b77af26e97
Reviewed-by: Anton Johansson <anjo@rev.ng> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
440 lines
13 KiB
C
440 lines
13 KiB
C
/*
|
|
* qemu user cpu loop
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu.h"
|
|
#include "qemu/timer.h"
|
|
#include "user-internals.h"
|
|
#include "cpu_loop-common.h"
|
|
#include "signal-common.h"
|
|
#include "user-mmap.h"
|
|
|
|
/***********************************************************/
|
|
/* CPUX86 core interface */
|
|
|
|
uint64_t cpu_get_tsc(CPUX86State *env)
|
|
{
|
|
return cpu_get_host_ticks();
|
|
}
|
|
|
|
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
|
|
int flags)
|
|
{
|
|
unsigned int e1, e2;
|
|
uint32_t *p;
|
|
e1 = (addr << 16) | (limit & 0xffff);
|
|
e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
|
|
e2 |= flags;
|
|
p = ptr;
|
|
p[0] = tswap32(e1);
|
|
p[1] = tswap32(e2);
|
|
}
|
|
|
|
static uint64_t *idt_table;
|
|
|
|
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
|
|
uint64_t addr, unsigned int sel)
|
|
{
|
|
uint32_t *p, e1, e2;
|
|
e1 = (addr & 0xffff) | (sel << 16);
|
|
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
|
|
p = ptr;
|
|
p[0] = tswap32(e1);
|
|
p[1] = tswap32(e2);
|
|
p[2] = tswap32(addr >> 32);
|
|
p[3] = 0;
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
/* only dpl matters as we do only user space emulation */
|
|
static void set_idt(int n, unsigned int dpl, bool is64)
|
|
{
|
|
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
|
|
}
|
|
#else
|
|
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
|
|
uint32_t addr, unsigned int sel)
|
|
{
|
|
uint32_t *p, e1, e2;
|
|
e1 = (addr & 0xffff) | (sel << 16);
|
|
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
|
|
p = ptr;
|
|
p[0] = tswap32(e1);
|
|
p[1] = tswap32(e2);
|
|
}
|
|
|
|
/* only dpl matters as we do only user space emulation */
|
|
static void set_idt(int n, unsigned int dpl, bool is64)
|
|
{
|
|
if (is64) {
|
|
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
|
|
} else {
|
|
set_gate(idt_table + n, 0, dpl, 0, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef TARGET_X86_64
|
|
static bool write_ok_or_segv(CPUX86State *env, abi_ptr addr, size_t len)
|
|
{
|
|
/*
|
|
* For all the vsyscalls, NULL means "don't write anything" not
|
|
* "write it at address 0".
|
|
*/
|
|
if (addr == 0 || access_ok(env_cpu(env), VERIFY_WRITE, addr, len)) {
|
|
return true;
|
|
}
|
|
|
|
env->error_code = PG_ERROR_W_MASK | PG_ERROR_U_MASK;
|
|
force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MAPERR, addr);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Since v3.1, the kernel traps and emulates the vsyscall page.
|
|
* Entry points other than the official generate SIGSEGV.
|
|
*/
|
|
static void emulate_vsyscall(CPUX86State *env)
|
|
{
|
|
int syscall;
|
|
abi_ulong ret;
|
|
uint64_t caller;
|
|
|
|
/*
|
|
* Validate the entry point. We have already validated the page
|
|
* during translation to get here; now verify the offset.
|
|
*/
|
|
switch (env->eip & ~TARGET_PAGE_MASK) {
|
|
case 0x000:
|
|
syscall = TARGET_NR_gettimeofday;
|
|
break;
|
|
case 0x400:
|
|
syscall = TARGET_NR_time;
|
|
break;
|
|
case 0x800:
|
|
syscall = TARGET_NR_getcpu;
|
|
break;
|
|
default:
|
|
goto sigsegv;
|
|
}
|
|
|
|
/*
|
|
* Validate the return address.
|
|
* Note that the kernel treats this the same as an invalid entry point.
|
|
*/
|
|
if (get_user_u64(caller, env->regs[R_ESP])) {
|
|
goto sigsegv;
|
|
}
|
|
|
|
/*
|
|
* Validate the pointer arguments.
|
|
*/
|
|
switch (syscall) {
|
|
case TARGET_NR_gettimeofday:
|
|
if (!write_ok_or_segv(env, env->regs[R_EDI],
|
|
sizeof(struct target_timeval)) ||
|
|
!write_ok_or_segv(env, env->regs[R_ESI],
|
|
sizeof(struct target_timezone))) {
|
|
return;
|
|
}
|
|
break;
|
|
case TARGET_NR_time:
|
|
if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(abi_long))) {
|
|
return;
|
|
}
|
|
break;
|
|
case TARGET_NR_getcpu:
|
|
if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(uint32_t)) ||
|
|
!write_ok_or_segv(env, env->regs[R_ESI], sizeof(uint32_t))) {
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Perform the syscall. None of the vsyscalls should need restarting.
|
|
*/
|
|
ret = do_syscall(env, syscall, env->regs[R_EDI], env->regs[R_ESI],
|
|
env->regs[R_EDX], env->regs[10], env->regs[8],
|
|
env->regs[9], 0, 0);
|
|
g_assert(ret != -QEMU_ERESTARTSYS);
|
|
g_assert(ret != -QEMU_ESIGRETURN);
|
|
if (ret == -TARGET_EFAULT) {
|
|
goto sigsegv;
|
|
}
|
|
env->regs[R_EAX] = ret;
|
|
|
|
/* Emulate a ret instruction to leave the vsyscall page. */
|
|
env->eip = caller;
|
|
env->regs[R_ESP] += 8;
|
|
return;
|
|
|
|
sigsegv:
|
|
force_sig(TARGET_SIGSEGV);
|
|
}
|
|
#endif
|
|
|
|
static bool maybe_handle_vm86_trap(CPUX86State *env, int trapnr)
|
|
{
|
|
#ifndef TARGET_X86_64
|
|
if (env->eflags & VM_MASK) {
|
|
handle_vm86_trap(env, trapnr);
|
|
return true;
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
void cpu_loop(CPUX86State *env)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int trapnr;
|
|
abi_ulong ret;
|
|
|
|
for(;;) {
|
|
cpu_exec_start(cs);
|
|
trapnr = cpu_exec(cs);
|
|
cpu_exec_end(cs);
|
|
process_queued_cpu_work(cs);
|
|
|
|
switch(trapnr) {
|
|
case 0x80:
|
|
#ifndef TARGET_X86_64
|
|
case EXCP_SYSCALL:
|
|
#endif
|
|
/* linux syscall from int $0x80 */
|
|
ret = do_syscall(env,
|
|
env->regs[R_EAX],
|
|
env->regs[R_EBX],
|
|
env->regs[R_ECX],
|
|
env->regs[R_EDX],
|
|
env->regs[R_ESI],
|
|
env->regs[R_EDI],
|
|
env->regs[R_EBP],
|
|
0, 0);
|
|
if (ret == -QEMU_ERESTARTSYS) {
|
|
env->eip -= 2;
|
|
} else if (ret != -QEMU_ESIGRETURN) {
|
|
env->regs[R_EAX] = ret;
|
|
}
|
|
break;
|
|
#ifdef TARGET_X86_64
|
|
case EXCP_SYSCALL:
|
|
/* linux syscall from syscall instruction. */
|
|
ret = do_syscall(env,
|
|
env->regs[R_EAX],
|
|
env->regs[R_EDI],
|
|
env->regs[R_ESI],
|
|
env->regs[R_EDX],
|
|
env->regs[10],
|
|
env->regs[8],
|
|
env->regs[9],
|
|
0, 0);
|
|
if (ret == -QEMU_ERESTARTSYS) {
|
|
env->eip -= 2;
|
|
} else if (ret != -QEMU_ESIGRETURN) {
|
|
env->regs[R_EAX] = ret;
|
|
}
|
|
break;
|
|
case EXCP_VSYSCALL:
|
|
emulate_vsyscall(env);
|
|
break;
|
|
#endif
|
|
case EXCP0B_NOSEG:
|
|
case EXCP0C_STACK:
|
|
force_sig(TARGET_SIGBUS);
|
|
break;
|
|
case EXCP0D_GPF:
|
|
/* XXX: potential problem if ABI32 */
|
|
if (maybe_handle_vm86_trap(env, trapnr)) {
|
|
break;
|
|
}
|
|
force_sig(TARGET_SIGSEGV);
|
|
break;
|
|
case EXCP0E_PAGE:
|
|
force_sig_fault(TARGET_SIGSEGV,
|
|
(env->error_code & PG_ERROR_P_MASK ?
|
|
TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR),
|
|
env->cr[2]);
|
|
break;
|
|
case EXCP00_DIVZ:
|
|
if (maybe_handle_vm86_trap(env, trapnr)) {
|
|
break;
|
|
}
|
|
force_sig_fault(TARGET_SIGFPE, TARGET_FPE_INTDIV, env->eip);
|
|
break;
|
|
case EXCP01_DB:
|
|
if (maybe_handle_vm86_trap(env, trapnr)) {
|
|
break;
|
|
}
|
|
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
|
|
break;
|
|
case EXCP03_INT3:
|
|
if (maybe_handle_vm86_trap(env, trapnr)) {
|
|
break;
|
|
}
|
|
force_sig(TARGET_SIGTRAP);
|
|
break;
|
|
case EXCP04_INTO:
|
|
case EXCP05_BOUND:
|
|
if (maybe_handle_vm86_trap(env, trapnr)) {
|
|
break;
|
|
}
|
|
force_sig(TARGET_SIGSEGV);
|
|
break;
|
|
case EXCP06_ILLOP:
|
|
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->eip);
|
|
break;
|
|
case EXCP_INTERRUPT:
|
|
/* just indicate that signals should be handled asap */
|
|
break;
|
|
case EXCP_DEBUG:
|
|
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
|
|
break;
|
|
case EXCP_ATOMIC:
|
|
cpu_exec_step_atomic(cs);
|
|
break;
|
|
default:
|
|
EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n",
|
|
trapnr);
|
|
abort();
|
|
}
|
|
process_pending_signals(env);
|
|
}
|
|
}
|
|
|
|
static void target_cpu_free(void *obj)
|
|
{
|
|
CPUArchState *env = cpu_env(obj);
|
|
target_munmap(env->gdt.base, sizeof(uint64_t) * TARGET_GDT_ENTRIES);
|
|
g_free(obj);
|
|
}
|
|
|
|
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
bool is64 = (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) != 0;
|
|
int i;
|
|
|
|
OBJECT(cpu)->free = target_cpu_free;
|
|
env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
|
|
env->hflags |= HF_PE_MASK | HF_CPL_MASK;
|
|
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
|
|
env->cr[4] |= CR4_OSFXSR_MASK;
|
|
env->hflags |= HF_OSFXSR_MASK;
|
|
}
|
|
|
|
/* enable 64 bit mode if possible */
|
|
if (is64) {
|
|
env->cr[4] |= CR4_PAE_MASK;
|
|
env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
|
|
env->hflags |= HF_LMA_MASK;
|
|
}
|
|
#ifndef TARGET_ABI32
|
|
else {
|
|
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
#endif
|
|
|
|
/* flags setup : we activate the IRQs by default as in user mode */
|
|
env->eflags |= IF_MASK;
|
|
|
|
/* linux register setup */
|
|
#ifndef TARGET_ABI32
|
|
env->regs[R_EAX] = regs->rax;
|
|
env->regs[R_EBX] = regs->rbx;
|
|
env->regs[R_ECX] = regs->rcx;
|
|
env->regs[R_EDX] = regs->rdx;
|
|
env->regs[R_ESI] = regs->rsi;
|
|
env->regs[R_EDI] = regs->rdi;
|
|
env->regs[R_EBP] = regs->rbp;
|
|
env->regs[R_ESP] = regs->rsp;
|
|
env->eip = regs->rip;
|
|
#else
|
|
env->regs[R_EAX] = regs->eax;
|
|
env->regs[R_EBX] = regs->ebx;
|
|
env->regs[R_ECX] = regs->ecx;
|
|
env->regs[R_EDX] = regs->edx;
|
|
env->regs[R_ESI] = regs->esi;
|
|
env->regs[R_EDI] = regs->edi;
|
|
env->regs[R_EBP] = regs->ebp;
|
|
env->regs[R_ESP] = regs->esp;
|
|
env->eip = regs->eip;
|
|
#endif
|
|
|
|
/* linux interrupt setup */
|
|
#ifndef TARGET_ABI32
|
|
env->idt.limit = 511;
|
|
#else
|
|
env->idt.limit = 255;
|
|
#endif
|
|
env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
|
|
PROT_READ|PROT_WRITE,
|
|
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
idt_table = g2h_untagged(env->idt.base);
|
|
for (i = 0; i < 20; i++) {
|
|
set_idt(i, 0, is64);
|
|
}
|
|
set_idt(3, 3, is64);
|
|
set_idt(4, 3, is64);
|
|
set_idt(0x80, 3, is64);
|
|
|
|
/* linux segment setup */
|
|
{
|
|
uint64_t *gdt_table;
|
|
env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
|
|
PROT_READ|PROT_WRITE,
|
|
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
|
|
env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
|
|
gdt_table = g2h_untagged(env->gdt.base);
|
|
#ifdef TARGET_ABI32
|
|
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
|
|
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
|
|
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
|
|
#else
|
|
/* 64 bit code segment */
|
|
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
|
|
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
|
|
DESC_L_MASK |
|
|
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
|
|
#endif
|
|
write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
|
|
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
|
|
(3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
|
|
}
|
|
cpu_x86_load_seg(env, R_CS, __USER_CS);
|
|
cpu_x86_load_seg(env, R_SS, __USER_DS);
|
|
#ifdef TARGET_ABI32
|
|
cpu_x86_load_seg(env, R_DS, __USER_DS);
|
|
cpu_x86_load_seg(env, R_ES, __USER_DS);
|
|
cpu_x86_load_seg(env, R_FS, __USER_DS);
|
|
cpu_x86_load_seg(env, R_GS, __USER_DS);
|
|
/* This hack makes Wine work... */
|
|
env->segs[R_FS].selector = 0;
|
|
#else
|
|
cpu_x86_load_seg(env, R_DS, 0);
|
|
cpu_x86_load_seg(env, R_ES, 0);
|
|
cpu_x86_load_seg(env, R_FS, 0);
|
|
cpu_x86_load_seg(env, R_GS, 0);
|
|
#endif
|
|
}
|