qemu-e2k/target/sh4/gdbstub.c
Philippe Mathieu-Daudé 377f8f08be gdbstub: Introduce gdb_get_float32() to get 32-bit float registers
Since we now use a GByteArray, we can not use stfl_p() directly.
Introduce the gdb_get_float32() helper to load a float32 register.

Fixes: a010bdbe71 ("extend GByteArray to read register helpers")
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200414163853.12164-2-philmd@redhat.com>
Message-Id: <20200414200631.12799-14-alex.bennee@linaro.org>
2020-04-15 11:38:23 +01:00

145 lines
4.0 KiB
C

/*
* SuperH gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/gdbstub.h"
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
/* FIXME: We should use XML for this. */
int superh_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
CPUSH4State *env = &cpu->env;
switch (n) {
case 0 ... 7:
if ((env->sr & (1u << SR_MD)) && (env->sr & (1u << SR_RB))) {
return gdb_get_regl(mem_buf, env->gregs[n + 16]);
} else {
return gdb_get_regl(mem_buf, env->gregs[n]);
}
case 8 ... 15:
return gdb_get_regl(mem_buf, env->gregs[n]);
case 16:
return gdb_get_regl(mem_buf, env->pc);
case 17:
return gdb_get_regl(mem_buf, env->pr);
case 18:
return gdb_get_regl(mem_buf, env->gbr);
case 19:
return gdb_get_regl(mem_buf, env->vbr);
case 20:
return gdb_get_regl(mem_buf, env->mach);
case 21:
return gdb_get_regl(mem_buf, env->macl);
case 22:
return gdb_get_regl(mem_buf, cpu_read_sr(env));
case 23:
return gdb_get_regl(mem_buf, env->fpul);
case 24:
return gdb_get_regl(mem_buf, env->fpscr);
case 25 ... 40:
if (env->fpscr & FPSCR_FR) {
return gdb_get_float32(mem_buf, env->fregs[n - 9]);
}
return gdb_get_float32(mem_buf, env->fregs[n - 25]);
case 41:
return gdb_get_regl(mem_buf, env->ssr);
case 42:
return gdb_get_regl(mem_buf, env->spc);
case 43 ... 50:
return gdb_get_regl(mem_buf, env->gregs[n - 43]);
case 51 ... 58:
return gdb_get_regl(mem_buf, env->gregs[n - (51 - 16)]);
}
return 0;
}
int superh_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
SuperHCPU *cpu = SUPERH_CPU(cs);
CPUSH4State *env = &cpu->env;
switch (n) {
case 0 ... 7:
if ((env->sr & (1u << SR_MD)) && (env->sr & (1u << SR_RB))) {
env->gregs[n + 16] = ldl_p(mem_buf);
} else {
env->gregs[n] = ldl_p(mem_buf);
}
break;
case 8 ... 15:
env->gregs[n] = ldl_p(mem_buf);
break;
case 16:
env->pc = ldl_p(mem_buf);
break;
case 17:
env->pr = ldl_p(mem_buf);
break;
case 18:
env->gbr = ldl_p(mem_buf);
break;
case 19:
env->vbr = ldl_p(mem_buf);
break;
case 20:
env->mach = ldl_p(mem_buf);
break;
case 21:
env->macl = ldl_p(mem_buf);
break;
case 22:
cpu_write_sr(env, ldl_p(mem_buf));
break;
case 23:
env->fpul = ldl_p(mem_buf);
break;
case 24:
env->fpscr = ldl_p(mem_buf);
break;
case 25 ... 40:
if (env->fpscr & FPSCR_FR) {
env->fregs[n - 9] = ldfl_p(mem_buf);
} else {
env->fregs[n - 25] = ldfl_p(mem_buf);
}
break;
case 41:
env->ssr = ldl_p(mem_buf);
break;
case 42:
env->spc = ldl_p(mem_buf);
break;
case 43 ... 50:
env->gregs[n - 43] = ldl_p(mem_buf);
break;
case 51 ... 58:
env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
break;
default:
return 0;
}
return 4;
}