qemu-e2k/target-s390x/kvm.c
Jens Freimann 3cda44f7ba s390x/kvm: migrate vcpu interrupt state
This patch adds support to migrate vcpu interrupts.
We use ioctl KVM_S390_GET_IRQ_STATE and _SET_IRQ_STATE
to get/set the complete interrupt state for a vcpu.

Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
2015-05-08 10:36:19 +02:00

2141 lines
58 KiB
C

/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright IBM Corp. 2012
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Contributions after 2012-10-29 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*
* You should have received a copy of the GNU (Lesser) General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/hw.h"
#include "cpu.h"
#include "sysemu/device_tree.h"
#include "qapi/qmp/qjson.h"
#include "monitor/monitor.h"
#include "exec/gdbstub.h"
#include "exec/address-spaces.h"
#include "trace.h"
#include "qapi-event.h"
#include "hw/s390x/s390-pci-inst.h"
#include "hw/s390x/s390-pci-bus.h"
#include "hw/s390x/ipl.h"
#include "hw/s390x/ebcdic.h"
/* #define DEBUG_KVM */
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define kvm_vm_check_mem_attr(s, attr) \
kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_B2 0xb200
#define IPA0_B9 0xb900
#define IPA0_EB 0xeb00
#define IPA0_E3 0xe300
#define PRIV_B2_SCLP_CALL 0x20
#define PRIV_B2_CSCH 0x30
#define PRIV_B2_HSCH 0x31
#define PRIV_B2_MSCH 0x32
#define PRIV_B2_SSCH 0x33
#define PRIV_B2_STSCH 0x34
#define PRIV_B2_TSCH 0x35
#define PRIV_B2_TPI 0x36
#define PRIV_B2_SAL 0x37
#define PRIV_B2_RSCH 0x38
#define PRIV_B2_STCRW 0x39
#define PRIV_B2_STCPS 0x3a
#define PRIV_B2_RCHP 0x3b
#define PRIV_B2_SCHM 0x3c
#define PRIV_B2_CHSC 0x5f
#define PRIV_B2_SIGA 0x74
#define PRIV_B2_XSCH 0x76
#define PRIV_EB_SQBS 0x8a
#define PRIV_EB_PCISTB 0xd0
#define PRIV_EB_SIC 0xd1
#define PRIV_B9_EQBS 0x9c
#define PRIV_B9_CLP 0xa0
#define PRIV_B9_PCISTG 0xd0
#define PRIV_B9_PCILG 0xd2
#define PRIV_B9_RPCIT 0xd3
#define PRIV_E3_MPCIFC 0xd0
#define PRIV_E3_STPCIFC 0xd4
#define DIAG_IPL 0x308
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define ICPT_INSTRUCTION 0x04
#define ICPT_PROGRAM 0x08
#define ICPT_EXT_INT 0x14
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_IO 0x40
#define NR_LOCAL_IRQS 32
/*
* Needs to be big enough to contain max_cpus emergency signals
* and in addition NR_LOCAL_IRQS interrupts
*/
#define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
(max_cpus + NR_LOCAL_IRQS))
static CPUWatchpoint hw_watchpoint;
/*
* We don't use a list because this structure is also used to transmit the
* hardware breakpoints to the kernel.
*/
static struct kvm_hw_breakpoint *hw_breakpoints;
static int nb_hw_breakpoints;
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_sync_regs;
static int cap_async_pf;
static int cap_mem_op;
static int cap_s390_irq;
static void *legacy_s390_alloc(size_t size, uint64_t *align);
static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
{
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_LIMIT_SIZE,
.addr = (uint64_t) memory_limit,
};
return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
}
int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
{
int rc;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_LIMIT_SIZE,
.addr = (uint64_t) &new_limit,
};
if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
return 0;
}
rc = kvm_s390_query_mem_limit(s, hw_limit);
if (rc) {
return rc;
} else if (*hw_limit < new_limit) {
return -E2BIG;
}
return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
}
void kvm_s390_clear_cmma_callback(void *opaque)
{
int rc;
KVMState *s = opaque;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_CLR_CMMA,
};
rc = kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
trace_kvm_clear_cmma(rc);
}
static void kvm_s390_enable_cmma(KVMState *s)
{
int rc;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_MEM_CTRL,
.attr = KVM_S390_VM_MEM_ENABLE_CMMA,
};
if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_ENABLE_CMMA) ||
!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_CLR_CMMA)) {
return;
}
rc = kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
if (!rc) {
qemu_register_reset(kvm_s390_clear_cmma_callback, s);
}
trace_kvm_enable_cmma(rc);
}
static void kvm_s390_set_attr(uint64_t attr)
{
struct kvm_device_attr attribute = {
.group = KVM_S390_VM_CRYPTO,
.attr = attr,
};
int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
if (ret) {
error_report("Failed to set crypto device attribute %lu: %s",
attr, strerror(-ret));
}
}
static void kvm_s390_init_aes_kw(void)
{
uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
NULL)) {
attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
}
if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
kvm_s390_set_attr(attr);
}
}
static void kvm_s390_init_dea_kw(void)
{
uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
NULL)) {
attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
}
if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
kvm_s390_set_attr(attr);
}
}
static void kvm_s390_init_crypto(void)
{
kvm_s390_init_aes_kw();
kvm_s390_init_dea_kw();
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
kvm_s390_enable_cmma(s);
if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
|| !kvm_check_extension(s, KVM_CAP_S390_COW)) {
phys_mem_set_alloc(legacy_s390_alloc);
}
kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
return 0;
}
void kvm_s390_reset_vcpu(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
/* The initial reset call is needed here to reset in-kernel
* vcpu data that we can't access directly from QEMU
* (i.e. with older kernels which don't support sync_regs/ONE_REG).
* Before this ioctl cpu_synchronize_state() is called in common kvm
* code (kvm-all) */
if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
}
kvm_s390_init_crypto();
}
static int can_sync_regs(CPUState *cs, int regs)
{
return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_sregs sregs;
struct kvm_regs regs;
struct kvm_fpu fpu = {};
int r;
int i;
/* always save the PSW and the GPRS*/
cs->kvm_run->psw_addr = env->psw.addr;
cs->kvm_run->psw_mask = env->psw.mask;
if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.gprs[i] = env->regs[i];
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
}
} else {
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (r < 0) {
return r;
}
}
/* Floating point */
for (i = 0; i < 16; i++) {
fpu.fprs[i] = env->fregs[i].ll;
}
fpu.fpc = env->fpc;
r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
if (r < 0) {
return r;
}
/* Do we need to save more than that? */
if (level == KVM_PUT_RUNTIME_STATE) {
return 0;
}
if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
cs->kvm_run->s.regs.cputm = env->cputm;
cs->kvm_run->s.regs.ckc = env->ckc;
cs->kvm_run->s.regs.todpr = env->todpr;
cs->kvm_run->s.regs.gbea = env->gbea;
cs->kvm_run->s.regs.pp = env->pp;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
} else {
/*
* These ONE_REGS are not protected by a capability. As they are only
* necessary for migration we just trace a possible error, but don't
* return with an error return code.
*/
kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
}
/* pfault parameters */
if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
cs->kvm_run->s.regs.pft = env->pfault_token;
cs->kvm_run->s.regs.pfs = env->pfault_select;
cs->kvm_run->s.regs.pfc = env->pfault_compare;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
} else if (cap_async_pf) {
r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
if (r < 0) {
return r;
}
r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
if (r < 0) {
return r;
}
r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
if (r < 0) {
return r;
}
}
/* access registers and control registers*/
if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
cs->kvm_run->s.regs.crs[i] = env->cregs[i];
}
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
} else {
for (i = 0; i < 16; i++) {
sregs.acrs[i] = env->aregs[i];
sregs.crs[i] = env->cregs[i];
}
r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
if (r < 0) {
return r;
}
}
/* Finally the prefix */
if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
cs->kvm_run->s.regs.prefix = env->psa;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
} else {
/* prefix is only supported via sync regs */
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_sregs sregs;
struct kvm_regs regs;
struct kvm_fpu fpu;
int i, r;
/* get the PSW */
env->psw.addr = cs->kvm_run->psw_addr;
env->psw.mask = cs->kvm_run->psw_mask;
/* the GPRS */
if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
for (i = 0; i < 16; i++) {
env->regs[i] = cs->kvm_run->s.regs.gprs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
}
/* The ACRS and CRS */
if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
for (i = 0; i < 16; i++) {
env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
env->cregs[i] = cs->kvm_run->s.regs.crs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->aregs[i] = sregs.acrs[i];
env->cregs[i] = sregs.crs[i];
}
}
/* Floating point */
r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->fregs[i].ll = fpu.fprs[i];
}
env->fpc = fpu.fpc;
/* The prefix */
if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
env->psa = cs->kvm_run->s.regs.prefix;
}
if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
env->cputm = cs->kvm_run->s.regs.cputm;
env->ckc = cs->kvm_run->s.regs.ckc;
env->todpr = cs->kvm_run->s.regs.todpr;
env->gbea = cs->kvm_run->s.regs.gbea;
env->pp = cs->kvm_run->s.regs.pp;
} else {
/*
* These ONE_REGS are not protected by a capability. As they are only
* necessary for migration we just trace a possible error, but don't
* return with an error return code.
*/
kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
}
/* pfault parameters */
if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
env->pfault_token = cs->kvm_run->s.regs.pft;
env->pfault_select = cs->kvm_run->s.regs.pfs;
env->pfault_compare = cs->kvm_run->s.regs.pfc;
} else if (cap_async_pf) {
r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
if (r < 0) {
return r;
}
r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
if (r < 0) {
return r;
}
r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
if (r < 0) {
return r;
}
}
return 0;
}
int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
{
int r;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_TOD,
.attr = KVM_S390_VM_TOD_LOW,
.addr = (uint64_t)tod_low,
};
r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
if (r) {
return r;
}
attr.attr = KVM_S390_VM_TOD_HIGH;
attr.addr = (uint64_t)tod_high;
return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
}
int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
{
int r;
struct kvm_device_attr attr = {
.group = KVM_S390_VM_TOD,
.attr = KVM_S390_VM_TOD_LOW,
.addr = (uint64_t)tod_low,
};
r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
if (r) {
return r;
}
attr.attr = KVM_S390_VM_TOD_HIGH;
attr.addr = (uint64_t)tod_high;
return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
}
/**
* kvm_s390_mem_op:
* @addr: the logical start address in guest memory
* @ar: the access register number
* @hostbuf: buffer in host memory. NULL = do only checks w/o copying
* @len: length that should be transfered
* @is_write: true = write, false = read
* Returns: 0 on success, non-zero if an exception or error occured
*
* Use KVM ioctl to read/write from/to guest memory. An access exception
* is injected into the vCPU in case of translation errors.
*/
int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
int len, bool is_write)
{
struct kvm_s390_mem_op mem_op = {
.gaddr = addr,
.flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
.size = len,
.op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
: KVM_S390_MEMOP_LOGICAL_READ,
.buf = (uint64_t)hostbuf,
.ar = ar,
};
int ret;
if (!cap_mem_op) {
return -ENOSYS;
}
if (!hostbuf) {
mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
if (ret < 0) {
error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
}
return ret;
}
/*
* Legacy layout for s390:
* Older S390 KVM requires the topmost vma of the RAM to be
* smaller than an system defined value, which is at least 256GB.
* Larger systems have larger values. We put the guest between
* the end of data segment (system break) and this value. We
* use 32GB as a base to have enough room for the system break
* to grow. We also have to use MAP parameters that avoid
* read-only mapping of guest pages.
*/
static void *legacy_s390_alloc(size_t size, uint64_t *align)
{
void *mem;
mem = mmap((void *) 0x800000000ULL, size,
PROT_EXEC|PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
return mem == MAP_FAILED ? NULL : mem;
}
/* DIAG 501 is used for sw breakpoints */
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sizeof(diag_501), 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)diag_501,
sizeof(diag_501), 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint8_t t[sizeof(diag_501)];
if (cpu_memory_rw_debug(cs, bp->pc, t, sizeof(diag_501), 0)) {
return -EINVAL;
} else if (memcmp(t, diag_501, sizeof(diag_501))) {
return -EINVAL;
} else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
sizeof(diag_501), 1)) {
return -EINVAL;
}
return 0;
}
static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
int len, int type)
{
int n;
for (n = 0; n < nb_hw_breakpoints; n++) {
if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
(hw_breakpoints[n].len == len || len == -1)) {
return &hw_breakpoints[n];
}
}
return NULL;
}
static int insert_hw_breakpoint(target_ulong addr, int len, int type)
{
int size;
if (find_hw_breakpoint(addr, len, type)) {
return -EEXIST;
}
size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
if (!hw_breakpoints) {
nb_hw_breakpoints = 0;
hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
} else {
hw_breakpoints =
(struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
}
if (!hw_breakpoints) {
nb_hw_breakpoints = 0;
return -ENOMEM;
}
hw_breakpoints[nb_hw_breakpoints].addr = addr;
hw_breakpoints[nb_hw_breakpoints].len = len;
hw_breakpoints[nb_hw_breakpoints].type = type;
nb_hw_breakpoints++;
return 0;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
type = KVM_HW_BP;
break;
case GDB_WATCHPOINT_WRITE:
if (len < 1) {
return -EINVAL;
}
type = KVM_HW_WP_WRITE;
break;
default:
return -ENOSYS;
}
return insert_hw_breakpoint(addr, len, type);
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
int size;
struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
if (bp == NULL) {
return -ENOENT;
}
nb_hw_breakpoints--;
if (nb_hw_breakpoints > 0) {
/*
* In order to trim the array, move the last element to the position to
* be removed - if necessary.
*/
if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
*bp = hw_breakpoints[nb_hw_breakpoints];
}
size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
hw_breakpoints =
(struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
} else {
g_free(hw_breakpoints);
hw_breakpoints = NULL;
}
return 0;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
nb_hw_breakpoints = 0;
g_free(hw_breakpoints);
hw_breakpoints = NULL;
}
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
int i;
if (nb_hw_breakpoints > 0) {
dbg->arch.nr_hw_bp = nb_hw_breakpoints;
dbg->arch.hw_bp = hw_breakpoints;
for (i = 0; i < nb_hw_breakpoints; ++i) {
hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
hw_breakpoints[i].addr);
}
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
} else {
dbg->arch.nr_hw_bp = 0;
dbg->arch.hw_bp = NULL;
}
}
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
{
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
struct kvm_s390_interrupt *interrupt)
{
int r = 0;
interrupt->type = irq->type;
switch (irq->type) {
case KVM_S390_INT_VIRTIO:
interrupt->parm = irq->u.ext.ext_params;
/* fall through */
case KVM_S390_INT_PFAULT_INIT:
case KVM_S390_INT_PFAULT_DONE:
interrupt->parm64 = irq->u.ext.ext_params2;
break;
case KVM_S390_PROGRAM_INT:
interrupt->parm = irq->u.pgm.code;
break;
case KVM_S390_SIGP_SET_PREFIX:
interrupt->parm = irq->u.prefix.address;
break;
case KVM_S390_INT_SERVICE:
interrupt->parm = irq->u.ext.ext_params;
break;
case KVM_S390_MCHK:
interrupt->parm = irq->u.mchk.cr14;
interrupt->parm64 = irq->u.mchk.mcic;
break;
case KVM_S390_INT_EXTERNAL_CALL:
interrupt->parm = irq->u.extcall.code;
break;
case KVM_S390_INT_EMERGENCY:
interrupt->parm = irq->u.emerg.code;
break;
case KVM_S390_SIGP_STOP:
case KVM_S390_RESTART:
break; /* These types have no parameters */
case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
interrupt->parm = irq->u.io.subchannel_id << 16;
interrupt->parm |= irq->u.io.subchannel_nr;
interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
interrupt->parm64 |= irq->u.io.io_int_word;
break;
default:
r = -EINVAL;
break;
}
return r;
}
static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
{
struct kvm_s390_interrupt kvmint = {};
int r;
r = s390_kvm_irq_to_interrupt(irq, &kvmint);
if (r < 0) {
fprintf(stderr, "%s called with bogus interrupt\n", __func__);
exit(1);
}
r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
{
CPUState *cs = CPU(cpu);
int r;
if (cap_s390_irq) {
r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
if (!r) {
return;
}
error_report("KVM failed to inject interrupt %llx", irq->type);
exit(1);
}
inject_vcpu_irq_legacy(cs, irq);
}
static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
{
struct kvm_s390_interrupt kvmint = {};
int r;
r = s390_kvm_irq_to_interrupt(irq, &kvmint);
if (r < 0) {
fprintf(stderr, "%s called with bogus interrupt\n", __func__);
exit(1);
}
r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
{
static bool use_flic = true;
int r;
if (use_flic) {
r = kvm_s390_inject_flic(irq);
if (r == -ENOSYS) {
use_flic = false;
}
if (!r) {
return;
}
}
__kvm_s390_floating_interrupt(irq);
}
void kvm_s390_virtio_irq(int config_change, uint64_t token)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_INT_VIRTIO,
.u.ext.ext_params = config_change,
.u.ext.ext_params2 = token,
};
kvm_s390_floating_interrupt(&irq);
}
void kvm_s390_service_interrupt(uint32_t parm)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_INT_SERVICE,
.u.ext.ext_params = parm,
};
kvm_s390_floating_interrupt(&irq);
}
static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm.code = code,
};
kvm_s390_vcpu_interrupt(cpu, &irq);
}
void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm.code = code,
.u.pgm.trans_exc_code = te_code,
.u.pgm.exc_access_id = te_code & 3,
};
kvm_s390_vcpu_interrupt(cpu, &irq);
}
static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
uint16_t ipbh0)
{
CPUS390XState *env = &cpu->env;
uint64_t sccb;
uint32_t code;
int r = 0;
cpu_synchronize_state(CPU(cpu));
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
r = sclp_service_call(env, sccb, code);
if (r < 0) {
enter_pgmcheck(cpu, -r);
} else {
setcc(cpu, r);
}
return 0;
}
static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
int rc = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
cpu_synchronize_state(CPU(cpu));
switch (ipa1) {
case PRIV_B2_XSCH:
ioinst_handle_xsch(cpu, env->regs[1]);
break;
case PRIV_B2_CSCH:
ioinst_handle_csch(cpu, env->regs[1]);
break;
case PRIV_B2_HSCH:
ioinst_handle_hsch(cpu, env->regs[1]);
break;
case PRIV_B2_MSCH:
ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_B2_SSCH:
ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_B2_STCRW:
ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
break;
case PRIV_B2_STSCH:
ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_B2_TSCH:
/* We should only get tsch via KVM_EXIT_S390_TSCH. */
fprintf(stderr, "Spurious tsch intercept\n");
break;
case PRIV_B2_CHSC:
ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
break;
case PRIV_B2_TPI:
/* This should have been handled by kvm already. */
fprintf(stderr, "Spurious tpi intercept\n");
break;
case PRIV_B2_SCHM:
ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
run->s390_sieic.ipb);
break;
case PRIV_B2_RSCH:
ioinst_handle_rsch(cpu, env->regs[1]);
break;
case PRIV_B2_RCHP:
ioinst_handle_rchp(cpu, env->regs[1]);
break;
case PRIV_B2_STCPS:
/* We do not provide this instruction, it is suppressed. */
break;
case PRIV_B2_SAL:
ioinst_handle_sal(cpu, env->regs[1]);
break;
case PRIV_B2_SIGA:
/* Not provided, set CC = 3 for subchannel not operational */
setcc(cpu, 3);
break;
case PRIV_B2_SCLP_CALL:
rc = kvm_sclp_service_call(cpu, run, ipbh0);
break;
default:
rc = -1;
DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
break;
}
return rc;
}
static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
uint8_t *ar)
{
CPUS390XState *env = &cpu->env;
uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
uint32_t base2 = run->s390_sieic.ipb >> 28;
uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
((run->s390_sieic.ipb & 0xff00) << 4);
if (disp2 & 0x80000) {
disp2 += 0xfff00000;
}
if (ar) {
*ar = base2;
}
return (base2 ? env->regs[base2] : 0) +
(x2 ? env->regs[x2] : 0) + (long)(int)disp2;
}
static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
uint8_t *ar)
{
CPUS390XState *env = &cpu->env;
uint32_t base2 = run->s390_sieic.ipb >> 28;
uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
((run->s390_sieic.ipb & 0xff00) << 4);
if (disp2 & 0x80000) {
disp2 += 0xfff00000;
}
if (ar) {
*ar = base2;
}
return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
}
static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
return clp_service_call(cpu, r2);
}
static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
return pcilg_service_call(cpu, r1, r2);
}
static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
return pcistg_service_call(cpu, r1, r2);
}
static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint64_t fiba;
uint8_t ar;
cpu_synchronize_state(CPU(cpu));
fiba = get_base_disp_rxy(cpu, run, &ar);
return stpcifc_service_call(cpu, r1, fiba, ar);
}
static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
{
/* NOOP */
return 0;
}
static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
return rpcit_service_call(cpu, r1, r2);
}
static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint8_t r3 = run->s390_sieic.ipa & 0x000f;
uint64_t gaddr;
uint8_t ar;
cpu_synchronize_state(CPU(cpu));
gaddr = get_base_disp_rsy(cpu, run, &ar);
return pcistb_service_call(cpu, r1, r3, gaddr, ar);
}
static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
{
uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
uint64_t fiba;
uint8_t ar;
cpu_synchronize_state(CPU(cpu));
fiba = get_base_disp_rxy(cpu, run, &ar);
return mpcifc_service_call(cpu, r1, fiba, ar);
}
static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
int r = 0;
switch (ipa1) {
case PRIV_B9_CLP:
r = kvm_clp_service_call(cpu, run);
break;
case PRIV_B9_PCISTG:
r = kvm_pcistg_service_call(cpu, run);
break;
case PRIV_B9_PCILG:
r = kvm_pcilg_service_call(cpu, run);
break;
case PRIV_B9_RPCIT:
r = kvm_rpcit_service_call(cpu, run);
break;
case PRIV_B9_EQBS:
/* just inject exception */
r = -1;
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
break;
}
return r;
}
static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
{
int r = 0;
switch (ipbl) {
case PRIV_EB_PCISTB:
r = kvm_pcistb_service_call(cpu, run);
break;
case PRIV_EB_SIC:
r = kvm_sic_service_call(cpu, run);
break;
case PRIV_EB_SQBS:
/* just inject exception */
r = -1;
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
break;
}
return r;
}
static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
{
int r = 0;
switch (ipbl) {
case PRIV_E3_MPCIFC:
r = kvm_mpcifc_service_call(cpu, run);
break;
case PRIV_E3_STPCIFC:
r = kvm_stpcifc_service_call(cpu, run);
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
break;
}
return r;
}
static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
int ret;
cpu_synchronize_state(CPU(cpu));
ret = s390_virtio_hypercall(env);
if (ret == -EINVAL) {
enter_pgmcheck(cpu, PGM_SPECIFICATION);
return 0;
}
return ret;
}
static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
{
uint64_t r1, r3;
cpu_synchronize_state(CPU(cpu));
r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
r3 = run->s390_sieic.ipa & 0x000f;
handle_diag_308(&cpu->env, r1, r3);
}
static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
unsigned long pc;
cpu_synchronize_state(CPU(cpu));
pc = env->psw.addr - 4;
if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
env->psw.addr = pc;
return EXCP_DEBUG;
}
return -ENOENT;
}
#define DIAG_KVM_CODE_MASK 0x000000000000ffff
static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
{
int r = 0;
uint16_t func_code;
/*
* For any diagnose call we support, bits 48-63 of the resulting
* address specify the function code; the remainder is ignored.
*/
func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
switch (func_code) {
case DIAG_IPL:
kvm_handle_diag_308(cpu, run);
break;
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(cpu, run);
break;
case DIAG_KVM_BREAKPOINT:
r = handle_sw_breakpoint(cpu, run);
break;
default:
DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
enter_pgmcheck(cpu, PGM_SPECIFICATION);
break;
}
return r;
}
typedef struct SigpInfo {
S390CPU *cpu;
uint64_t param;
int cc;
uint64_t *status_reg;
} SigpInfo;
static void set_sigp_status(SigpInfo *si, uint64_t status)
{
*si->status_reg &= 0xffffffff00000000ULL;
*si->status_reg |= status;
si->cc = SIGP_CC_STATUS_STORED;
}
static void sigp_start(void *arg)
{
SigpInfo *si = arg;
if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
return;
}
s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
static void sigp_stop(void *arg)
{
SigpInfo *si = arg;
struct kvm_s390_irq irq = {
.type = KVM_S390_SIGP_STOP,
};
if (s390_cpu_get_state(si->cpu) != CPU_STATE_OPERATING) {
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
return;
}
/* disabled wait - sleeping in user space */
if (CPU(si->cpu)->halted) {
s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
} else {
/* execute the stop function */
si->cpu->env.sigp_order = SIGP_STOP;
kvm_s390_vcpu_interrupt(si->cpu, &irq);
}
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
#define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
#define SAVE_AREA_SIZE 512
static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
{
static const uint8_t ar_id = 1;
uint64_t ckc = cpu->env.ckc >> 8;
void *mem;
hwaddr len = SAVE_AREA_SIZE;
mem = cpu_physical_memory_map(addr, &len, 1);
if (!mem) {
return -EFAULT;
}
if (len != SAVE_AREA_SIZE) {
cpu_physical_memory_unmap(mem, len, 1, 0);
return -EFAULT;
}
if (store_arch) {
cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
}
memcpy(mem, &cpu->env.fregs, 128);
memcpy(mem + 128, &cpu->env.regs, 128);
memcpy(mem + 256, &cpu->env.psw, 16);
memcpy(mem + 280, &cpu->env.psa, 4);
memcpy(mem + 284, &cpu->env.fpc, 4);
memcpy(mem + 292, &cpu->env.todpr, 4);
memcpy(mem + 296, &cpu->env.cputm, 8);
memcpy(mem + 304, &ckc, 8);
memcpy(mem + 320, &cpu->env.aregs, 64);
memcpy(mem + 384, &cpu->env.cregs, 128);
cpu_physical_memory_unmap(mem, len, 1, len);
return 0;
}
static void sigp_stop_and_store_status(void *arg)
{
SigpInfo *si = arg;
struct kvm_s390_irq irq = {
.type = KVM_S390_SIGP_STOP,
};
/* disabled wait - sleeping in user space */
if (s390_cpu_get_state(si->cpu) == CPU_STATE_OPERATING &&
CPU(si->cpu)->halted) {
s390_cpu_set_state(CPU_STATE_STOPPED, si->cpu);
}
switch (s390_cpu_get_state(si->cpu)) {
case CPU_STATE_OPERATING:
si->cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
kvm_s390_vcpu_interrupt(si->cpu, &irq);
/* store will be performed when handling the stop intercept */
break;
case CPU_STATE_STOPPED:
/* already stopped, just store the status */
cpu_synchronize_state(CPU(si->cpu));
kvm_s390_store_status(si->cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
break;
}
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
static void sigp_store_status_at_address(void *arg)
{
SigpInfo *si = arg;
uint32_t address = si->param & 0x7ffffe00u;
/* cpu has to be stopped */
if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
return;
}
cpu_synchronize_state(CPU(si->cpu));
if (kvm_s390_store_status(si->cpu, address, false)) {
set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
return;
}
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
static void sigp_restart(void *arg)
{
SigpInfo *si = arg;
struct kvm_s390_irq irq = {
.type = KVM_S390_RESTART,
};
switch (s390_cpu_get_state(si->cpu)) {
case CPU_STATE_STOPPED:
/* the restart irq has to be delivered prior to any other pending irq */
cpu_synchronize_state(CPU(si->cpu));
do_restart_interrupt(&si->cpu->env);
s390_cpu_set_state(CPU_STATE_OPERATING, si->cpu);
break;
case CPU_STATE_OPERATING:
kvm_s390_vcpu_interrupt(si->cpu, &irq);
break;
}
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
int kvm_s390_cpu_restart(S390CPU *cpu)
{
SigpInfo si = {
.cpu = cpu,
};
run_on_cpu(CPU(cpu), sigp_restart, &si);
DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
return 0;
}
static void sigp_initial_cpu_reset(void *arg)
{
SigpInfo *si = arg;
CPUState *cs = CPU(si->cpu);
S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
cpu_synchronize_state(cs);
scc->initial_cpu_reset(cs);
cpu_synchronize_post_reset(cs);
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
static void sigp_cpu_reset(void *arg)
{
SigpInfo *si = arg;
CPUState *cs = CPU(si->cpu);
S390CPUClass *scc = S390_CPU_GET_CLASS(si->cpu);
cpu_synchronize_state(cs);
scc->cpu_reset(cs);
cpu_synchronize_post_reset(cs);
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
static void sigp_set_prefix(void *arg)
{
SigpInfo *si = arg;
uint32_t addr = si->param & 0x7fffe000u;
cpu_synchronize_state(CPU(si->cpu));
if (!address_space_access_valid(&address_space_memory, addr,
sizeof(struct LowCore), false)) {
set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
return;
}
/* cpu has to be stopped */
if (s390_cpu_get_state(si->cpu) != CPU_STATE_STOPPED) {
set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
return;
}
si->cpu->env.psa = addr;
cpu_synchronize_post_init(CPU(si->cpu));
si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
}
static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
uint64_t param, uint64_t *status_reg)
{
SigpInfo si = {
.cpu = dst_cpu,
.param = param,
.status_reg = status_reg,
};
/* cpu available? */
if (dst_cpu == NULL) {
return SIGP_CC_NOT_OPERATIONAL;
}
/* only resets can break pending orders */
if (dst_cpu->env.sigp_order != 0 &&
order != SIGP_CPU_RESET &&
order != SIGP_INITIAL_CPU_RESET) {
return SIGP_CC_BUSY;
}
switch (order) {
case SIGP_START:
run_on_cpu(CPU(dst_cpu), sigp_start, &si);
break;
case SIGP_STOP:
run_on_cpu(CPU(dst_cpu), sigp_stop, &si);
break;
case SIGP_RESTART:
run_on_cpu(CPU(dst_cpu), sigp_restart, &si);
break;
case SIGP_STOP_STORE_STATUS:
run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, &si);
break;
case SIGP_STORE_STATUS_ADDR:
run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, &si);
break;
case SIGP_SET_PREFIX:
run_on_cpu(CPU(dst_cpu), sigp_set_prefix, &si);
break;
case SIGP_INITIAL_CPU_RESET:
run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, &si);
break;
case SIGP_CPU_RESET:
run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, &si);
break;
default:
DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
}
return si.cc;
}
static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
uint64_t *status_reg)
{
CPUState *cur_cs;
S390CPU *cur_cpu;
/* due to the BQL, we are the only active cpu */
CPU_FOREACH(cur_cs) {
cur_cpu = S390_CPU(cur_cs);
if (cur_cpu->env.sigp_order != 0) {
return SIGP_CC_BUSY;
}
cpu_synchronize_state(cur_cs);
/* all but the current one have to be stopped */
if (cur_cpu != cpu &&
s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
*status_reg &= 0xffffffff00000000ULL;
*status_reg |= SIGP_STAT_INCORRECT_STATE;
return SIGP_CC_STATUS_STORED;
}
}
switch (param & 0xff) {
case SIGP_MODE_ESA_S390:
/* not supported */
return SIGP_CC_NOT_OPERATIONAL;
case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
CPU_FOREACH(cur_cs) {
cur_cpu = S390_CPU(cur_cs);
cur_cpu->env.pfault_token = -1UL;
}
break;
default:
*status_reg &= 0xffffffff00000000ULL;
*status_reg |= SIGP_STAT_INVALID_PARAMETER;
return SIGP_CC_STATUS_STORED;
}
return SIGP_CC_ORDER_CODE_ACCEPTED;
}
#define SIGP_ORDER_MASK 0x000000ff
static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
const uint8_t r1 = ipa1 >> 4;
const uint8_t r3 = ipa1 & 0x0f;
int ret;
uint8_t order;
uint64_t *status_reg;
uint64_t param;
S390CPU *dst_cpu = NULL;
cpu_synchronize_state(CPU(cpu));
/* get order code */
order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
& SIGP_ORDER_MASK;
status_reg = &env->regs[r1];
param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
switch (order) {
case SIGP_SET_ARCH:
ret = sigp_set_architecture(cpu, param, status_reg);
break;
default:
/* all other sigp orders target a single vcpu */
dst_cpu = s390_cpu_addr2state(env->regs[r3]);
ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
}
trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
if (ret >= 0) {
setcc(cpu, ret);
return 0;
}
return ret;
}
static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
{
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int r = -1;
DPRINTF("handle_instruction 0x%x 0x%x\n",
run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_B2:
r = handle_b2(cpu, run, ipa1);
break;
case IPA0_B9:
r = handle_b9(cpu, run, ipa1);
break;
case IPA0_EB:
r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
break;
case IPA0_E3:
r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
break;
case IPA0_DIAG:
r = handle_diag(cpu, run, run->s390_sieic.ipb);
break;
case IPA0_SIGP:
r = handle_sigp(cpu, run, ipa1);
break;
}
if (r < 0) {
r = 0;
enter_pgmcheck(cpu, 0x0001);
}
return r;
}
static bool is_special_wait_psw(CPUState *cs)
{
/* signal quiesce */
return cs->kvm_run->psw_addr == 0xfffUL;
}
static void guest_panicked(void)
{
qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE,
&error_abort);
vm_stop(RUN_STATE_GUEST_PANICKED);
}
static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
{
CPUState *cs = CPU(cpu);
error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
s390_cpu_halt(cpu);
guest_panicked();
}
static int handle_intercept(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
(long)cs->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
r = handle_instruction(cpu, run);
break;
case ICPT_PROGRAM:
unmanageable_intercept(cpu, "program interrupt",
offsetof(LowCore, program_new_psw));
r = EXCP_HALTED;
break;
case ICPT_EXT_INT:
unmanageable_intercept(cpu, "external interrupt",
offsetof(LowCore, external_new_psw));
r = EXCP_HALTED;
break;
case ICPT_WAITPSW:
/* disabled wait, since enabled wait is handled in kernel */
cpu_synchronize_state(cs);
if (s390_cpu_halt(cpu) == 0) {
if (is_special_wait_psw(cs)) {
qemu_system_shutdown_request();
} else {
guest_panicked();
}
}
r = EXCP_HALTED;
break;
case ICPT_CPU_STOP:
if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
qemu_system_shutdown_request();
}
if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
true);
}
cpu->env.sigp_order = 0;
r = EXCP_HALTED;
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
static int handle_tsch(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret;
cpu_synchronize_state(cs);
ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
if (ret < 0) {
/*
* Failure.
* If an I/O interrupt had been dequeued, we have to reinject it.
*/
if (run->s390_tsch.dequeued) {
kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
run->s390_tsch.subchannel_nr,
run->s390_tsch.io_int_parm,
run->s390_tsch.io_int_word);
}
ret = 0;
}
return ret;
}
static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
{
struct sysib_322 sysib;
int del;
if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
return;
}
/* Shift the stack of Extended Names to prepare for our own data */
memmove(&sysib.ext_names[1], &sysib.ext_names[0],
sizeof(sysib.ext_names[0]) * (sysib.count - 1));
/* First virt level, that doesn't provide Ext Names delimits stack. It is
* assumed it's not capable of managing Extended Names for lower levels.
*/
for (del = 1; del < sysib.count; del++) {
if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
break;
}
}
if (del < sysib.count) {
memset(sysib.ext_names[del], 0,
sizeof(sysib.ext_names[0]) * (sysib.count - del));
}
/* Insert short machine name in EBCDIC, padded with blanks */
if (qemu_name) {
memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
strlen(qemu_name)));
}
sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
/* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
* considered by s390 as not capable of providing any Extended Name.
* Therefore if no name was specified on qemu invocation, we go with the
* same "KVMguest" default, which KVM has filled into short name field.
*/
if (qemu_name) {
strncpy((char *)sysib.ext_names[0], qemu_name,
sizeof(sysib.ext_names[0]));
} else {
strcpy((char *)sysib.ext_names[0], "KVMguest");
}
/* Insert UUID */
memcpy(sysib.vm[0].uuid, qemu_uuid, sizeof(sysib.vm[0].uuid));
s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
}
static int handle_stsi(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
switch (run->s390_stsi.fc) {
case 3:
if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
return 0;
}
/* Only sysib 3.2.2 needs post-handling for now. */
insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
return 0;
default:
return 0;
}
}
static int kvm_arch_handle_debug_exit(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret = 0;
struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
switch (arch_info->type) {
case KVM_HW_WP_WRITE:
if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
cs->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = arch_info->addr;
hw_watchpoint.flags = BP_MEM_WRITE;
ret = EXCP_DEBUG;
}
break;
case KVM_HW_BP:
if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
ret = EXCP_DEBUG;
}
break;
case KVM_SINGLESTEP:
if (cs->singlestep_enabled) {
ret = EXCP_DEBUG;
}
break;
default:
ret = -ENOSYS;
}
return ret;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
S390CPU *cpu = S390_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(cpu);
break;
case KVM_EXIT_S390_RESET:
s390_reipl_request();
break;
case KVM_EXIT_S390_TSCH:
ret = handle_tsch(cpu);
break;
case KVM_EXIT_S390_STSI:
ret = handle_stsi(cpu);
break;
case KVM_EXIT_DEBUG:
ret = kvm_arch_handle_debug_exit(cpu);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
if (ret == 0) {
ret = EXCP_INTERRUPT;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
void kvm_s390_io_interrupt(uint16_t subchannel_id,
uint16_t subchannel_nr, uint32_t io_int_parm,
uint32_t io_int_word)
{
struct kvm_s390_irq irq = {
.u.io.subchannel_id = subchannel_id,
.u.io.subchannel_nr = subchannel_nr,
.u.io.io_int_parm = io_int_parm,
.u.io.io_int_word = io_int_word,
};
if (io_int_word & IO_INT_WORD_AI) {
irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
} else {
irq.type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
}
kvm_s390_floating_interrupt(&irq);
}
void kvm_s390_crw_mchk(void)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_MCHK,
.u.mchk.cr14 = 1 << 28,
.u.mchk.mcic = 0x00400f1d40330000ULL,
};
kvm_s390_floating_interrupt(&irq);
}
void kvm_s390_enable_css_support(S390CPU *cpu)
{
int r;
/* Activate host kernel channel subsystem support. */
r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
assert(r == 0);
}
void kvm_arch_init_irq_routing(KVMState *s)
{
/*
* Note that while irqchip capabilities generally imply that cpustates
* are handled in-kernel, it is not true for s390 (yet); therefore, we
* have to override the common code kvm_halt_in_kernel_allowed setting.
*/
if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
kvm_gsi_routing_allowed = true;
kvm_halt_in_kernel_allowed = false;
}
}
int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
int vq, bool assign)
{
struct kvm_ioeventfd kick = {
.flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
KVM_IOEVENTFD_FLAG_DATAMATCH,
.fd = event_notifier_get_fd(notifier),
.datamatch = vq,
.addr = sch,
.len = 8,
};
if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
return -ENOSYS;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
}
int kvm_s390_get_memslot_count(KVMState *s)
{
return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
}
int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
{
struct kvm_mp_state mp_state = {};
int ret;
/* the kvm part might not have been initialized yet */
if (CPU(cpu)->kvm_state == NULL) {
return 0;
}
switch (cpu_state) {
case CPU_STATE_STOPPED:
mp_state.mp_state = KVM_MP_STATE_STOPPED;
break;
case CPU_STATE_CHECK_STOP:
mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
break;
case CPU_STATE_OPERATING:
mp_state.mp_state = KVM_MP_STATE_OPERATING;
break;
case CPU_STATE_LOAD:
mp_state.mp_state = KVM_MP_STATE_LOAD;
break;
default:
error_report("Requested CPU state is not a valid S390 CPU state: %u",
cpu_state);
exit(1);
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
strerror(-ret));
}
return ret;
}
void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
{
struct kvm_s390_irq_state irq_state;
CPUState *cs = CPU(cpu);
int32_t bytes;
if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
return;
}
irq_state.buf = (uint64_t) cpu->irqstate;
irq_state.len = VCPU_IRQ_BUF_SIZE;
bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
if (bytes < 0) {
cpu->irqstate_saved_size = 0;
error_report("Migration of interrupt state failed");
return;
}
cpu->irqstate_saved_size = bytes;
}
int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_s390_irq_state irq_state;
int r;
if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
return -ENOSYS;
}
if (cpu->irqstate_saved_size == 0) {
return 0;
}
irq_state.buf = (uint64_t) cpu->irqstate;
irq_state.len = cpu->irqstate_saved_size;
r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
if (r) {
error_report("Setting interrupt state failed %d", r);
}
return r;
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data)
{
S390PCIBusDevice *pbdev;
uint32_t fid = data >> ZPCI_MSI_VEC_BITS;
uint32_t vec = data & ZPCI_MSI_VEC_MASK;
pbdev = s390_pci_find_dev_by_fid(fid);
if (!pbdev) {
DPRINTF("add_msi_route no dev\n");
return -ENODEV;
}
pbdev->routes.adapter.ind_offset = vec;
route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
route->flags = 0;
route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
return 0;
}