qemu-e2k/util/coroutine-ucontext.c
Stefan Hajnoczi 34145a307d coroutine-ucontext: use QEMU_DEFINE_STATIC_CO_TLS()
Thread-Local Storage variables cannot be used directly from coroutine
code because the compiler may optimize TLS variable accesses across
qemu_coroutine_yield() calls. When the coroutine is re-entered from
another thread the TLS variables from the old thread must no longer be
used.

Use QEMU_DEFINE_STATIC_CO_TLS() for the current and leader variables.

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20220307153853.602859-2-stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2022-05-04 15:55:23 +02:00

343 lines
9.7 KiB
C

/*
* ucontext coroutine initialization code
*
* Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
* Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.0 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
#ifdef _FORTIFY_SOURCE
#undef _FORTIFY_SOURCE
#endif
#include "qemu/osdep.h"
#include <ucontext.h>
#include "qemu/coroutine_int.h"
#include "qemu/coroutine-tls.h"
#ifdef CONFIG_VALGRIND_H
#include <valgrind/valgrind.h>
#endif
#ifdef QEMU_SANITIZE_ADDRESS
#ifdef CONFIG_ASAN_IFACE_FIBER
#define CONFIG_ASAN 1
#include <sanitizer/asan_interface.h>
#endif
#endif
#ifdef CONFIG_TSAN
#include <sanitizer/tsan_interface.h>
#endif
typedef struct {
Coroutine base;
void *stack;
size_t stack_size;
#ifdef CONFIG_SAFESTACK
/* Need an unsafe stack for each coroutine */
void *unsafe_stack;
size_t unsafe_stack_size;
#endif
sigjmp_buf env;
#ifdef CONFIG_TSAN
void *tsan_co_fiber;
void *tsan_caller_fiber;
#endif
#ifdef CONFIG_VALGRIND_H
unsigned int valgrind_stack_id;
#endif
} CoroutineUContext;
/**
* Per-thread coroutine bookkeeping
*/
QEMU_DEFINE_STATIC_CO_TLS(Coroutine *, current);
QEMU_DEFINE_STATIC_CO_TLS(CoroutineUContext, leader);
/*
* va_args to makecontext() must be type 'int', so passing
* the pointer we need may require several int args. This
* union is a quick hack to let us do that
*/
union cc_arg {
void *p;
int i[2];
};
/*
* QEMU_ALWAYS_INLINE only does so if __OPTIMIZE__, so we cannot use it.
* always_inline is required to avoid TSan runtime fatal errors.
*/
static inline __attribute__((always_inline))
void on_new_fiber(CoroutineUContext *co)
{
#ifdef CONFIG_TSAN
co->tsan_co_fiber = __tsan_create_fiber(0); /* flags: sync on switch */
co->tsan_caller_fiber = __tsan_get_current_fiber();
#endif
}
/* always_inline is required to avoid TSan runtime fatal errors. */
static inline __attribute__((always_inline))
void finish_switch_fiber(void *fake_stack_save)
{
#ifdef CONFIG_ASAN
CoroutineUContext *leaderp = get_ptr_leader();
const void *bottom_old;
size_t size_old;
__sanitizer_finish_switch_fiber(fake_stack_save, &bottom_old, &size_old);
if (!leaderp->stack) {
leaderp->stack = (void *)bottom_old;
leaderp->stack_size = size_old;
}
#endif
#ifdef CONFIG_TSAN
if (fake_stack_save) {
__tsan_release(fake_stack_save);
__tsan_switch_to_fiber(fake_stack_save, 0); /* 0=synchronize */
}
#endif
}
/* always_inline is required to avoid TSan runtime fatal errors. */
static inline __attribute__((always_inline))
void start_switch_fiber_asan(CoroutineAction action, void **fake_stack_save,
const void *bottom, size_t size)
{
#ifdef CONFIG_ASAN
__sanitizer_start_switch_fiber(
action == COROUTINE_TERMINATE ? NULL : fake_stack_save,
bottom, size);
#endif
}
/* always_inline is required to avoid TSan runtime fatal errors. */
static inline __attribute__((always_inline))
void start_switch_fiber_tsan(void **fake_stack_save,
CoroutineUContext *co,
bool caller)
{
#ifdef CONFIG_TSAN
void *new_fiber = caller ?
co->tsan_caller_fiber :
co->tsan_co_fiber;
void *curr_fiber = __tsan_get_current_fiber();
__tsan_acquire(curr_fiber);
*fake_stack_save = curr_fiber;
__tsan_switch_to_fiber(new_fiber, 0); /* 0=synchronize */
#endif
}
static void coroutine_trampoline(int i0, int i1)
{
union cc_arg arg;
CoroutineUContext *self;
Coroutine *co;
void *fake_stack_save = NULL;
finish_switch_fiber(NULL);
arg.i[0] = i0;
arg.i[1] = i1;
self = arg.p;
co = &self->base;
/* Initialize longjmp environment and switch back the caller */
if (!sigsetjmp(self->env, 0)) {
CoroutineUContext *leaderp = get_ptr_leader();
start_switch_fiber_asan(COROUTINE_YIELD, &fake_stack_save,
leaderp->stack, leaderp->stack_size);
start_switch_fiber_tsan(&fake_stack_save, self, true); /* true=caller */
siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
}
finish_switch_fiber(fake_stack_save);
while (true) {
co->entry(co->entry_arg);
qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
}
}
Coroutine *qemu_coroutine_new(void)
{
CoroutineUContext *co;
ucontext_t old_uc, uc;
sigjmp_buf old_env;
union cc_arg arg = {0};
void *fake_stack_save = NULL;
/* The ucontext functions preserve signal masks which incurs a
* system call overhead. sigsetjmp(buf, 0)/siglongjmp() does not
* preserve signal masks but only works on the current stack.
* Since we need a way to create and switch to a new stack, use
* the ucontext functions for that but sigsetjmp()/siglongjmp() for
* everything else.
*/
if (getcontext(&uc) == -1) {
abort();
}
co = g_malloc0(sizeof(*co));
co->stack_size = COROUTINE_STACK_SIZE;
co->stack = qemu_alloc_stack(&co->stack_size);
#ifdef CONFIG_SAFESTACK
co->unsafe_stack_size = COROUTINE_STACK_SIZE;
co->unsafe_stack = qemu_alloc_stack(&co->unsafe_stack_size);
#endif
co->base.entry_arg = &old_env; /* stash away our jmp_buf */
uc.uc_link = &old_uc;
uc.uc_stack.ss_sp = co->stack;
uc.uc_stack.ss_size = co->stack_size;
uc.uc_stack.ss_flags = 0;
#ifdef CONFIG_VALGRIND_H
co->valgrind_stack_id =
VALGRIND_STACK_REGISTER(co->stack, co->stack + co->stack_size);
#endif
arg.p = co;
on_new_fiber(co);
makecontext(&uc, (void (*)(void))coroutine_trampoline,
2, arg.i[0], arg.i[1]);
/* swapcontext() in, siglongjmp() back out */
if (!sigsetjmp(old_env, 0)) {
start_switch_fiber_asan(COROUTINE_YIELD, &fake_stack_save, co->stack,
co->stack_size);
start_switch_fiber_tsan(&fake_stack_save,
co, false); /* false=not caller */
#ifdef CONFIG_SAFESTACK
/*
* Before we swap the context, set the new unsafe stack
* The unsafe stack grows just like the normal stack, so start from
* the last usable location of the memory area.
* NOTE: we don't have to re-set the usp afterwards because we are
* coming back to this context through a siglongjmp.
* The compiler already wrapped the corresponding sigsetjmp call with
* code that saves the usp on the (safe) stack before the call, and
* restores it right after (which is where we return with siglongjmp).
*/
void *usp = co->unsafe_stack + co->unsafe_stack_size;
__safestack_unsafe_stack_ptr = usp;
#endif
swapcontext(&old_uc, &uc);
}
finish_switch_fiber(fake_stack_save);
return &co->base;
}
#ifdef CONFIG_VALGRIND_H
/* Work around an unused variable in the valgrind.h macro... */
#if !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#endif
static inline void valgrind_stack_deregister(CoroutineUContext *co)
{
VALGRIND_STACK_DEREGISTER(co->valgrind_stack_id);
}
#if !defined(__clang__)
#pragma GCC diagnostic pop
#endif
#endif
void qemu_coroutine_delete(Coroutine *co_)
{
CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
#ifdef CONFIG_VALGRIND_H
valgrind_stack_deregister(co);
#endif
qemu_free_stack(co->stack, co->stack_size);
#ifdef CONFIG_SAFESTACK
qemu_free_stack(co->unsafe_stack, co->unsafe_stack_size);
#endif
g_free(co);
}
/* This function is marked noinline to prevent GCC from inlining it
* into coroutine_trampoline(). If we allow it to do that then it
* hoists the code to get the address of the TLS variable "current"
* out of the while() loop. This is an invalid transformation because
* the sigsetjmp() call may be called when running thread A but
* return in thread B, and so we might be in a different thread
* context each time round the loop.
*/
CoroutineAction __attribute__((noinline))
qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
CoroutineAction action)
{
CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
int ret;
void *fake_stack_save = NULL;
set_current(to_);
ret = sigsetjmp(from->env, 0);
if (ret == 0) {
start_switch_fiber_asan(action, &fake_stack_save, to->stack,
to->stack_size);
start_switch_fiber_tsan(&fake_stack_save,
to, false); /* false=not caller */
siglongjmp(to->env, action);
}
finish_switch_fiber(fake_stack_save);
return ret;
}
Coroutine *qemu_coroutine_self(void)
{
Coroutine *self = get_current();
CoroutineUContext *leaderp = get_ptr_leader();
if (!self) {
self = &leaderp->base;
set_current(self);
}
#ifdef CONFIG_TSAN
if (!leaderp->tsan_co_fiber) {
leaderp->tsan_co_fiber = __tsan_get_current_fiber();
}
#endif
return self;
}
bool qemu_in_coroutine(void)
{
Coroutine *self = get_current();
return self && self->caller;
}