4eee57f57e
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4359 c046a42c-6fe2-441c-8c8c-71466251a162
1553 lines
52 KiB
C
1553 lines
52 KiB
C
/*
|
|
* i386 emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include "config.h"
|
|
#include "exec.h"
|
|
#include "disas.h"
|
|
|
|
#if !defined(CONFIG_SOFTMMU)
|
|
#undef EAX
|
|
#undef ECX
|
|
#undef EDX
|
|
#undef EBX
|
|
#undef ESP
|
|
#undef EBP
|
|
#undef ESI
|
|
#undef EDI
|
|
#undef EIP
|
|
#include <signal.h>
|
|
#include <sys/ucontext.h>
|
|
#endif
|
|
|
|
int tb_invalidated_flag;
|
|
static unsigned long next_tb;
|
|
|
|
//#define DEBUG_EXEC
|
|
//#define DEBUG_SIGNAL
|
|
|
|
#define SAVE_GLOBALS()
|
|
#define RESTORE_GLOBALS()
|
|
|
|
#if defined(__sparc__) && !defined(HOST_SOLARIS)
|
|
#include <features.h>
|
|
#if defined(__GLIBC__) && ((__GLIBC__ < 2) || \
|
|
((__GLIBC__ == 2) && (__GLIBC_MINOR__ <= 90)))
|
|
// Work around ugly bugs in glibc that mangle global register contents
|
|
|
|
static volatile void *saved_env;
|
|
static volatile unsigned long saved_t0, saved_i7;
|
|
#undef SAVE_GLOBALS
|
|
#define SAVE_GLOBALS() do { \
|
|
saved_env = env; \
|
|
saved_t0 = T0; \
|
|
asm volatile ("st %%i7, [%0]" : : "r" (&saved_i7)); \
|
|
} while(0)
|
|
|
|
#undef RESTORE_GLOBALS
|
|
#define RESTORE_GLOBALS() do { \
|
|
env = (void *)saved_env; \
|
|
T0 = saved_t0; \
|
|
asm volatile ("ld [%0], %%i7" : : "r" (&saved_i7)); \
|
|
} while(0)
|
|
|
|
static int sparc_setjmp(jmp_buf buf)
|
|
{
|
|
int ret;
|
|
|
|
SAVE_GLOBALS();
|
|
ret = setjmp(buf);
|
|
RESTORE_GLOBALS();
|
|
return ret;
|
|
}
|
|
#undef setjmp
|
|
#define setjmp(jmp_buf) sparc_setjmp(jmp_buf)
|
|
|
|
static void sparc_longjmp(jmp_buf buf, int val)
|
|
{
|
|
SAVE_GLOBALS();
|
|
longjmp(buf, val);
|
|
}
|
|
#define longjmp(jmp_buf, val) sparc_longjmp(jmp_buf, val)
|
|
#endif
|
|
#endif
|
|
|
|
void cpu_loop_exit(void)
|
|
{
|
|
/* NOTE: the register at this point must be saved by hand because
|
|
longjmp restore them */
|
|
regs_to_env();
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
|
|
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
|
|
#define reg_T2
|
|
#endif
|
|
|
|
/* exit the current TB from a signal handler. The host registers are
|
|
restored in a state compatible with the CPU emulator
|
|
*/
|
|
void cpu_resume_from_signal(CPUState *env1, void *puc)
|
|
{
|
|
#if !defined(CONFIG_SOFTMMU)
|
|
struct ucontext *uc = puc;
|
|
#endif
|
|
|
|
env = env1;
|
|
|
|
/* XXX: restore cpu registers saved in host registers */
|
|
|
|
#if !defined(CONFIG_SOFTMMU)
|
|
if (puc) {
|
|
/* XXX: use siglongjmp ? */
|
|
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
|
}
|
|
#endif
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
|
|
static TranslationBlock *tb_find_slow(target_ulong pc,
|
|
target_ulong cs_base,
|
|
uint64_t flags)
|
|
{
|
|
TranslationBlock *tb, **ptb1;
|
|
int code_gen_size;
|
|
unsigned int h;
|
|
target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
|
|
uint8_t *tc_ptr;
|
|
|
|
spin_lock(&tb_lock);
|
|
|
|
tb_invalidated_flag = 0;
|
|
|
|
regs_to_env(); /* XXX: do it just before cpu_gen_code() */
|
|
|
|
/* find translated block using physical mappings */
|
|
phys_pc = get_phys_addr_code(env, pc);
|
|
phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
|
phys_page2 = -1;
|
|
h = tb_phys_hash_func(phys_pc);
|
|
ptb1 = &tb_phys_hash[h];
|
|
for(;;) {
|
|
tb = *ptb1;
|
|
if (!tb)
|
|
goto not_found;
|
|
if (tb->pc == pc &&
|
|
tb->page_addr[0] == phys_page1 &&
|
|
tb->cs_base == cs_base &&
|
|
tb->flags == flags) {
|
|
/* check next page if needed */
|
|
if (tb->page_addr[1] != -1) {
|
|
virt_page2 = (pc & TARGET_PAGE_MASK) +
|
|
TARGET_PAGE_SIZE;
|
|
phys_page2 = get_phys_addr_code(env, virt_page2);
|
|
if (tb->page_addr[1] == phys_page2)
|
|
goto found;
|
|
} else {
|
|
goto found;
|
|
}
|
|
}
|
|
ptb1 = &tb->phys_hash_next;
|
|
}
|
|
not_found:
|
|
/* if no translated code available, then translate it now */
|
|
tb = tb_alloc(pc);
|
|
if (!tb) {
|
|
/* flush must be done */
|
|
tb_flush(env);
|
|
/* cannot fail at this point */
|
|
tb = tb_alloc(pc);
|
|
/* don't forget to invalidate previous TB info */
|
|
tb_invalidated_flag = 1;
|
|
}
|
|
tc_ptr = code_gen_ptr;
|
|
tb->tc_ptr = tc_ptr;
|
|
tb->cs_base = cs_base;
|
|
tb->flags = flags;
|
|
SAVE_GLOBALS();
|
|
cpu_gen_code(env, tb, &code_gen_size);
|
|
RESTORE_GLOBALS();
|
|
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
|
|
|
|
/* check next page if needed */
|
|
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
|
phys_page2 = -1;
|
|
if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
|
phys_page2 = get_phys_addr_code(env, virt_page2);
|
|
}
|
|
tb_link_phys(tb, phys_pc, phys_page2);
|
|
|
|
found:
|
|
/* we add the TB in the virtual pc hash table */
|
|
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
|
|
spin_unlock(&tb_lock);
|
|
return tb;
|
|
}
|
|
|
|
static inline TranslationBlock *tb_find_fast(void)
|
|
{
|
|
TranslationBlock *tb;
|
|
target_ulong cs_base, pc;
|
|
uint64_t flags;
|
|
|
|
/* we record a subset of the CPU state. It will
|
|
always be the same before a given translated block
|
|
is executed. */
|
|
#if defined(TARGET_I386)
|
|
flags = env->hflags;
|
|
flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
|
|
flags |= env->intercept;
|
|
cs_base = env->segs[R_CS].base;
|
|
pc = cs_base + env->eip;
|
|
#elif defined(TARGET_ARM)
|
|
flags = env->thumb | (env->vfp.vec_len << 1)
|
|
| (env->vfp.vec_stride << 4);
|
|
if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
|
|
flags |= (1 << 6);
|
|
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
|
|
flags |= (1 << 7);
|
|
flags |= (env->condexec_bits << 8);
|
|
cs_base = 0;
|
|
pc = env->regs[15];
|
|
#elif defined(TARGET_SPARC)
|
|
#ifdef TARGET_SPARC64
|
|
// Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
|
|
flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
|
|
| (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
|
|
#else
|
|
// FPU enable . Supervisor
|
|
flags = (env->psref << 4) | env->psrs;
|
|
#endif
|
|
cs_base = env->npc;
|
|
pc = env->pc;
|
|
#elif defined(TARGET_PPC)
|
|
flags = env->hflags;
|
|
cs_base = 0;
|
|
pc = env->nip;
|
|
#elif defined(TARGET_MIPS)
|
|
flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
|
|
cs_base = 0;
|
|
pc = env->PC[env->current_tc];
|
|
#elif defined(TARGET_M68K)
|
|
flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
|
|
| (env->sr & SR_S) /* Bit 13 */
|
|
| ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
|
|
cs_base = 0;
|
|
pc = env->pc;
|
|
#elif defined(TARGET_SH4)
|
|
flags = env->flags;
|
|
cs_base = 0;
|
|
pc = env->pc;
|
|
#elif defined(TARGET_ALPHA)
|
|
flags = env->ps;
|
|
cs_base = 0;
|
|
pc = env->pc;
|
|
#elif defined(TARGET_CRIS)
|
|
flags = env->pregs[PR_CCS] & (U_FLAG | X_FLAG);
|
|
cs_base = 0;
|
|
pc = env->pc;
|
|
#else
|
|
#error unsupported CPU
|
|
#endif
|
|
tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
|
|
if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
|
tb->flags != flags, 0)) {
|
|
tb = tb_find_slow(pc, cs_base, flags);
|
|
/* Note: we do it here to avoid a gcc bug on Mac OS X when
|
|
doing it in tb_find_slow */
|
|
if (tb_invalidated_flag) {
|
|
/* as some TB could have been invalidated because
|
|
of memory exceptions while generating the code, we
|
|
must recompute the hash index here */
|
|
next_tb = 0;
|
|
}
|
|
}
|
|
return tb;
|
|
}
|
|
|
|
/* main execution loop */
|
|
|
|
int cpu_exec(CPUState *env1)
|
|
{
|
|
#define DECLARE_HOST_REGS 1
|
|
#include "hostregs_helper.h"
|
|
#if defined(TARGET_SPARC)
|
|
#if defined(reg_REGWPTR)
|
|
uint32_t *saved_regwptr;
|
|
#endif
|
|
#endif
|
|
int ret, interrupt_request;
|
|
unsigned long (*gen_func)(void);
|
|
TranslationBlock *tb;
|
|
uint8_t *tc_ptr;
|
|
|
|
if (cpu_halted(env1) == EXCP_HALTED)
|
|
return EXCP_HALTED;
|
|
|
|
cpu_single_env = env1;
|
|
|
|
/* first we save global registers */
|
|
#define SAVE_HOST_REGS 1
|
|
#include "hostregs_helper.h"
|
|
env = env1;
|
|
SAVE_GLOBALS();
|
|
|
|
env_to_regs();
|
|
#if defined(TARGET_I386)
|
|
/* put eflags in CPU temporary format */
|
|
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
|
CC_OP = CC_OP_EFLAGS;
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
#elif defined(TARGET_SPARC)
|
|
#if defined(reg_REGWPTR)
|
|
saved_regwptr = REGWPTR;
|
|
#endif
|
|
#elif defined(TARGET_M68K)
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->cc_dest = env->sr & 0xf;
|
|
env->cc_x = (env->sr >> 4) & 1;
|
|
#elif defined(TARGET_ALPHA)
|
|
#elif defined(TARGET_ARM)
|
|
#elif defined(TARGET_PPC)
|
|
#elif defined(TARGET_MIPS)
|
|
#elif defined(TARGET_SH4)
|
|
#elif defined(TARGET_CRIS)
|
|
/* XXXXX */
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
env->exception_index = -1;
|
|
|
|
/* prepare setjmp context for exception handling */
|
|
for(;;) {
|
|
if (setjmp(env->jmp_env) == 0) {
|
|
env->current_tb = NULL;
|
|
/* if an exception is pending, we execute it here */
|
|
if (env->exception_index >= 0) {
|
|
if (env->exception_index >= EXCP_INTERRUPT) {
|
|
/* exit request from the cpu execution loop */
|
|
ret = env->exception_index;
|
|
break;
|
|
} else if (env->user_mode_only) {
|
|
/* if user mode only, we simulate a fake exception
|
|
which will be handled outside the cpu execution
|
|
loop */
|
|
#if defined(TARGET_I386)
|
|
do_interrupt_user(env->exception_index,
|
|
env->exception_is_int,
|
|
env->error_code,
|
|
env->exception_next_eip);
|
|
#endif
|
|
ret = env->exception_index;
|
|
break;
|
|
} else {
|
|
#if defined(TARGET_I386)
|
|
/* simulate a real cpu exception. On i386, it can
|
|
trigger new exceptions, but we do not handle
|
|
double or triple faults yet. */
|
|
do_interrupt(env->exception_index,
|
|
env->exception_is_int,
|
|
env->error_code,
|
|
env->exception_next_eip, 0);
|
|
/* successfully delivered */
|
|
env->old_exception = -1;
|
|
#elif defined(TARGET_PPC)
|
|
do_interrupt(env);
|
|
#elif defined(TARGET_MIPS)
|
|
do_interrupt(env);
|
|
#elif defined(TARGET_SPARC)
|
|
do_interrupt(env->exception_index);
|
|
#elif defined(TARGET_ARM)
|
|
do_interrupt(env);
|
|
#elif defined(TARGET_SH4)
|
|
do_interrupt(env);
|
|
#elif defined(TARGET_ALPHA)
|
|
do_interrupt(env);
|
|
#elif defined(TARGET_CRIS)
|
|
do_interrupt(env);
|
|
#elif defined(TARGET_M68K)
|
|
do_interrupt(0);
|
|
#endif
|
|
}
|
|
env->exception_index = -1;
|
|
}
|
|
#ifdef USE_KQEMU
|
|
if (kqemu_is_ok(env) && env->interrupt_request == 0) {
|
|
int ret;
|
|
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
|
ret = kqemu_cpu_exec(env);
|
|
/* put eflags in CPU temporary format */
|
|
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
|
CC_OP = CC_OP_EFLAGS;
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
if (ret == 1) {
|
|
/* exception */
|
|
longjmp(env->jmp_env, 1);
|
|
} else if (ret == 2) {
|
|
/* softmmu execution needed */
|
|
} else {
|
|
if (env->interrupt_request != 0) {
|
|
/* hardware interrupt will be executed just after */
|
|
} else {
|
|
/* otherwise, we restart */
|
|
longjmp(env->jmp_env, 1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
next_tb = 0; /* force lookup of first TB */
|
|
for(;;) {
|
|
SAVE_GLOBALS();
|
|
interrupt_request = env->interrupt_request;
|
|
if (__builtin_expect(interrupt_request, 0)
|
|
#if defined(TARGET_I386)
|
|
&& env->hflags & HF_GIF_MASK
|
|
#endif
|
|
) {
|
|
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
|
env->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit();
|
|
}
|
|
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
|
defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
|
|
if (interrupt_request & CPU_INTERRUPT_HALT) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
|
env->halted = 1;
|
|
env->exception_index = EXCP_HLT;
|
|
cpu_loop_exit();
|
|
}
|
|
#endif
|
|
#if defined(TARGET_I386)
|
|
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
|
!(env->hflags & HF_SMM_MASK)) {
|
|
svm_check_intercept(SVM_EXIT_SMI);
|
|
env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
|
do_smm_enter();
|
|
next_tb = 0;
|
|
} else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
|
|
!(env->hflags & HF_NMI_MASK)) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
|
env->hflags |= HF_NMI_MASK;
|
|
do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
|
|
next_tb = 0;
|
|
} else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
|
|
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
|
int intno;
|
|
svm_check_intercept(SVM_EXIT_INTR);
|
|
env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
|
|
intno = cpu_get_pic_interrupt(env);
|
|
if (loglevel & CPU_LOG_TB_IN_ASM) {
|
|
fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
|
|
}
|
|
do_interrupt(intno, 0, 0, 0, 1);
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
next_tb = 0;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
} else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
|
|
(env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
|
int intno;
|
|
/* FIXME: this should respect TPR */
|
|
env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
|
svm_check_intercept(SVM_EXIT_VINTR);
|
|
intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
|
if (loglevel & CPU_LOG_TB_IN_ASM)
|
|
fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
|
|
do_interrupt(intno, 0, 0, -1, 1);
|
|
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
|
|
ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
|
|
next_tb = 0;
|
|
#endif
|
|
}
|
|
#elif defined(TARGET_PPC)
|
|
#if 0
|
|
if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
|
cpu_ppc_reset(env);
|
|
}
|
|
#endif
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
ppc_hw_interrupt(env);
|
|
if (env->pending_interrupts == 0)
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_MIPS)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
|
|
(env->CP0_Status & (1 << CP0St_IE)) &&
|
|
!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM)) {
|
|
/* Raise it */
|
|
env->exception_index = EXCP_EXT_INTERRUPT;
|
|
env->error_code = 0;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_SPARC)
|
|
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->psret != 0)) {
|
|
int pil = env->interrupt_index & 15;
|
|
int type = env->interrupt_index & 0xf0;
|
|
|
|
if (((type == TT_EXTINT) &&
|
|
(pil == 15 || pil > env->psrpil)) ||
|
|
type != TT_EXTINT) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
|
do_interrupt(env->interrupt_index);
|
|
env->interrupt_index = 0;
|
|
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
|
|
cpu_check_irqs(env);
|
|
#endif
|
|
next_tb = 0;
|
|
}
|
|
} else if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
|
//do_interrupt(0, 0, 0, 0, 0);
|
|
env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
|
|
}
|
|
#elif defined(TARGET_ARM)
|
|
if (interrupt_request & CPU_INTERRUPT_FIQ
|
|
&& !(env->uncached_cpsr & CPSR_F)) {
|
|
env->exception_index = EXCP_FIQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
/* ARMv7-M interrupt return works by loading a magic value
|
|
into the PC. On real hardware the load causes the
|
|
return to occur. The qemu implementation performs the
|
|
jump normally, then does the exception return when the
|
|
CPU tries to execute code at the magic address.
|
|
This will cause the magic PC value to be pushed to
|
|
the stack if an interrupt occured at the wrong time.
|
|
We avoid this by disabling interrupts when
|
|
pc contains a magic address. */
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& ((IS_M(env) && env->regs[15] < 0xfffffff0)
|
|
|| !(env->uncached_cpsr & CPSR_I))) {
|
|
env->exception_index = EXCP_IRQ;
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_SH4)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_ALPHA)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_CRIS)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
do_interrupt(env);
|
|
next_tb = 0;
|
|
}
|
|
#elif defined(TARGET_M68K)
|
|
if (interrupt_request & CPU_INTERRUPT_HARD
|
|
&& ((env->sr & SR_I) >> SR_I_SHIFT)
|
|
< env->pending_level) {
|
|
/* Real hardware gets the interrupt vector via an
|
|
IACK cycle at this point. Current emulated
|
|
hardware doesn't rely on this, so we
|
|
provide/save the vector when the interrupt is
|
|
first signalled. */
|
|
env->exception_index = env->pending_vector;
|
|
do_interrupt(1);
|
|
next_tb = 0;
|
|
}
|
|
#endif
|
|
/* Don't use the cached interupt_request value,
|
|
do_interrupt may have updated the EXITTB flag. */
|
|
if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
next_tb = 0;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_EXIT) {
|
|
env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
|
|
env->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit();
|
|
}
|
|
}
|
|
#ifdef DEBUG_EXEC
|
|
if ((loglevel & CPU_LOG_TB_CPU)) {
|
|
/* restore flags in standard format */
|
|
regs_to_env();
|
|
#if defined(TARGET_I386)
|
|
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
|
cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
|
|
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
|
#elif defined(TARGET_ARM)
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_SPARC)
|
|
REGWPTR = env->regbase + (env->cwp * 16);
|
|
env->regwptr = REGWPTR;
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_PPC)
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_M68K)
|
|
cpu_m68k_flush_flags(env, env->cc_op);
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->sr = (env->sr & 0xffe0)
|
|
| env->cc_dest | (env->cc_x << 4);
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_MIPS)
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_SH4)
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_ALPHA)
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#elif defined(TARGET_CRIS)
|
|
cpu_dump_state(env, logfile, fprintf, 0);
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
}
|
|
#endif
|
|
tb = tb_find_fast();
|
|
#ifdef DEBUG_EXEC
|
|
if ((loglevel & CPU_LOG_EXEC)) {
|
|
fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
|
|
(long)tb->tc_ptr, tb->pc,
|
|
lookup_symbol(tb->pc));
|
|
}
|
|
#endif
|
|
RESTORE_GLOBALS();
|
|
/* see if we can patch the calling TB. When the TB
|
|
spans two pages, we cannot safely do a direct
|
|
jump. */
|
|
{
|
|
if (next_tb != 0 &&
|
|
#if USE_KQEMU
|
|
(env->kqemu_enabled != 2) &&
|
|
#endif
|
|
tb->page_addr[1] == -1) {
|
|
spin_lock(&tb_lock);
|
|
tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
|
|
spin_unlock(&tb_lock);
|
|
}
|
|
}
|
|
tc_ptr = tb->tc_ptr;
|
|
env->current_tb = tb;
|
|
/* execute the generated code */
|
|
gen_func = (void *)tc_ptr;
|
|
#if defined(__sparc__)
|
|
__asm__ __volatile__("call %0\n\t"
|
|
"mov %%o7,%%i0"
|
|
: /* no outputs */
|
|
: "r" (gen_func)
|
|
: "i0", "i1", "i2", "i3", "i4", "i5",
|
|
"o0", "o1", "o2", "o3", "o4", "o5",
|
|
"l0", "l1", "l2", "l3", "l4", "l5",
|
|
"l6", "l7");
|
|
#elif defined(__hppa__)
|
|
asm volatile ("ble 0(%%sr4,%1)\n"
|
|
"copy %%r31,%%r18\n"
|
|
"copy %%r28,%0\n"
|
|
: "=r" (next_tb)
|
|
: "r" (gen_func)
|
|
: "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13",
|
|
"r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29",
|
|
"r30", "r31");
|
|
#elif defined(__arm__)
|
|
asm volatile ("mov pc, %0\n\t"
|
|
".global exec_loop\n\t"
|
|
"exec_loop:\n\t"
|
|
: /* no outputs */
|
|
: "r" (gen_func)
|
|
: "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
|
|
#elif defined(__ia64)
|
|
struct fptr {
|
|
void *ip;
|
|
void *gp;
|
|
} fp;
|
|
|
|
fp.ip = tc_ptr;
|
|
fp.gp = code_gen_buffer + 2 * (1 << 20);
|
|
(*(void (*)(void)) &fp)();
|
|
#elif defined(__i386)
|
|
asm volatile ("sub $12, %%esp\n\t"
|
|
"push %%ebp\n\t"
|
|
"call *%1\n\t"
|
|
"pop %%ebp\n\t"
|
|
"add $12, %%esp\n\t"
|
|
: "=a" (next_tb)
|
|
: "a" (gen_func)
|
|
: "ebx", "ecx", "edx", "esi", "edi", "cc",
|
|
"memory");
|
|
#elif defined(__x86_64__)
|
|
asm volatile ("sub $8, %%rsp\n\t"
|
|
"push %%rbp\n\t"
|
|
"call *%1\n\t"
|
|
"pop %%rbp\n\t"
|
|
"add $8, %%rsp\n\t"
|
|
: "=a" (next_tb)
|
|
: "a" (gen_func)
|
|
: "rbx", "rcx", "rdx", "rsi", "rdi", "r8", "r9",
|
|
"r10", "r11", "r12", "r13", "r14", "r15", "cc",
|
|
"memory");
|
|
#else
|
|
next_tb = gen_func();
|
|
#endif
|
|
env->current_tb = NULL;
|
|
/* reset soft MMU for next block (it can currently
|
|
only be set by a memory fault) */
|
|
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
|
|
if (env->hflags & HF_SOFTMMU_MASK) {
|
|
env->hflags &= ~HF_SOFTMMU_MASK;
|
|
/* do not allow linking to another block */
|
|
next_tb = 0;
|
|
}
|
|
#endif
|
|
#if defined(USE_KQEMU)
|
|
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
|
|
if (kqemu_is_ok(env) &&
|
|
(cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
|
|
cpu_loop_exit();
|
|
}
|
|
#endif
|
|
} /* for(;;) */
|
|
} else {
|
|
env_to_regs();
|
|
}
|
|
} /* for(;;) */
|
|
|
|
|
|
#if defined(TARGET_I386)
|
|
/* restore flags in standard format */
|
|
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
|
#elif defined(TARGET_ARM)
|
|
/* XXX: Save/restore host fpu exception state?. */
|
|
#elif defined(TARGET_SPARC)
|
|
#if defined(reg_REGWPTR)
|
|
REGWPTR = saved_regwptr;
|
|
#endif
|
|
#elif defined(TARGET_PPC)
|
|
#elif defined(TARGET_M68K)
|
|
cpu_m68k_flush_flags(env, env->cc_op);
|
|
env->cc_op = CC_OP_FLAGS;
|
|
env->sr = (env->sr & 0xffe0)
|
|
| env->cc_dest | (env->cc_x << 4);
|
|
#elif defined(TARGET_MIPS)
|
|
#elif defined(TARGET_SH4)
|
|
#elif defined(TARGET_ALPHA)
|
|
#elif defined(TARGET_CRIS)
|
|
/* XXXXX */
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
|
|
/* restore global registers */
|
|
RESTORE_GLOBALS();
|
|
#include "hostregs_helper.h"
|
|
|
|
/* fail safe : never use cpu_single_env outside cpu_exec() */
|
|
cpu_single_env = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/* must only be called from the generated code as an exception can be
|
|
generated */
|
|
void tb_invalidate_page_range(target_ulong start, target_ulong end)
|
|
{
|
|
/* XXX: cannot enable it yet because it yields to MMU exception
|
|
where NIP != read address on PowerPC */
|
|
#if 0
|
|
target_ulong phys_addr;
|
|
phys_addr = get_phys_addr_code(env, start);
|
|
tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
|
|
#endif
|
|
}
|
|
|
|
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
|
|
|
|
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
|
|
{
|
|
CPUX86State *saved_env;
|
|
|
|
saved_env = env;
|
|
env = s;
|
|
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
|
|
selector &= 0xffff;
|
|
cpu_x86_load_seg_cache(env, seg_reg, selector,
|
|
(selector << 4), 0xffff, 0);
|
|
} else {
|
|
load_seg(seg_reg, selector);
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
|
|
{
|
|
CPUX86State *saved_env;
|
|
|
|
saved_env = env;
|
|
env = s;
|
|
|
|
helper_fsave(ptr, data32);
|
|
|
|
env = saved_env;
|
|
}
|
|
|
|
void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
|
|
{
|
|
CPUX86State *saved_env;
|
|
|
|
saved_env = env;
|
|
env = s;
|
|
|
|
helper_frstor(ptr, data32);
|
|
|
|
env = saved_env;
|
|
}
|
|
|
|
#endif /* TARGET_I386 */
|
|
|
|
#if !defined(CONFIG_SOFTMMU)
|
|
|
|
#if defined(TARGET_I386)
|
|
|
|
/* 'pc' is the host PC at which the exception was raised. 'address' is
|
|
the effective address of the memory exception. 'is_write' is 1 if a
|
|
write caused the exception and otherwise 0'. 'old_set' is the
|
|
signal set which should be restored */
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
if (ret == 1) {
|
|
#if 0
|
|
printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
|
|
env->eip, env->cr[2], env->error_code);
|
|
#endif
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
raise_exception_err(env->exception_index, env->error_code);
|
|
} else {
|
|
/* activate soft MMU for this block */
|
|
env->hflags |= HF_SOFTMMU_MASK;
|
|
cpu_resume_from_signal(env, puc);
|
|
}
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
|
|
#elif defined(TARGET_ARM)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit();
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
#elif defined(TARGET_SPARC)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit();
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
#elif defined (TARGET_PPC)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
if (ret == 1) {
|
|
#if 0
|
|
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
|
env->nip, env->error_code, tb);
|
|
#endif
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
do_raise_exception_err(env->exception_index, env->error_code);
|
|
} else {
|
|
/* activate soft MMU for this block */
|
|
cpu_resume_from_signal(env, puc);
|
|
}
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
|
|
#elif defined(TARGET_M68K)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(address, pc, puc)) {
|
|
return 1;
|
|
}
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit();
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
|
|
#elif defined (TARGET_MIPS)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
if (ret == 1) {
|
|
#if 0
|
|
printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
|
|
env->PC, env->error_code, tb);
|
|
#endif
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
do_raise_exception_err(env->exception_index, env->error_code);
|
|
} else {
|
|
/* activate soft MMU for this block */
|
|
cpu_resume_from_signal(env, puc);
|
|
}
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
|
|
#elif defined (TARGET_SH4)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
#if 0
|
|
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
|
env->nip, env->error_code, tb);
|
|
#endif
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit();
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
|
|
#elif defined (TARGET_ALPHA)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
#if 0
|
|
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
|
env->nip, env->error_code, tb);
|
|
#endif
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit();
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
#elif defined (TARGET_CRIS)
|
|
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
|
int is_write, sigset_t *old_set,
|
|
void *puc)
|
|
{
|
|
TranslationBlock *tb;
|
|
int ret;
|
|
|
|
if (cpu_single_env)
|
|
env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
|
#if defined(DEBUG_SIGNAL)
|
|
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
|
pc, address, is_write, *(unsigned long *)old_set);
|
|
#endif
|
|
/* XXX: locking issue */
|
|
if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
|
return 1;
|
|
}
|
|
|
|
/* see if it is an MMU fault */
|
|
ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
|
if (ret < 0)
|
|
return 0; /* not an MMU fault */
|
|
if (ret == 0)
|
|
return 1; /* the MMU fault was handled without causing real CPU fault */
|
|
|
|
/* now we have a real cpu fault */
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, puc);
|
|
}
|
|
/* we restore the process signal mask as the sigreturn should
|
|
do it (XXX: use sigsetjmp) */
|
|
sigprocmask(SIG_SETMASK, old_set, NULL);
|
|
cpu_loop_exit();
|
|
/* never comes here */
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
#error unsupported target CPU
|
|
#endif
|
|
|
|
#if defined(__i386__)
|
|
|
|
#if defined(__APPLE__)
|
|
# include <sys/ucontext.h>
|
|
|
|
# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
|
|
# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
|
|
# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
|
|
#else
|
|
# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
|
|
# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
|
|
# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
|
|
#endif
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
int trapno;
|
|
|
|
#ifndef REG_EIP
|
|
/* for glibc 2.1 */
|
|
#define REG_EIP EIP
|
|
#define REG_ERR ERR
|
|
#define REG_TRAPNO TRAPNO
|
|
#endif
|
|
pc = EIP_sig(uc);
|
|
trapno = TRAP_sig(uc);
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
trapno == 0xe ?
|
|
(ERROR_sig(uc) >> 1) & 1 : 0,
|
|
&uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__x86_64__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
|
|
pc = uc->uc_mcontext.gregs[REG_RIP];
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
|
|
(uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
|
|
&uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__powerpc__)
|
|
|
|
/***********************************************************************
|
|
* signal context platform-specific definitions
|
|
* From Wine
|
|
*/
|
|
#ifdef linux
|
|
/* All Registers access - only for local access */
|
|
# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
|
|
/* Gpr Registers access */
|
|
# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
|
|
# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
|
|
# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
|
|
# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
|
|
# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
|
|
# define LR_sig(context) REG_sig(link, context) /* Link register */
|
|
# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
|
|
/* Float Registers access */
|
|
# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
|
|
# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
|
|
/* Exception Registers access */
|
|
# define DAR_sig(context) REG_sig(dar, context)
|
|
# define DSISR_sig(context) REG_sig(dsisr, context)
|
|
# define TRAP_sig(context) REG_sig(trap, context)
|
|
#endif /* linux */
|
|
|
|
#ifdef __APPLE__
|
|
# include <sys/ucontext.h>
|
|
typedef struct ucontext SIGCONTEXT;
|
|
/* All Registers access - only for local access */
|
|
# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
|
|
# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
|
|
# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
|
|
# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
|
|
/* Gpr Registers access */
|
|
# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
|
|
# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
|
|
# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
|
|
# define CTR_sig(context) REG_sig(ctr, context)
|
|
# define XER_sig(context) REG_sig(xer, context) /* Link register */
|
|
# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
|
|
# define CR_sig(context) REG_sig(cr, context) /* Condition register */
|
|
/* Float Registers access */
|
|
# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
|
|
# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
|
|
/* Exception Registers access */
|
|
# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
|
|
# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
|
|
# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
|
|
#endif /* __APPLE__ */
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
int is_write;
|
|
|
|
pc = IAR_sig(uc);
|
|
is_write = 0;
|
|
#if 0
|
|
/* ppc 4xx case */
|
|
if (DSISR_sig(uc) & 0x00800000)
|
|
is_write = 1;
|
|
#else
|
|
if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
|
|
is_write = 1;
|
|
#endif
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write, &uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__alpha__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
uint32_t *pc = uc->uc_mcontext.sc_pc;
|
|
uint32_t insn = *pc;
|
|
int is_write = 0;
|
|
|
|
/* XXX: need kernel patch to get write flag faster */
|
|
switch (insn >> 26) {
|
|
case 0x0d: // stw
|
|
case 0x0e: // stb
|
|
case 0x0f: // stq_u
|
|
case 0x24: // stf
|
|
case 0x25: // stg
|
|
case 0x26: // sts
|
|
case 0x27: // stt
|
|
case 0x2c: // stl
|
|
case 0x2d: // stq
|
|
case 0x2e: // stl_c
|
|
case 0x2f: // stq_c
|
|
is_write = 1;
|
|
}
|
|
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write, &uc->uc_sigmask, puc);
|
|
}
|
|
#elif defined(__sparc__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
uint32_t *regs = (uint32_t *)(info + 1);
|
|
void *sigmask = (regs + 20);
|
|
unsigned long pc;
|
|
int is_write;
|
|
uint32_t insn;
|
|
|
|
/* XXX: is there a standard glibc define ? */
|
|
pc = regs[1];
|
|
/* XXX: need kernel patch to get write flag faster */
|
|
is_write = 0;
|
|
insn = *(uint32_t *)pc;
|
|
if ((insn >> 30) == 3) {
|
|
switch((insn >> 19) & 0x3f) {
|
|
case 0x05: // stb
|
|
case 0x06: // sth
|
|
case 0x04: // st
|
|
case 0x07: // std
|
|
case 0x24: // stf
|
|
case 0x27: // stdf
|
|
case 0x25: // stfsr
|
|
is_write = 1;
|
|
break;
|
|
}
|
|
}
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write, sigmask, NULL);
|
|
}
|
|
|
|
#elif defined(__arm__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
int is_write;
|
|
|
|
pc = uc->uc_mcontext.arm_pc;
|
|
/* XXX: compute is_write */
|
|
is_write = 0;
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write,
|
|
&uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__mc68000)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
int is_write;
|
|
|
|
pc = uc->uc_mcontext.gregs[16];
|
|
/* XXX: compute is_write */
|
|
is_write = 0;
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write,
|
|
&uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__ia64)
|
|
|
|
#ifndef __ISR_VALID
|
|
/* This ought to be in <bits/siginfo.h>... */
|
|
# define __ISR_VALID 1
|
|
#endif
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long ip;
|
|
int is_write = 0;
|
|
|
|
ip = uc->uc_mcontext.sc_ip;
|
|
switch (host_signum) {
|
|
case SIGILL:
|
|
case SIGFPE:
|
|
case SIGSEGV:
|
|
case SIGBUS:
|
|
case SIGTRAP:
|
|
if (info->si_code && (info->si_segvflags & __ISR_VALID))
|
|
/* ISR.W (write-access) is bit 33: */
|
|
is_write = (info->si_isr >> 33) & 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return handle_cpu_signal(ip, (unsigned long)info->si_addr,
|
|
is_write,
|
|
&uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__s390__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
int is_write;
|
|
|
|
pc = uc->uc_mcontext.psw.addr;
|
|
/* XXX: compute is_write */
|
|
is_write = 0;
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write, &uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__mips__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
siginfo_t *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
greg_t pc = uc->uc_mcontext.pc;
|
|
int is_write;
|
|
|
|
/* XXX: compute is_write */
|
|
is_write = 0;
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write, &uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#elif defined(__hppa__)
|
|
|
|
int cpu_signal_handler(int host_signum, void *pinfo,
|
|
void *puc)
|
|
{
|
|
struct siginfo *info = pinfo;
|
|
struct ucontext *uc = puc;
|
|
unsigned long pc;
|
|
int is_write;
|
|
|
|
pc = uc->uc_mcontext.sc_iaoq[0];
|
|
/* FIXME: compute is_write */
|
|
is_write = 0;
|
|
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
|
is_write,
|
|
&uc->uc_sigmask, puc);
|
|
}
|
|
|
|
#else
|
|
|
|
#error host CPU specific signal handler needed
|
|
|
|
#endif
|
|
|
|
#endif /* !defined(CONFIG_SOFTMMU) */
|