val & mask);
}
break;
default:
trace_esp_pci_error_invalid_write_dma(val, saddr);
return;
}
}
static uint32_t esp_pci_dma_read(PCIESPState *pci, uint32_t saddr)
{
uint32_t val;
val = pci->dma_regs[saddr];
if (saddr == DMA_STAT) {
if (pci->esp.rregs[ESP_RSTAT] & STAT_INT) {
val |= DMA_STAT_SCSIINT;
}
if (pci->sbac & SBAC_STATUS) {
pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_ERROR | DMA_STAT_ABORT |
DMA_STAT_DONE);
}
}
trace_esp_pci_dma_read(saddr, val);
return val;
}
static void esp_pci_io_write(void *opaque, target_phys_addr_t addr,
uint64_t val, unsigned int size)
{
PCIESPState *pci = opaque;
if (size < 4 || addr & 3) {
/* need to upgrade request: we only support 4-bytes accesses */
uint32_t current = 0, mask;
int shift;
if (addr < 0x40) {
current = pci->esp.wregs[addr >> 2];
} else if (addr < 0x60) {
current = pci->dma_regs[(addr - 0x40) >> 2];
} else if (addr < 0x74) {
current = pci->sbac;
}
shift = (4 - size) * 8;
mask = (~(uint32_t)0 << shift) >> shift;
shift = ((4 - (addr & 3)) & 3) * 8;
val <<= shift;
val |= current & ~(mask << shift);
addr &= ~3;
size = 4;
}
if (addr < 0x40) {
/* SCSI core reg */
esp_reg_write(&pci->esp, addr >> 2, val);
} else if (addr < 0x60) {
/* PCI DMA CCB */
esp_pci_dma_write(pci, (addr - 0x40) >> 2, val);
} else if (addr == 0x70) {
/* DMA SCSI Bus and control */
trace_esp_pci_sbac_write(pci->sbac, val);
pci->sbac = val;
} else {
trace_esp_pci_error_invalid_write((int)addr);
}
}
static uint64_t esp_pci_io_read(void *opaque, target_phys_addr_t addr,
unsigned int size)
{
PCIESPState *pci = opaque;
uint32_t ret;
if (addr < 0x40) {
/* SCSI core reg */
ret = esp_reg_read(&pci->esp, addr >> 2);
} else if (addr < 0x60) {
/* PCI DMA CCB */
ret = esp_pci_dma_read(pci, (addr - 0x40) >> 2);
} else if (addr == 0x70) {
/* DMA SCSI Bus and control */
trace_esp_pci_sbac_read(pci->sbac);
ret = pci->sbac;
} else {
/* Invalid region */
trace_esp_pci_error_invalid_read((int)addr);
ret = 0;
}
/* give only requested data */
ret >>= (addr & 3) * 8;
ret &= ~(~(uint64_t)0 << (8 * size));
return ret;
}
static void esp_pci_dma_memory_rw(PCIESPState *pci, uint8_t *buf, int len,
DMADirection dir)
{
dma_addr_t addr;
DMADirection expected_dir;
if (pci->dma_regs[DMA_CMD] & DMA_CMD_DIR) {
expected_dir = DMA_DIRECTION_FROM_DEVICE;
} else {
expected_dir = DMA_DIRECTION_TO_DEVICE;
}
if (dir != expected_dir) {
trace_esp_pci_error_invalid_dma_direction();
return;
}
if (pci->dma_regs[DMA_STAT] & DMA_CMD_MDL) {
qemu_log_mask(LOG_UNIMP, "am53c974: MDL transfer not implemented\n");
}
addr = pci->dma_regs[DMA_SPA];
if (pci->dma_regs[DMA_WBC] < len) {
len = pci->dma_regs[DMA_WBC];
}
pci_dma_rw(&pci->dev, addr, buf, len, dir);
/* update status registers */
pci->dma_regs[DMA_WBC] -= len;
pci->dma_regs[DMA_WAC] += len;
}
static void esp_pci_dma_memory_read(void *opaque, uint8_t *buf, int len)
{
PCIESPState *pci = opaque;
esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_TO_DEVICE);
}
static void esp_pci_dma_memory_write(void *opaque, uint8_t *buf, int len)
{
PCIESPState *pci = opaque;
esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_FROM_DEVICE);
}
static const MemoryRegionOps esp_pci_io_ops = {
.read = esp_pci_io_read,
.write = esp_pci_io_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static void esp_pci_hard_reset(DeviceState *dev)
{
PCIESPState *pci = DO_UPCAST(PCIESPState, dev.qdev, dev);
esp_hard_reset(&pci->esp);
pci->dma_regs[DMA_CMD] &= ~(DMA_CMD_DIR | DMA_CMD_INTE_D | DMA_CMD_INTE_P
| DMA_CMD_MDL | DMA_CMD_DIAG | DMA_CMD_MASK);
pci->dma_regs[DMA_WBC] &= ~0xffff;
pci->dma_regs[DMA_WAC] = 0xffffffff;
pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
| DMA_STAT_DONE | DMA_STAT_ABORT
| DMA_STAT_ERROR);
pci->dma_regs[DMA_WMAC] = 0xfffffffd;
}
static const VMStateDescription vmstate_esp_pci_scsi = {
.name = "pciespscsi",
.version_id = 0,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(dev, PCIESPState),
VMSTATE_BUFFER_UNSAFE(dma_regs, PCIESPState, 0, 8 * sizeof(uint32_t)),
VMSTATE_STRUCT(esp, PCIESPState, 0, vmstate_esp, ESPState),
VMSTATE_END_OF_LIST()
}
};
static void esp_pci_command_complete(SCSIRequest *req, uint32_t status,
size_t resid)
{
ESPState *s = req->hba_private;
PCIESPState *pci = container_of(s, PCIESPState, esp);
esp_command_complete(req, status, resid);
pci->dma_regs[DMA_WBC] = 0;
pci->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
}
static const struct SCSIBusInfo esp_pci_scsi_info = {
.tcq = false,
.max_target = ESP_MAX_DEVS,
.max_lun = 7,
.transfer_data = esp_transfer_data,
.complete = esp_pci_command_complete,
.cancel = esp_request_cancelled,
};
static int esp_pci_scsi_init(PCIDevice *dev)
{
PCIESPState *pci = DO_UPCAST(PCIESPState, dev, dev);
ESPState *s = &pci->esp;
uint8_t *pci_conf;
pci_conf = pci->dev.config;
/* Interrupt pin A */
pci_conf[PCI_INTERRUPT_PIN] = 0x01;
s->dma_memory_read = esp_pci_dma_memory_read;
s->dma_memory_write = esp_pci_dma_memory_write;
s->dma_opaque = pci;
s->chip_id = TCHI_AM53C974;
memory_region_init_io(&pci->io, &esp_pci_io_ops, pci, "esp-io", 0x80);
pci_register_bar(&pci->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &pci->io);
s->irq = pci->dev.irq[0];
scsi_bus_new(&s->bus, &dev->qdev, &esp_pci_scsi_info);
if (!dev->qdev.hotplugged) {
return scsi_bus_legacy_handle_cmdline(&s->bus);
}
return 0;
}
static int esp_pci_scsi_uninit(PCIDevice *d)
{
PCIESPState *pci = DO_UPCAST(PCIESPState, dev, d);
memory_region_destroy(&pci->io);
return 0;
}
static void esp_pci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = esp_pci_scsi_init;
k->exit = esp_pci_scsi_uninit;
k->vendor_id = PCI_VENDOR_ID_AMD;
k->device_id = PCI_DEVICE_ID_AMD_SCSI;
k->revision = 0x10;
k->class_id = PCI_CLASS_STORAGE_SCSI;
dc->desc = "AMD Am53c974 PCscsi-PCI SCSI adapter";
dc->reset = esp_pci_hard_reset;
dc->vmsd = &vmstate_esp_pci_scsi;
}
static TypeInfo esp_pci_info = {
.name = "am53c974",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(PCIESPState),
.class_init = esp_pci_class_init,
};
static void esp_register_types(void)
{
type_register_static(&sysbus_esp_info);
type_register_static(&esp_pci_info);
}
type_init(esp_register_types)