qemu-e2k/target-sparc/helper.c
Fabien Chouteau 60f356e86d SPARC: Fix Leon3 cache control
The "leon3_cache_control_int" (op_helper.c) function is called within leon3.c
which leads to segfault error with the global "env".

Now cache control is a CPU feature and everything is handled in op_helper.c.

Signed-off-by: Fabien Chouteau <chouteau@adacore.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2011-02-01 17:01:41 +00:00

1547 lines
49 KiB
C

/*
* sparc helpers
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"
//#define DEBUG_MMU
//#define DEBUG_FEATURES
#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...) \
do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif
static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model);
/* Sparc MMU emulation */
#if defined(CONFIG_USER_ONLY)
int cpu_sparc_handle_mmu_fault(CPUState *env1, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
if (rw & 2)
env1->exception_index = TT_TFAULT;
else
env1->exception_index = TT_DFAULT;
return 1;
}
#else
#ifndef TARGET_SPARC64
/*
* Sparc V8 Reference MMU (SRMMU)
*/
static const int access_table[8][8] = {
{ 0, 0, 0, 0, 8, 0, 12, 12 },
{ 0, 0, 0, 0, 8, 0, 0, 0 },
{ 8, 8, 0, 0, 0, 8, 12, 12 },
{ 8, 8, 0, 0, 0, 8, 0, 0 },
{ 8, 0, 8, 0, 8, 8, 12, 12 },
{ 8, 0, 8, 0, 8, 0, 8, 0 },
{ 8, 8, 8, 0, 8, 8, 12, 12 },
{ 8, 8, 8, 0, 8, 8, 8, 0 }
};
static const int perm_table[2][8] = {
{
PAGE_READ,
PAGE_READ | PAGE_WRITE,
PAGE_READ | PAGE_EXEC,
PAGE_READ | PAGE_WRITE | PAGE_EXEC,
PAGE_EXEC,
PAGE_READ | PAGE_WRITE,
PAGE_READ | PAGE_EXEC,
PAGE_READ | PAGE_WRITE | PAGE_EXEC
},
{
PAGE_READ,
PAGE_READ | PAGE_WRITE,
PAGE_READ | PAGE_EXEC,
PAGE_READ | PAGE_WRITE | PAGE_EXEC,
PAGE_EXEC,
PAGE_READ,
0,
0,
}
};
static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
int *prot, int *access_index,
target_ulong address, int rw, int mmu_idx,
target_ulong *page_size)
{
int access_perms = 0;
target_phys_addr_t pde_ptr;
uint32_t pde;
int error_code = 0, is_dirty, is_user;
unsigned long page_offset;
is_user = mmu_idx == MMU_USER_IDX;
if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
*page_size = TARGET_PAGE_SIZE;
// Boot mode: instruction fetches are taken from PROM
if (rw == 2 && (env->mmuregs[0] & env->def->mmu_bm)) {
*physical = env->prom_addr | (address & 0x7ffffULL);
*prot = PAGE_READ | PAGE_EXEC;
return 0;
}
*physical = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
}
*access_index = ((rw & 1) << 2) | (rw & 2) | (is_user? 0 : 1);
*physical = 0xffffffffffff0000ULL;
/* SPARC reference MMU table walk: Context table->L1->L2->PTE */
/* Context base + context number */
pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
pde = ldl_phys(pde_ptr);
/* Ctx pde */
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return 1 << 2;
case 2: /* L0 PTE, maybe should not happen? */
case 3: /* Reserved */
return 4 << 2;
case 1: /* L0 PDE */
pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return (1 << 8) | (1 << 2);
case 3: /* Reserved */
return (1 << 8) | (4 << 2);
case 1: /* L1 PDE */
pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return (2 << 8) | (1 << 2);
case 3: /* Reserved */
return (2 << 8) | (4 << 2);
case 1: /* L2 PDE */
pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
return (3 << 8) | (1 << 2);
case 1: /* PDE, should not happen */
case 3: /* Reserved */
return (3 << 8) | (4 << 2);
case 2: /* L3 PTE */
page_offset = (address & TARGET_PAGE_MASK) &
(TARGET_PAGE_SIZE - 1);
}
*page_size = TARGET_PAGE_SIZE;
break;
case 2: /* L2 PTE */
page_offset = address & 0x3ffff;
*page_size = 0x40000;
}
break;
case 2: /* L1 PTE */
page_offset = address & 0xffffff;
*page_size = 0x1000000;
}
}
/* check access */
access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
error_code = access_table[*access_index][access_perms];
if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user))
return error_code;
/* update page modified and dirty bits */
is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_MODIFIED_MASK;
stl_phys_notdirty(pde_ptr, pde);
}
/* the page can be put in the TLB */
*prot = perm_table[is_user][access_perms];
if (!(pde & PG_MODIFIED_MASK)) {
/* only set write access if already dirty... otherwise wait
for dirty access */
*prot &= ~PAGE_WRITE;
}
/* Even if large ptes, we map only one 4KB page in the cache to
avoid filling it too fast */
*physical = ((target_phys_addr_t)(pde & PTE_ADDR_MASK) << 4) + page_offset;
return error_code;
}
/* Perform address translation */
int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
target_phys_addr_t paddr;
target_ulong vaddr;
target_ulong page_size;
int error_code = 0, prot, access_index;
error_code = get_physical_address(env, &paddr, &prot, &access_index,
address, rw, mmu_idx, &page_size);
if (error_code == 0) {
vaddr = address & TARGET_PAGE_MASK;
paddr &= TARGET_PAGE_MASK;
#ifdef DEBUG_MMU
printf("Translate at " TARGET_FMT_lx " -> " TARGET_FMT_plx ", vaddr "
TARGET_FMT_lx "\n", address, paddr, vaddr);
#endif
tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
return 0;
}
if (env->mmuregs[3]) /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
env->mmuregs[3] |= (access_index << 5) | error_code | 2;
env->mmuregs[4] = address; /* Fault address register */
if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
// No fault mode: if a mapping is available, just override
// permissions. If no mapping is available, redirect accesses to
// neverland. Fake/overridden mappings will be flushed when
// switching to normal mode.
vaddr = address & TARGET_PAGE_MASK;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
tlb_set_page(env, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
return 0;
} else {
if (rw & 2)
env->exception_index = TT_TFAULT;
else
env->exception_index = TT_DFAULT;
return 1;
}
}
target_ulong mmu_probe(CPUState *env, target_ulong address, int mmulev)
{
target_phys_addr_t pde_ptr;
uint32_t pde;
/* Context base + context number */
pde_ptr = (target_phys_addr_t)(env->mmuregs[1] << 4) +
(env->mmuregs[2] << 2);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 2: /* PTE, maybe should not happen? */
case 3: /* Reserved */
return 0;
case 1: /* L1 PDE */
if (mmulev == 3)
return pde;
pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 3: /* Reserved */
return 0;
case 2: /* L1 PTE */
return pde;
case 1: /* L2 PDE */
if (mmulev == 2)
return pde;
pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 3: /* Reserved */
return 0;
case 2: /* L2 PTE */
return pde;
case 1: /* L3 PDE */
if (mmulev == 1)
return pde;
pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
pde = ldl_phys(pde_ptr);
switch (pde & PTE_ENTRYTYPE_MASK) {
default:
case 0: /* Invalid */
case 1: /* PDE, should not happen */
case 3: /* Reserved */
return 0;
case 2: /* L3 PTE */
return pde;
}
}
}
}
return 0;
}
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
{
target_ulong va, va1, va2;
unsigned int n, m, o;
target_phys_addr_t pde_ptr, pa;
uint32_t pde;
pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
pde = ldl_phys(pde_ptr);
(*cpu_fprintf)(f, "Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
(target_phys_addr_t)env->mmuregs[1] << 4, env->mmuregs[2]);
for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
pde = mmu_probe(env, va, 2);
if (pde) {
pa = cpu_get_phys_page_debug(env, va);
(*cpu_fprintf)(f, "VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
" PDE: " TARGET_FMT_lx "\n", va, pa, pde);
for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
pde = mmu_probe(env, va1, 1);
if (pde) {
pa = cpu_get_phys_page_debug(env, va1);
(*cpu_fprintf)(f, " VA: " TARGET_FMT_lx ", PA: "
TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
va1, pa, pde);
for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
pde = mmu_probe(env, va2, 0);
if (pde) {
pa = cpu_get_phys_page_debug(env, va2);
(*cpu_fprintf)(f, " VA: " TARGET_FMT_lx ", PA: "
TARGET_FMT_plx " PTE: "
TARGET_FMT_lx "\n",
va2, pa, pde);
}
}
}
}
}
}
}
#else /* !TARGET_SPARC64 */
// 41 bit physical address space
static inline target_phys_addr_t ultrasparc_truncate_physical(uint64_t x)
{
return x & 0x1ffffffffffULL;
}
/*
* UltraSparc IIi I/DMMUs
*/
// Returns true if TTE tag is valid and matches virtual address value in context
// requires virtual address mask value calculated from TTE entry size
static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
uint64_t address, uint64_t context,
target_phys_addr_t *physical)
{
uint64_t mask;
switch ((tlb->tte >> 61) & 3) {
default:
case 0x0: // 8k
mask = 0xffffffffffffe000ULL;
break;
case 0x1: // 64k
mask = 0xffffffffffff0000ULL;
break;
case 0x2: // 512k
mask = 0xfffffffffff80000ULL;
break;
case 0x3: // 4M
mask = 0xffffffffffc00000ULL;
break;
}
// valid, context match, virtual address match?
if (TTE_IS_VALID(tlb->tte) &&
(TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
&& compare_masked(address, tlb->tag, mask))
{
// decode physical address
*physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
return 1;
}
return 0;
}
static int get_physical_address_data(CPUState *env,
target_phys_addr_t *physical, int *prot,
target_ulong address, int rw, int mmu_idx)
{
unsigned int i;
uint64_t context;
int is_user = (mmu_idx == MMU_USER_IDX ||
mmu_idx == MMU_USER_SECONDARY_IDX);
if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */
*physical = ultrasparc_truncate_physical(address);
*prot = PAGE_READ | PAGE_WRITE;
return 0;
}
switch(mmu_idx) {
case MMU_USER_IDX:
case MMU_KERNEL_IDX:
context = env->dmmu.mmu_primary_context & 0x1fff;
break;
case MMU_USER_SECONDARY_IDX:
case MMU_KERNEL_SECONDARY_IDX:
context = env->dmmu.mmu_secondary_context & 0x1fff;
break;
case MMU_NUCLEUS_IDX:
default:
context = 0;
break;
}
for (i = 0; i < 64; i++) {
// ctx match, vaddr match, valid?
if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
uint8_t fault_type = 0;
// access ok?
if ((env->dtlb[i].tte & 0x4) && is_user) {
fault_type |= 1; /* privilege violation */
env->exception_index = TT_DFAULT;
DPRINTF_MMU("DFAULT at %" PRIx64 " context %" PRIx64
" mmu_idx=%d tl=%d\n",
address, context, mmu_idx, env->tl);
} else if (!(env->dtlb[i].tte & 0x2) && (rw == 1)) {
env->exception_index = TT_DPROT;
DPRINTF_MMU("DPROT at %" PRIx64 " context %" PRIx64
" mmu_idx=%d tl=%d\n",
address, context, mmu_idx, env->tl);
} else {
*prot = PAGE_READ;
if (env->dtlb[i].tte & 0x2)
*prot |= PAGE_WRITE;
TTE_SET_USED(env->dtlb[i].tte);
return 0;
}
if (env->dmmu.sfsr & 1) /* Fault status register */
env->dmmu.sfsr = 2; /* overflow (not read before
another fault) */
env->dmmu.sfsr |= (is_user << 3) | ((rw == 1) << 2) | 1;
env->dmmu.sfsr |= (fault_type << 7);
env->dmmu.sfar = address; /* Fault address register */
env->dmmu.tag_access = (address & ~0x1fffULL) | context;
return 1;
}
}
DPRINTF_MMU("DMISS at %" PRIx64 " context %" PRIx64 "\n",
address, context);
env->dmmu.tag_access = (address & ~0x1fffULL) | context;
env->exception_index = TT_DMISS;
return 1;
}
static int get_physical_address_code(CPUState *env,
target_phys_addr_t *physical, int *prot,
target_ulong address, int mmu_idx)
{
unsigned int i;
uint64_t context;
int is_user = (mmu_idx == MMU_USER_IDX ||
mmu_idx == MMU_USER_SECONDARY_IDX);
if ((env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0) {
/* IMMU disabled */
*physical = ultrasparc_truncate_physical(address);
*prot = PAGE_EXEC;
return 0;
}
if (env->tl == 0) {
/* PRIMARY context */
context = env->dmmu.mmu_primary_context & 0x1fff;
} else {
/* NUCLEUS context */
context = 0;
}
for (i = 0; i < 64; i++) {
// ctx match, vaddr match, valid?
if (ultrasparc_tag_match(&env->itlb[i],
address, context, physical)) {
// access ok?
if ((env->itlb[i].tte & 0x4) && is_user) {
if (env->immu.sfsr) /* Fault status register */
env->immu.sfsr = 2; /* overflow (not read before
another fault) */
env->immu.sfsr |= (is_user << 3) | 1;
env->exception_index = TT_TFAULT;
env->immu.tag_access = (address & ~0x1fffULL) | context;
DPRINTF_MMU("TFAULT at %" PRIx64 " context %" PRIx64 "\n",
address, context);
return 1;
}
*prot = PAGE_EXEC;
TTE_SET_USED(env->itlb[i].tte);
return 0;
}
}
DPRINTF_MMU("TMISS at %" PRIx64 " context %" PRIx64 "\n",
address, context);
/* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
env->immu.tag_access = (address & ~0x1fffULL) | context;
env->exception_index = TT_TMISS;
return 1;
}
static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
int *prot, int *access_index,
target_ulong address, int rw, int mmu_idx,
target_ulong *page_size)
{
/* ??? We treat everything as a small page, then explicitly flush
everything when an entry is evicted. */
*page_size = TARGET_PAGE_SIZE;
#if defined (DEBUG_MMU)
/* safety net to catch wrong softmmu index use from dynamic code */
if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
DPRINTF_MMU("get_physical_address %s tl=%d mmu_idx=%d"
" primary context=%" PRIx64
" secondary context=%" PRIx64
" address=%" PRIx64
"\n",
(rw == 2 ? "CODE" : "DATA"),
env->tl, mmu_idx,
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context,
address);
}
#endif
if (rw == 2)
return get_physical_address_code(env, physical, prot, address,
mmu_idx);
else
return get_physical_address_data(env, physical, prot, address, rw,
mmu_idx);
}
/* Perform address translation */
int cpu_sparc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
target_ulong virt_addr, vaddr;
target_phys_addr_t paddr;
target_ulong page_size;
int error_code = 0, prot, access_index;
error_code = get_physical_address(env, &paddr, &prot, &access_index,
address, rw, mmu_idx, &page_size);
if (error_code == 0) {
virt_addr = address & TARGET_PAGE_MASK;
vaddr = virt_addr + ((address & TARGET_PAGE_MASK) &
(TARGET_PAGE_SIZE - 1));
DPRINTF_MMU("Translate at %" PRIx64 " -> %" PRIx64 ","
" vaddr %" PRIx64
" mmu_idx=%d"
" tl=%d"
" primary context=%" PRIx64
" secondary context=%" PRIx64
"\n",
address, paddr, vaddr, mmu_idx, env->tl,
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context);
tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
return 0;
}
// XXX
return 1;
}
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
{
unsigned int i;
const char *mask;
(*cpu_fprintf)(f, "MMU contexts: Primary: %" PRId64 ", Secondary: %"
PRId64 "\n",
env->dmmu.mmu_primary_context,
env->dmmu.mmu_secondary_context);
if ((env->lsu & DMMU_E) == 0) {
(*cpu_fprintf)(f, "DMMU disabled\n");
} else {
(*cpu_fprintf)(f, "DMMU dump\n");
for (i = 0; i < 64; i++) {
switch ((env->dtlb[i].tte >> 61) & 3) {
default:
case 0x0:
mask = " 8k";
break;
case 0x1:
mask = " 64k";
break;
case 0x2:
mask = "512k";
break;
case 0x3:
mask = " 4M";
break;
}
if ((env->dtlb[i].tte & 0x8000000000000000ULL) != 0) {
(*cpu_fprintf)(f, "[%02u] VA: %" PRIx64 ", PA: %" PRIx64
", %s, %s, %s, %s, ctx %" PRId64 " %s\n",
i,
env->dtlb[i].tag & (uint64_t)~0x1fffULL,
env->dtlb[i].tte & (uint64_t)0x1ffffffe000ULL,
mask,
env->dtlb[i].tte & 0x4? "priv": "user",
env->dtlb[i].tte & 0x2? "RW": "RO",
env->dtlb[i].tte & 0x40? "locked": "unlocked",
env->dtlb[i].tag & (uint64_t)0x1fffULL,
TTE_IS_GLOBAL(env->dtlb[i].tte)?
"global" : "local");
}
}
}
if ((env->lsu & IMMU_E) == 0) {
(*cpu_fprintf)(f, "IMMU disabled\n");
} else {
(*cpu_fprintf)(f, "IMMU dump\n");
for (i = 0; i < 64; i++) {
switch ((env->itlb[i].tte >> 61) & 3) {
default:
case 0x0:
mask = " 8k";
break;
case 0x1:
mask = " 64k";
break;
case 0x2:
mask = "512k";
break;
case 0x3:
mask = " 4M";
break;
}
if ((env->itlb[i].tte & 0x8000000000000000ULL) != 0) {
(*cpu_fprintf)(f, "[%02u] VA: %" PRIx64 ", PA: %" PRIx64
", %s, %s, %s, ctx %" PRId64 " %s\n",
i,
env->itlb[i].tag & (uint64_t)~0x1fffULL,
env->itlb[i].tte & (uint64_t)0x1ffffffe000ULL,
mask,
env->itlb[i].tte & 0x4? "priv": "user",
env->itlb[i].tte & 0x40? "locked": "unlocked",
env->itlb[i].tag & (uint64_t)0x1fffULL,
TTE_IS_GLOBAL(env->itlb[i].tte)?
"global" : "local");
}
}
}
}
#endif /* TARGET_SPARC64 */
#endif /* !CONFIG_USER_ONLY */
#if !defined(CONFIG_USER_ONLY)
target_phys_addr_t cpu_get_phys_page_nofault(CPUState *env, target_ulong addr,
int mmu_idx)
{
target_phys_addr_t phys_addr;
target_ulong page_size;
int prot, access_index;
if (get_physical_address(env, &phys_addr, &prot, &access_index, addr, 2,
mmu_idx, &page_size) != 0)
if (get_physical_address(env, &phys_addr, &prot, &access_index, addr,
0, mmu_idx, &page_size) != 0)
return -1;
if (cpu_get_physical_page_desc(phys_addr) == IO_MEM_UNASSIGNED)
return -1;
return phys_addr;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
return cpu_get_phys_page_nofault(env, addr, cpu_mmu_index(env));
}
#endif
void cpu_reset(CPUSPARCState *env)
{
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, 0);
}
tlb_flush(env, 1);
env->cwp = 0;
#ifndef TARGET_SPARC64
env->wim = 1;
#endif
env->regwptr = env->regbase + (env->cwp * 16);
CC_OP = CC_OP_FLAGS;
#if defined(CONFIG_USER_ONLY)
#ifdef TARGET_SPARC64
env->cleanwin = env->nwindows - 2;
env->cansave = env->nwindows - 2;
env->pstate = PS_RMO | PS_PEF | PS_IE;
env->asi = 0x82; // Primary no-fault
#endif
#else
#if !defined(TARGET_SPARC64)
env->psret = 0;
env->psrs = 1;
env->psrps = 1;
#endif
#ifdef TARGET_SPARC64
env->pstate = PS_PRIV|PS_RED|PS_PEF|PS_AG;
env->hpstate = cpu_has_hypervisor(env) ? HS_PRIV : 0;
env->tl = env->maxtl;
cpu_tsptr(env)->tt = TT_POWER_ON_RESET;
env->lsu = 0;
#else
env->mmuregs[0] &= ~(MMU_E | MMU_NF);
env->mmuregs[0] |= env->def->mmu_bm;
#endif
env->pc = 0;
env->npc = env->pc + 4;
#endif
env->cache_control = 0;
}
static int cpu_sparc_register(CPUSPARCState *env, const char *cpu_model)
{
sparc_def_t def1, *def = &def1;
if (cpu_sparc_find_by_name(def, cpu_model) < 0)
return -1;
env->def = qemu_mallocz(sizeof(*def));
memcpy(env->def, def, sizeof(*def));
#if defined(CONFIG_USER_ONLY)
if ((env->def->features & CPU_FEATURE_FLOAT))
env->def->features |= CPU_FEATURE_FLOAT128;
#endif
env->cpu_model_str = cpu_model;
env->version = def->iu_version;
env->fsr = def->fpu_version;
env->nwindows = def->nwindows;
#if !defined(TARGET_SPARC64)
env->mmuregs[0] |= def->mmu_version;
cpu_sparc_set_id(env, 0);
env->mxccregs[7] |= def->mxcc_version;
#else
env->mmu_version = def->mmu_version;
env->maxtl = def->maxtl;
env->version |= def->maxtl << 8;
env->version |= def->nwindows - 1;
#endif
return 0;
}
static void cpu_sparc_close(CPUSPARCState *env)
{
free(env->def);
free(env);
}
CPUSPARCState *cpu_sparc_init(const char *cpu_model)
{
CPUSPARCState *env;
env = qemu_mallocz(sizeof(CPUSPARCState));
cpu_exec_init(env);
gen_intermediate_code_init(env);
if (cpu_sparc_register(env, cpu_model) < 0) {
cpu_sparc_close(env);
return NULL;
}
qemu_init_vcpu(env);
return env;
}
void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu)
{
#if !defined(TARGET_SPARC64)
env->mxccregs[7] = ((cpu + 8) & 0xf) << 24;
#endif
}
static const sparc_def_t sparc_defs[] = {
#ifdef TARGET_SPARC64
{
.name = "Fujitsu Sparc64",
.iu_version = ((0x04ULL << 48) | (0x02ULL << 32) | (0ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 4,
.maxtl = 4,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Fujitsu Sparc64 III",
.iu_version = ((0x04ULL << 48) | (0x03ULL << 32) | (0ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 5,
.maxtl = 4,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Fujitsu Sparc64 IV",
.iu_version = ((0x04ULL << 48) | (0x04ULL << 32) | (0ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Fujitsu Sparc64 V",
.iu_version = ((0x04ULL << 48) | (0x05ULL << 32) | (0x51ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI UltraSparc I",
.iu_version = ((0x17ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI UltraSparc II",
.iu_version = ((0x17ULL << 48) | (0x11ULL << 32) | (0x20ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI UltraSparc IIi",
.iu_version = ((0x17ULL << 48) | (0x12ULL << 32) | (0x91ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI UltraSparc IIe",
.iu_version = ((0x17ULL << 48) | (0x13ULL << 32) | (0x14ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Sun UltraSparc III",
.iu_version = ((0x3eULL << 48) | (0x14ULL << 32) | (0x34ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Sun UltraSparc III Cu",
.iu_version = ((0x3eULL << 48) | (0x15ULL << 32) | (0x41ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_3,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Sun UltraSparc IIIi",
.iu_version = ((0x3eULL << 48) | (0x16ULL << 32) | (0x34ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Sun UltraSparc IV",
.iu_version = ((0x3eULL << 48) | (0x18ULL << 32) | (0x31ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_4,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Sun UltraSparc IV+",
.iu_version = ((0x3eULL << 48) | (0x19ULL << 32) | (0x22ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES | CPU_FEATURE_CMT,
},
{
.name = "Sun UltraSparc IIIi+",
.iu_version = ((0x3eULL << 48) | (0x22ULL << 32) | (0ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_3,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Sun UltraSparc T1",
// defined in sparc_ifu_fdp.v and ctu.h
.iu_version = ((0x3eULL << 48) | (0x23ULL << 32) | (0x02ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_sun4v,
.nwindows = 8,
.maxtl = 6,
.features = CPU_DEFAULT_FEATURES | CPU_FEATURE_HYPV | CPU_FEATURE_CMT
| CPU_FEATURE_GL,
},
{
.name = "Sun UltraSparc T2",
// defined in tlu_asi_ctl.v and n2_revid_cust.v
.iu_version = ((0x3eULL << 48) | (0x24ULL << 32) | (0x02ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_sun4v,
.nwindows = 8,
.maxtl = 6,
.features = CPU_DEFAULT_FEATURES | CPU_FEATURE_HYPV | CPU_FEATURE_CMT
| CPU_FEATURE_GL,
},
{
.name = "NEC UltraSparc I",
.iu_version = ((0x22ULL << 48) | (0x10ULL << 32) | (0x40ULL << 24)),
.fpu_version = 0x00000000,
.mmu_version = mmu_us_12,
.nwindows = 8,
.maxtl = 5,
.features = CPU_DEFAULT_FEATURES,
},
#else
{
.name = "Fujitsu MB86900",
.iu_version = 0x00 << 24, /* Impl 0, ver 0 */
.fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
.mmu_version = 0x00 << 24, /* Impl 0, ver 0 */
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 7,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_FSMULD,
},
{
.name = "Fujitsu MB86904",
.iu_version = 0x04 << 24, /* Impl 0, ver 4 */
.fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
.mmu_version = 0x04 << 24, /* Impl 0, ver 4 */
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x00ffffc0,
.mmu_cxr_mask = 0x000000ff,
.mmu_sfsr_mask = 0x00016fff,
.mmu_trcr_mask = 0x00ffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Fujitsu MB86907",
.iu_version = 0x05 << 24, /* Impl 0, ver 5 */
.fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
.mmu_version = 0x05 << 24, /* Impl 0, ver 5 */
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x000000ff,
.mmu_sfsr_mask = 0x00016fff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "LSI L64811",
.iu_version = 0x10 << 24, /* Impl 1, ver 0 */
.fpu_version = 1 << 17, /* FPU version 1 (LSI L64814) */
.mmu_version = 0x10 << 24,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
CPU_FEATURE_FSMULD,
},
{
.name = "Cypress CY7C601",
.iu_version = 0x11 << 24, /* Impl 1, ver 1 */
.fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */
.mmu_version = 0x10 << 24,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
CPU_FEATURE_FSMULD,
},
{
.name = "Cypress CY7C611",
.iu_version = 0x13 << 24, /* Impl 1, ver 3 */
.fpu_version = 3 << 17, /* FPU version 3 (Cypress CY7C602) */
.mmu_version = 0x10 << 24,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
CPU_FEATURE_FSMULD,
},
{
.name = "TI MicroSparc I",
.iu_version = 0x41000000,
.fpu_version = 4 << 17,
.mmu_version = 0x41000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0x00016fff,
.mmu_trcr_mask = 0x0000003f,
.nwindows = 7,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_MUL |
CPU_FEATURE_DIV | CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT |
CPU_FEATURE_FMUL,
},
{
.name = "TI MicroSparc II",
.iu_version = 0x42000000,
.fpu_version = 4 << 17,
.mmu_version = 0x02000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x00ffffc0,
.mmu_cxr_mask = 0x000000ff,
.mmu_sfsr_mask = 0x00016fff,
.mmu_trcr_mask = 0x00ffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI MicroSparc IIep",
.iu_version = 0x42000000,
.fpu_version = 4 << 17,
.mmu_version = 0x04000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x00ffffc0,
.mmu_cxr_mask = 0x000000ff,
.mmu_sfsr_mask = 0x00016bff,
.mmu_trcr_mask = 0x00ffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI SuperSparc 40", // STP1020NPGA
.iu_version = 0x41000000, // SuperSPARC 2.x
.fpu_version = 0 << 17,
.mmu_version = 0x00000800, // SuperSPARC 2.x, no MXCC
.mmu_bm = 0x00002000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x0000ffff,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI SuperSparc 50", // STP1020PGA
.iu_version = 0x40000000, // SuperSPARC 3.x
.fpu_version = 0 << 17,
.mmu_version = 0x01000800, // SuperSPARC 3.x, no MXCC
.mmu_bm = 0x00002000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x0000ffff,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI SuperSparc 51",
.iu_version = 0x40000000, // SuperSPARC 3.x
.fpu_version = 0 << 17,
.mmu_version = 0x01000000, // SuperSPARC 3.x, MXCC
.mmu_bm = 0x00002000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x0000ffff,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.mxcc_version = 0x00000104,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI SuperSparc 60", // STP1020APGA
.iu_version = 0x40000000, // SuperSPARC 3.x
.fpu_version = 0 << 17,
.mmu_version = 0x01000800, // SuperSPARC 3.x, no MXCC
.mmu_bm = 0x00002000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x0000ffff,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI SuperSparc 61",
.iu_version = 0x44000000, // SuperSPARC 3.x
.fpu_version = 0 << 17,
.mmu_version = 0x01000000, // SuperSPARC 3.x, MXCC
.mmu_bm = 0x00002000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x0000ffff,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.mxcc_version = 0x00000104,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "TI SuperSparc II",
.iu_version = 0x40000000, // SuperSPARC II 1.x
.fpu_version = 0 << 17,
.mmu_version = 0x08000000, // SuperSPARC II 1.x, MXCC
.mmu_bm = 0x00002000,
.mmu_ctpr_mask = 0xffffffc0,
.mmu_cxr_mask = 0x0000ffff,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.mxcc_version = 0x00000104,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Ross RT625",
.iu_version = 0x1e000000,
.fpu_version = 1 << 17,
.mmu_version = 0x1e000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "Ross RT620",
.iu_version = 0x1f000000,
.fpu_version = 1 << 17,
.mmu_version = 0x1f000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "BIT B5010",
.iu_version = 0x20000000,
.fpu_version = 0 << 17, /* B5010/B5110/B5120/B5210 */
.mmu_version = 0x20000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | CPU_FEATURE_FSQRT |
CPU_FEATURE_FSMULD,
},
{
.name = "Matsushita MN10501",
.iu_version = 0x50000000,
.fpu_version = 0 << 17,
.mmu_version = 0x50000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_FEATURE_FLOAT | CPU_FEATURE_MUL | CPU_FEATURE_FSQRT |
CPU_FEATURE_FSMULD,
},
{
.name = "Weitek W8601",
.iu_version = 0x90 << 24, /* Impl 9, ver 0 */
.fpu_version = 3 << 17, /* FPU version 3 (Weitek WTL3170/2) */
.mmu_version = 0x10 << 24,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES,
},
{
.name = "LEON2",
.iu_version = 0xf2000000,
.fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
.mmu_version = 0xf2000000,
.mmu_bm = 0x00004000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES | CPU_FEATURE_TA0_SHUTDOWN,
},
{
.name = "LEON3",
.iu_version = 0xf3000000,
.fpu_version = 4 << 17, /* FPU version 4 (Meiko) */
.mmu_version = 0xf3000000,
.mmu_bm = 0x00000000,
.mmu_ctpr_mask = 0x007ffff0,
.mmu_cxr_mask = 0x0000003f,
.mmu_sfsr_mask = 0xffffffff,
.mmu_trcr_mask = 0xffffffff,
.nwindows = 8,
.features = CPU_DEFAULT_FEATURES | CPU_FEATURE_TA0_SHUTDOWN |
CPU_FEATURE_ASR17 | CPU_FEATURE_CACHE_CTRL,
},
#endif
};
static const char * const feature_name[] = {
"float",
"float128",
"swap",
"mul",
"div",
"flush",
"fsqrt",
"fmul",
"vis1",
"vis2",
"fsmuld",
"hypv",
"cmt",
"gl",
};
static void print_features(FILE *f, fprintf_function cpu_fprintf,
uint32_t features, const char *prefix)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(feature_name); i++)
if (feature_name[i] && (features & (1 << i))) {
if (prefix)
(*cpu_fprintf)(f, "%s", prefix);
(*cpu_fprintf)(f, "%s ", feature_name[i]);
}
}
static void add_flagname_to_bitmaps(const char *flagname, uint32_t *features)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(feature_name); i++)
if (feature_name[i] && !strcmp(flagname, feature_name[i])) {
*features |= 1 << i;
return;
}
fprintf(stderr, "CPU feature %s not found\n", flagname);
}
static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model)
{
unsigned int i;
const sparc_def_t *def = NULL;
char *s = strdup(cpu_model);
char *featurestr, *name = strtok(s, ",");
uint32_t plus_features = 0;
uint32_t minus_features = 0;
uint64_t iu_version;
uint32_t fpu_version, mmu_version, nwindows;
for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) {
if (strcasecmp(name, sparc_defs[i].name) == 0) {
def = &sparc_defs[i];
}
}
if (!def)
goto error;
memcpy(cpu_def, def, sizeof(*def));
featurestr = strtok(NULL, ",");
while (featurestr) {
char *val;
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, &plus_features);
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, &minus_features);
} else if ((val = strchr(featurestr, '='))) {
*val = 0; val++;
if (!strcmp(featurestr, "iu_version")) {
char *err;
iu_version = strtoll(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
cpu_def->iu_version = iu_version;
#ifdef DEBUG_FEATURES
fprintf(stderr, "iu_version %" PRIx64 "\n", iu_version);
#endif
} else if (!strcmp(featurestr, "fpu_version")) {
char *err;
fpu_version = strtol(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
cpu_def->fpu_version = fpu_version;
#ifdef DEBUG_FEATURES
fprintf(stderr, "fpu_version %x\n", fpu_version);
#endif
} else if (!strcmp(featurestr, "mmu_version")) {
char *err;
mmu_version = strtol(val, &err, 0);
if (!*val || *err) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
cpu_def->mmu_version = mmu_version;
#ifdef DEBUG_FEATURES
fprintf(stderr, "mmu_version %x\n", mmu_version);
#endif
} else if (!strcmp(featurestr, "nwindows")) {
char *err;
nwindows = strtol(val, &err, 0);
if (!*val || *err || nwindows > MAX_NWINDOWS ||
nwindows < MIN_NWINDOWS) {
fprintf(stderr, "bad numerical value %s\n", val);
goto error;
}
cpu_def->nwindows = nwindows;
#ifdef DEBUG_FEATURES
fprintf(stderr, "nwindows %d\n", nwindows);
#endif
} else {
fprintf(stderr, "unrecognized feature %s\n", featurestr);
goto error;
}
} else {
fprintf(stderr, "feature string `%s' not in format "
"(+feature|-feature|feature=xyz)\n", featurestr);
goto error;
}
featurestr = strtok(NULL, ",");
}
cpu_def->features |= plus_features;
cpu_def->features &= ~minus_features;
#ifdef DEBUG_FEATURES
print_features(stderr, fprintf, cpu_def->features, NULL);
#endif
free(s);
return 0;
error:
free(s);
return -1;
}
void sparc_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) {
(*cpu_fprintf)(f, "Sparc %16s IU " TARGET_FMT_lx " FPU %08x MMU %08x NWINS %d ",
sparc_defs[i].name,
sparc_defs[i].iu_version,
sparc_defs[i].fpu_version,
sparc_defs[i].mmu_version,
sparc_defs[i].nwindows);
print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES &
~sparc_defs[i].features, "-");
print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES &
sparc_defs[i].features, "+");
(*cpu_fprintf)(f, "\n");
}
(*cpu_fprintf)(f, "Default CPU feature flags (use '-' to remove): ");
print_features(f, cpu_fprintf, CPU_DEFAULT_FEATURES, NULL);
(*cpu_fprintf)(f, "\n");
(*cpu_fprintf)(f, "Available CPU feature flags (use '+' to add): ");
print_features(f, cpu_fprintf, ~CPU_DEFAULT_FEATURES, NULL);
(*cpu_fprintf)(f, "\n");
(*cpu_fprintf)(f, "Numerical features (use '=' to set): iu_version "
"fpu_version mmu_version nwindows\n");
}
static void cpu_print_cc(FILE *f, fprintf_function cpu_fprintf,
uint32_t cc)
{
cpu_fprintf(f, "%c%c%c%c", cc & PSR_NEG? 'N' : '-',
cc & PSR_ZERO? 'Z' : '-', cc & PSR_OVF? 'V' : '-',
cc & PSR_CARRY? 'C' : '-');
}
#ifdef TARGET_SPARC64
#define REGS_PER_LINE 4
#else
#define REGS_PER_LINE 8
#endif
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
int i, x;
cpu_fprintf(f, "pc: " TARGET_FMT_lx " npc: " TARGET_FMT_lx "\n", env->pc,
env->npc);
cpu_fprintf(f, "General Registers:\n");
for (i = 0; i < 8; i++) {
if (i % REGS_PER_LINE == 0) {
cpu_fprintf(f, "%%g%d-%d:", i, i + REGS_PER_LINE - 1);
}
cpu_fprintf(f, " " TARGET_FMT_lx, env->gregs[i]);
if (i % REGS_PER_LINE == REGS_PER_LINE - 1) {
cpu_fprintf(f, "\n");
}
}
cpu_fprintf(f, "\nCurrent Register Window:\n");
for (x = 0; x < 3; x++) {
for (i = 0; i < 8; i++) {
if (i % REGS_PER_LINE == 0) {
cpu_fprintf(f, "%%%c%d-%d: ",
x == 0 ? 'o' : (x == 1 ? 'l' : 'i'),
i, i + REGS_PER_LINE - 1);
}
cpu_fprintf(f, TARGET_FMT_lx " ", env->regwptr[i + x * 8]);
if (i % REGS_PER_LINE == REGS_PER_LINE - 1) {
cpu_fprintf(f, "\n");
}
}
}
cpu_fprintf(f, "\nFloating Point Registers:\n");
for (i = 0; i < TARGET_FPREGS; i++) {
if ((i & 3) == 0)
cpu_fprintf(f, "%%f%02d:", i);
cpu_fprintf(f, " %016f", *(float *)&env->fpr[i]);
if ((i & 3) == 3)
cpu_fprintf(f, "\n");
}
#ifdef TARGET_SPARC64
cpu_fprintf(f, "pstate: %08x ccr: %02x (icc: ", env->pstate,
(unsigned)cpu_get_ccr(env));
cpu_print_cc(f, cpu_fprintf, cpu_get_ccr(env) << PSR_CARRY_SHIFT);
cpu_fprintf(f, " xcc: ");
cpu_print_cc(f, cpu_fprintf, cpu_get_ccr(env) << (PSR_CARRY_SHIFT - 4));
cpu_fprintf(f, ") asi: %02x tl: %d pil: %x\n", env->asi, env->tl,
env->psrpil);
cpu_fprintf(f, "cansave: %d canrestore: %d otherwin: %d wstate: %d "
"cleanwin: %d cwp: %d\n",
env->cansave, env->canrestore, env->otherwin, env->wstate,
env->cleanwin, env->nwindows - 1 - env->cwp);
cpu_fprintf(f, "fsr: " TARGET_FMT_lx " y: " TARGET_FMT_lx " fprs: "
TARGET_FMT_lx "\n", env->fsr, env->y, env->fprs);
#else
cpu_fprintf(f, "psr: %08x (icc: ", cpu_get_psr(env));
cpu_print_cc(f, cpu_fprintf, cpu_get_psr(env));
cpu_fprintf(f, " SPE: %c%c%c) wim: %08x\n", env->psrs? 'S' : '-',
env->psrps? 'P' : '-', env->psret? 'E' : '-',
env->wim);
cpu_fprintf(f, "fsr: " TARGET_FMT_lx " y: " TARGET_FMT_lx "\n",
env->fsr, env->y);
#endif
}