qemu-e2k/hw/arm/virt-acpi-build.c
Michael S. Tsirkin 9b897b399e arm/acpi: fix an out of spec _UID for PCI root
On ARM/virt machine type QEMU currently reports an incorrect _UID in
ACPI.

The particular node in question is the primary PciRoot (PCI0 in ACPI),
which gets assigned PCI0 in ACPI UID and 0 in the
DevicePath. This is due to the _UID assigned to it by build_dsdt in
hw/arm/virt-acpi-build.c Which does not correspond to the primary PCI
identifier given by pcibus_num in hw/pci/pci.c

In UEFI v2.8, section "10.4.2 Rules with ACPI _HID and _UID" ends with
the paragraph,

    Root PCI bridges will use the plug and play ID of PNP0A03, This will
    be stored in the ACPI Device Path _HID field, or in the Expanded
    ACPI Device Path _CID field to match the ACPI name space. The _UID
    in the ACPI Device Path structure must match the _UID in the ACPI
    name space.

(See especially the last sentence.)

A similar bug has been reported on i386, on that architecture it has
been reported to confuse at least macOS which uses ACPI UIDs to build
the DevicePath for NVRAM boot options, while OVMF firmware gets them via
an internal channel through QEMU.  When UEFI firmware and ACPI have
different values, this makes the underlying operating system unable to
report its boot option.

Cc: qemu-stable@nongnu.org
Reported-by: Vitaly Cheptsov <vit9696@protonmail.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
2020-08-27 08:27:48 -04:00

1019 lines
36 KiB
C

/* Support for generating ACPI tables and passing them to Guests
*
* ARM virt ACPI generation
*
* Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
* Copyright (C) 2006 Fabrice Bellard
* Copyright (C) 2013 Red Hat Inc
*
* Author: Michael S. Tsirkin <mst@redhat.com>
*
* Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
*
* Author: Shannon Zhao <zhaoshenglong@huawei.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/bitmap.h"
#include "trace.h"
#include "hw/core/cpu.h"
#include "target/arm/cpu.h"
#include "hw/acpi/acpi-defs.h"
#include "hw/acpi/acpi.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/acpi/bios-linker-loader.h"
#include "hw/acpi/aml-build.h"
#include "hw/acpi/utils.h"
#include "hw/acpi/pci.h"
#include "hw/acpi/memory_hotplug.h"
#include "hw/acpi/generic_event_device.h"
#include "hw/acpi/tpm.h"
#include "hw/pci/pcie_host.h"
#include "hw/pci/pci.h"
#include "hw/arm/virt.h"
#include "hw/mem/nvdimm.h"
#include "hw/platform-bus.h"
#include "sysemu/numa.h"
#include "sysemu/reset.h"
#include "sysemu/tpm.h"
#include "kvm_arm.h"
#include "migration/vmstate.h"
#include "hw/acpi/ghes.h"
#define ARM_SPI_BASE 32
static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
{
uint16_t i;
for (i = 0; i < smp_cpus; i++) {
Aml *dev = aml_device("C%.03X", i);
aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
aml_append(dev, aml_name_decl("_UID", aml_int(i)));
aml_append(scope, dev);
}
}
static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
uint32_t uart_irq)
{
Aml *dev = aml_device("COM0");
aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(uart_memmap->base,
uart_memmap->size, AML_READ_WRITE));
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &uart_irq, 1));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
{
Aml *dev = aml_device("FWCF");
aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
fw_cfg_memmap->size, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
{
Aml *dev, *crs;
hwaddr base = flash_memmap->base;
hwaddr size = flash_memmap->size / 2;
dev = aml_device("FLS0");
aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
dev = aml_device("FLS1");
aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
aml_append(dev, aml_name_decl("_UID", aml_int(1)));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
static void acpi_dsdt_add_virtio(Aml *scope,
const MemMapEntry *virtio_mmio_memmap,
uint32_t mmio_irq, int num)
{
hwaddr base = virtio_mmio_memmap->base;
hwaddr size = virtio_mmio_memmap->size;
int i;
for (i = 0; i < num; i++) {
uint32_t irq = mmio_irq + i;
Aml *dev = aml_device("VR%02u", i);
aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
aml_append(dev, aml_name_decl("_UID", aml_int(i)));
aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &irq, 1));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
base += size;
}
}
static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
uint32_t irq, bool use_highmem, bool highmem_ecam)
{
int ecam_id = VIRT_ECAM_ID(highmem_ecam);
Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
int i, slot_no;
hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
hwaddr base_ecam = memmap[ecam_id].base;
hwaddr size_ecam = memmap[ecam_id].size;
int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
Aml *dev = aml_device("%s", "PCI0");
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
/* Declare the PCI Routing Table. */
Aml *rt_pkg = aml_varpackage(PCI_SLOT_MAX * PCI_NUM_PINS);
for (slot_no = 0; slot_no < PCI_SLOT_MAX; slot_no++) {
for (i = 0; i < PCI_NUM_PINS; i++) {
int gsi = (i + slot_no) % PCI_NUM_PINS;
Aml *pkg = aml_package(4);
aml_append(pkg, aml_int((slot_no << 16) | 0xFFFF));
aml_append(pkg, aml_int(i));
aml_append(pkg, aml_name("GSI%d", gsi));
aml_append(pkg, aml_int(0));
aml_append(rt_pkg, pkg);
}
}
aml_append(dev, aml_name_decl("_PRT", rt_pkg));
/* Create GSI link device */
for (i = 0; i < PCI_NUM_PINS; i++) {
uint32_t irqs = irq + i;
Aml *dev_gsi = aml_device("GSI%d", i);
aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
aml_append(dev_gsi, aml_name_decl("_UID", aml_int(i)));
crs = aml_resource_template();
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &irqs, 1));
aml_append(dev_gsi, aml_name_decl("_PRS", crs));
crs = aml_resource_template();
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &irqs, 1));
aml_append(dev_gsi, aml_name_decl("_CRS", crs));
method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
aml_append(dev_gsi, method);
aml_append(dev, dev_gsi);
}
method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(base_ecam)));
aml_append(dev, method);
method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
Aml *rbuf = aml_resource_template();
aml_append(rbuf,
aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
nr_pcie_buses));
aml_append(rbuf,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
base_mmio + size_mmio - 1, 0x0000, size_mmio));
aml_append(rbuf,
aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
size_pio));
if (use_highmem) {
hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base;
hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size;
aml_append(rbuf,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
base_mmio_high,
base_mmio_high + size_mmio_high - 1, 0x0000,
size_mmio_high));
}
aml_append(method, aml_return(rbuf));
aml_append(dev, method);
/* Declare an _OSC (OS Control Handoff) method */
aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
aml_append(method,
aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
/* PCI Firmware Specification 3.0
* 4.5.1. _OSC Interface for PCI Host Bridge Devices
* The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
* identified by the Universal Unique IDentifier (UUID)
* 33DB4D5B-1FF7-401C-9657-7441C03DD766
*/
UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
ifctx = aml_if(aml_equal(aml_arg(0), UUID));
aml_append(ifctx,
aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
aml_append(ifctx,
aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
/*
* Allow OS control for all 5 features:
* PCIeHotplug SHPCHotplug PME AER PCIeCapability.
*/
aml_append(ifctx, aml_and(aml_name("CTRL"), aml_int(0x1F),
aml_name("CTRL")));
ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
aml_append(ifctx1, aml_or(aml_name("CDW1"), aml_int(0x08),
aml_name("CDW1")));
aml_append(ifctx, ifctx1);
ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
aml_append(ifctx1, aml_or(aml_name("CDW1"), aml_int(0x10),
aml_name("CDW1")));
aml_append(ifctx, ifctx1);
aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
aml_append(ifctx, aml_return(aml_arg(3)));
aml_append(method, ifctx);
elsectx = aml_else();
aml_append(elsectx, aml_or(aml_name("CDW1"), aml_int(4),
aml_name("CDW1")));
aml_append(elsectx, aml_return(aml_arg(3)));
aml_append(method, elsectx);
aml_append(dev, method);
method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
/* PCI Firmware Specification 3.0
* 4.6.1. _DSM for PCI Express Slot Information
* The UUID in _DSM in this context is
* {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
*/
UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
ifctx = aml_if(aml_equal(aml_arg(0), UUID));
ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
uint8_t byte_list[1] = {1};
buf = aml_buffer(1, byte_list);
aml_append(ifctx1, aml_return(buf));
aml_append(ifctx, ifctx1);
aml_append(method, ifctx);
byte_list[0] = 0;
buf = aml_buffer(1, byte_list);
aml_append(method, aml_return(buf));
aml_append(dev, method);
Aml *dev_res0 = aml_device("%s", "RES0");
aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
crs = aml_resource_template();
aml_append(crs,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
base_ecam + size_ecam - 1, 0x0000, size_ecam));
aml_append(dev_res0, aml_name_decl("_CRS", crs));
aml_append(dev, dev_res0);
aml_append(scope, dev);
}
static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
uint32_t gpio_irq)
{
Aml *dev = aml_device("GPO0");
aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
AML_READ_WRITE));
aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &gpio_irq, 1));
aml_append(dev, aml_name_decl("_CRS", crs));
Aml *aei = aml_resource_template();
/* Pin 3 for power button */
const uint32_t pin_list[1] = {3};
aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
"GPO0", NULL, 0));
aml_append(dev, aml_name_decl("_AEI", aei));
/* _E03 is handle for power button */
Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
aml_int(0x80)));
aml_append(dev, method);
aml_append(scope, dev);
}
static void acpi_dsdt_add_power_button(Aml *scope)
{
Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
aml_append(scope, dev);
}
static void acpi_dsdt_add_tpm(Aml *scope, VirtMachineState *vms)
{
PlatformBusDevice *pbus = PLATFORM_BUS_DEVICE(vms->platform_bus_dev);
hwaddr pbus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
SysBusDevice *sbdev = SYS_BUS_DEVICE(tpm_find());
MemoryRegion *sbdev_mr;
hwaddr tpm_base;
if (!sbdev) {
return;
}
tpm_base = platform_bus_get_mmio_addr(pbus, sbdev, 0);
assert(tpm_base != -1);
tpm_base += pbus_base;
sbdev_mr = sysbus_mmio_get_region(sbdev, 0);
Aml *dev = aml_device("TPM0");
aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
Aml *crs = aml_resource_template();
aml_append(crs,
aml_memory32_fixed(tpm_base,
(uint32_t)memory_region_size(sbdev_mr),
AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
static void
build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
int nb_nodes, iort_start = table_data->len;
AcpiIortIdMapping *idmap;
AcpiIortItsGroup *its;
AcpiIortTable *iort;
AcpiIortSmmu3 *smmu;
size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
AcpiIortRC *rc;
iort = acpi_data_push(table_data, sizeof(*iort));
if (vms->iommu == VIRT_IOMMU_SMMUV3) {
nb_nodes = 3; /* RC, ITS, SMMUv3 */
} else {
nb_nodes = 2; /* RC, ITS */
}
iort_length = sizeof(*iort);
iort->node_count = cpu_to_le32(nb_nodes);
/*
* Use a copy in case table_data->data moves during acpi_data_push
* operations.
*/
iort_node_offset = sizeof(*iort);
iort->node_offset = cpu_to_le32(iort_node_offset);
/* ITS group node */
node_size = sizeof(*its) + sizeof(uint32_t);
iort_length += node_size;
its = acpi_data_push(table_data, node_size);
its->type = ACPI_IORT_NODE_ITS_GROUP;
its->length = cpu_to_le16(node_size);
its->its_count = cpu_to_le32(1);
its->identifiers[0] = 0; /* MADT translation_id */
if (vms->iommu == VIRT_IOMMU_SMMUV3) {
int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
/* SMMUv3 node */
smmu_offset = iort_node_offset + node_size;
node_size = sizeof(*smmu) + sizeof(*idmap);
iort_length += node_size;
smmu = acpi_data_push(table_data, node_size);
smmu->type = ACPI_IORT_NODE_SMMU_V3;
smmu->length = cpu_to_le16(node_size);
smmu->mapping_count = cpu_to_le32(1);
smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
smmu->event_gsiv = cpu_to_le32(irq);
smmu->pri_gsiv = cpu_to_le32(irq + 1);
smmu->gerr_gsiv = cpu_to_le32(irq + 2);
smmu->sync_gsiv = cpu_to_le32(irq + 3);
/* Identity RID mapping covering the whole input RID range */
idmap = &smmu->id_mapping_array[0];
idmap->input_base = 0;
idmap->id_count = cpu_to_le32(0xFFFF);
idmap->output_base = 0;
/* output IORT node is the ITS group node (the first node) */
idmap->output_reference = cpu_to_le32(iort_node_offset);
}
/* Root Complex Node */
node_size = sizeof(*rc) + sizeof(*idmap);
iort_length += node_size;
rc = acpi_data_push(table_data, node_size);
rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
rc->length = cpu_to_le16(node_size);
rc->mapping_count = cpu_to_le32(1);
rc->mapping_offset = cpu_to_le32(sizeof(*rc));
/* fully coherent device */
rc->memory_properties.cache_coherency = cpu_to_le32(1);
rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
rc->pci_segment_number = 0; /* MCFG pci_segment */
/* Identity RID mapping covering the whole input RID range */
idmap = &rc->id_mapping_array[0];
idmap->input_base = 0;
idmap->id_count = cpu_to_le32(0xFFFF);
idmap->output_base = 0;
if (vms->iommu == VIRT_IOMMU_SMMUV3) {
/* output IORT node is the smmuv3 node */
idmap->output_reference = cpu_to_le32(smmu_offset);
} else {
/* output IORT node is the ITS group node (the first node) */
idmap->output_reference = cpu_to_le32(iort_node_offset);
}
/*
* Update the pointer address in case table_data->data moves during above
* acpi_data_push operations.
*/
iort = (AcpiIortTable *)(table_data->data + iort_start);
iort->length = cpu_to_le32(iort_length);
build_header(linker, table_data, (void *)(table_data->data + iort_start),
"IORT", table_data->len - iort_start, 0, NULL, NULL);
}
static void
build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
AcpiSerialPortConsoleRedirection *spcr;
const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
int spcr_start = table_data->len;
spcr = acpi_data_push(table_data, sizeof(*spcr));
spcr->interface_type = 0x3; /* ARM PL011 UART */
spcr->base_address.space_id = AML_SYSTEM_MEMORY;
spcr->base_address.bit_width = 8;
spcr->base_address.bit_offset = 0;
spcr->base_address.access_width = 1;
spcr->base_address.address = cpu_to_le64(uart_memmap->base);
spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */
spcr->baud = 3; /* Baud Rate: 3 = 9600 */
spcr->parity = 0; /* No Parity */
spcr->stopbits = 1; /* 1 Stop bit */
spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */
spcr->term_type = 0; /* Terminal Type: 0 = VT100 */
spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */
spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */
build_header(linker, table_data, (void *)(table_data->data + spcr_start),
"SPCR", table_data->len - spcr_start, 2, NULL, NULL);
}
static void
build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
AcpiSystemResourceAffinityTable *srat;
AcpiSratProcessorGiccAffinity *core;
AcpiSratMemoryAffinity *numamem;
int i, srat_start;
uint64_t mem_base;
MachineClass *mc = MACHINE_GET_CLASS(vms);
MachineState *ms = MACHINE(vms);
const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms);
srat_start = table_data->len;
srat = acpi_data_push(table_data, sizeof(*srat));
srat->reserved1 = cpu_to_le32(1);
for (i = 0; i < cpu_list->len; ++i) {
core = acpi_data_push(table_data, sizeof(*core));
core->type = ACPI_SRAT_PROCESSOR_GICC;
core->length = sizeof(*core);
core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
core->acpi_processor_uid = cpu_to_le32(i);
core->flags = cpu_to_le32(1);
}
mem_base = vms->memmap[VIRT_MEM].base;
for (i = 0; i < ms->numa_state->num_nodes; ++i) {
if (ms->numa_state->nodes[i].node_mem > 0) {
numamem = acpi_data_push(table_data, sizeof(*numamem));
build_srat_memory(numamem, mem_base,
ms->numa_state->nodes[i].node_mem, i,
MEM_AFFINITY_ENABLED);
mem_base += ms->numa_state->nodes[i].node_mem;
}
}
if (ms->nvdimms_state->is_enabled) {
nvdimm_build_srat(table_data);
}
if (ms->device_memory) {
numamem = acpi_data_push(table_data, sizeof *numamem);
build_srat_memory(numamem, ms->device_memory->base,
memory_region_size(&ms->device_memory->mr),
ms->numa_state->num_nodes - 1,
MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
}
build_header(linker, table_data, (void *)(table_data->data + srat_start),
"SRAT", table_data->len - srat_start, 3, NULL, NULL);
}
/* GTDT */
static void
build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
int gtdt_start = table_data->len;
AcpiGenericTimerTable *gtdt;
uint32_t irqflags;
if (vmc->claim_edge_triggered_timers) {
irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
} else {
irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
}
gtdt = acpi_data_push(table_data, sizeof *gtdt);
/* The interrupt values are the same with the device tree when adding 16 */
gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
gtdt->secure_el1_flags = cpu_to_le32(irqflags);
gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
ACPI_GTDT_CAP_ALWAYS_ON);
gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
build_header(linker, table_data,
(void *)(table_data->data + gtdt_start), "GTDT",
table_data->len - gtdt_start, 2, NULL, NULL);
}
/* MADT */
static void
build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
int madt_start = table_data->len;
const MemMapEntry *memmap = vms->memmap;
const int *irqmap = vms->irqmap;
AcpiMultipleApicTable *madt;
AcpiMadtGenericDistributor *gicd;
AcpiMadtGenericMsiFrame *gic_msi;
int i;
madt = acpi_data_push(table_data, sizeof *madt);
gicd = acpi_data_push(table_data, sizeof *gicd);
gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
gicd->length = sizeof(*gicd);
gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
gicd->version = vms->gic_version;
for (i = 0; i < vms->smp_cpus; i++) {
AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
sizeof(*gicc));
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
gicc->length = sizeof(*gicc);
if (vms->gic_version == 2) {
gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
}
gicc->cpu_interface_number = cpu_to_le32(i);
gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
gicc->uid = cpu_to_le32(i);
gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
}
if (vms->virt) {
gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
}
}
if (vms->gic_version == 3) {
AcpiMadtGenericTranslator *gic_its;
int nb_redist_regions = virt_gicv3_redist_region_count(vms);
AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
sizeof *gicr);
gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
gicr->length = sizeof(*gicr);
gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
if (nb_redist_regions == 2) {
gicr = acpi_data_push(table_data, sizeof(*gicr));
gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
gicr->length = sizeof(*gicr);
gicr->base_address =
cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
gicr->range_length =
cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
}
if (its_class_name() && !vmc->no_its) {
gic_its = acpi_data_push(table_data, sizeof *gic_its);
gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
gic_its->length = sizeof(*gic_its);
gic_its->translation_id = 0;
gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
}
} else {
gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
gic_msi->length = sizeof(*gic_msi);
gic_msi->gic_msi_frame_id = 0;
gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
gic_msi->flags = cpu_to_le32(1);
gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
}
build_header(linker, table_data,
(void *)(table_data->data + madt_start), "APIC",
table_data->len - madt_start, 3, NULL, NULL);
}
/* FADT */
static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
VirtMachineState *vms, unsigned dsdt_tbl_offset)
{
/* ACPI v5.1 */
AcpiFadtData fadt = {
.rev = 5,
.minor_ver = 1,
.flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
.xdsdt_tbl_offset = &dsdt_tbl_offset,
};
switch (vms->psci_conduit) {
case QEMU_PSCI_CONDUIT_DISABLED:
fadt.arm_boot_arch = 0;
break;
case QEMU_PSCI_CONDUIT_HVC:
fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
ACPI_FADT_ARM_PSCI_USE_HVC;
break;
case QEMU_PSCI_CONDUIT_SMC:
fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
break;
default:
g_assert_not_reached();
}
build_fadt(table_data, linker, &fadt, NULL, NULL);
}
/* DSDT */
static void
build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
Aml *scope, *dsdt;
MachineState *ms = MACHINE(vms);
const MemMapEntry *memmap = vms->memmap;
const int *irqmap = vms->irqmap;
dsdt = init_aml_allocator();
/* Reserve space for header */
acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
/* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
* While UEFI can use libfdt to disable the RTC device node in the DTB that
* it passes to the OS, it cannot modify AML. Therefore, we won't generate
* the RTC ACPI device at all when using UEFI.
*/
scope = aml_scope("\\_SB");
acpi_dsdt_add_cpus(scope, vms->smp_cpus);
acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
(irqmap[VIRT_UART] + ARM_SPI_BASE));
if (vmc->acpi_expose_flash) {
acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
}
acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
(irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
vms->highmem, vms->highmem_ecam);
if (vms->acpi_dev) {
build_ged_aml(scope, "\\_SB."GED_DEVICE,
HOTPLUG_HANDLER(vms->acpi_dev),
irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY,
memmap[VIRT_ACPI_GED].base);
} else {
acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
(irqmap[VIRT_GPIO] + ARM_SPI_BASE));
}
if (vms->acpi_dev) {
uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev),
"ged-event", &error_abort);
if (event & ACPI_GED_MEM_HOTPLUG_EVT) {
build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL,
AML_SYSTEM_MEMORY,
memmap[VIRT_PCDIMM_ACPI].base);
}
}
acpi_dsdt_add_power_button(scope);
acpi_dsdt_add_tpm(scope, vms);
aml_append(dsdt, scope);
/* copy AML table into ACPI tables blob and patch header there */
g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
build_header(linker, table_data,
(void *)(table_data->data + table_data->len - dsdt->buf->len),
"DSDT", dsdt->buf->len, 2, NULL, NULL);
free_aml_allocator();
}
typedef
struct AcpiBuildState {
/* Copy of table in RAM (for patching). */
MemoryRegion *table_mr;
MemoryRegion *rsdp_mr;
MemoryRegion *linker_mr;
/* Is table patched? */
bool patched;
} AcpiBuildState;
static
void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
GArray *table_offsets;
unsigned dsdt, xsdt;
GArray *tables_blob = tables->table_data;
MachineState *ms = MACHINE(vms);
table_offsets = g_array_new(false, true /* clear */,
sizeof(uint32_t));
bios_linker_loader_alloc(tables->linker,
ACPI_BUILD_TABLE_FILE, tables_blob,
64, false /* high memory */);
/* DSDT is pointed to by FADT */
dsdt = tables_blob->len;
build_dsdt(tables_blob, tables->linker, vms);
/* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
acpi_add_table(table_offsets, tables_blob);
build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
acpi_add_table(table_offsets, tables_blob);
build_madt(tables_blob, tables->linker, vms);
acpi_add_table(table_offsets, tables_blob);
build_gtdt(tables_blob, tables->linker, vms);
acpi_add_table(table_offsets, tables_blob);
{
AcpiMcfgInfo mcfg = {
.base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
.size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
};
build_mcfg(tables_blob, tables->linker, &mcfg);
}
acpi_add_table(table_offsets, tables_blob);
build_spcr(tables_blob, tables->linker, vms);
if (vms->ras) {
build_ghes_error_table(tables->hardware_errors, tables->linker);
acpi_add_table(table_offsets, tables_blob);
acpi_build_hest(tables_blob, tables->linker);
}
if (ms->numa_state->num_nodes > 0) {
acpi_add_table(table_offsets, tables_blob);
build_srat(tables_blob, tables->linker, vms);
if (ms->numa_state->have_numa_distance) {
acpi_add_table(table_offsets, tables_blob);
build_slit(tables_blob, tables->linker, ms);
}
}
if (ms->nvdimms_state->is_enabled) {
nvdimm_build_acpi(table_offsets, tables_blob, tables->linker,
ms->nvdimms_state, ms->ram_slots);
}
if (its_class_name() && !vmc->no_its) {
acpi_add_table(table_offsets, tables_blob);
build_iort(tables_blob, tables->linker, vms);
}
if (tpm_get_version(tpm_find()) == TPM_VERSION_2_0) {
acpi_add_table(table_offsets, tables_blob);
build_tpm2(tables_blob, tables->linker, tables->tcpalog);
}
/* XSDT is pointed to by RSDP */
xsdt = tables_blob->len;
build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
/* RSDP is in FSEG memory, so allocate it separately */
{
AcpiRsdpData rsdp_data = {
.revision = 2,
.oem_id = ACPI_BUILD_APPNAME6,
.xsdt_tbl_offset = &xsdt,
.rsdt_tbl_offset = NULL,
};
build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
}
/* Cleanup memory that's no longer used. */
g_array_free(table_offsets, true);
}
static void acpi_ram_update(MemoryRegion *mr, GArray *data)
{
uint32_t size = acpi_data_len(data);
/* Make sure RAM size is correct - in case it got changed
* e.g. by migration */
memory_region_ram_resize(mr, size, &error_abort);
memcpy(memory_region_get_ram_ptr(mr), data->data, size);
memory_region_set_dirty(mr, 0, size);
}
static void virt_acpi_build_update(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
AcpiBuildTables tables;
/* No state to update or already patched? Nothing to do. */
if (!build_state || build_state->patched) {
return;
}
build_state->patched = true;
acpi_build_tables_init(&tables);
virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
acpi_ram_update(build_state->table_mr, tables.table_data);
acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
acpi_build_tables_cleanup(&tables, true);
}
static void virt_acpi_build_reset(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
build_state->patched = false;
}
static const VMStateDescription vmstate_virt_acpi_build = {
.name = "virt_acpi_build",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BOOL(patched, AcpiBuildState),
VMSTATE_END_OF_LIST()
},
};
void virt_acpi_setup(VirtMachineState *vms)
{
AcpiBuildTables tables;
AcpiBuildState *build_state;
AcpiGedState *acpi_ged_state;
if (!vms->fw_cfg) {
trace_virt_acpi_setup();
return;
}
if (!virt_is_acpi_enabled(vms)) {
trace_virt_acpi_setup();
return;
}
build_state = g_malloc0(sizeof *build_state);
acpi_build_tables_init(&tables);
virt_acpi_build(vms, &tables);
/* Now expose it all to Guest */
build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
build_state, tables.table_data,
ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TABLE_MAX_SIZE);
assert(build_state->table_mr != NULL);
build_state->linker_mr =
acpi_add_rom_blob(virt_acpi_build_update, build_state,
tables.linker->cmd_blob, ACPI_BUILD_LOADER_FILE, 0);
fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
acpi_data_len(tables.tcpalog));
if (vms->ras) {
assert(vms->acpi_dev);
acpi_ged_state = ACPI_GED(vms->acpi_dev);
acpi_ghes_add_fw_cfg(&acpi_ged_state->ghes_state,
vms->fw_cfg, tables.hardware_errors);
}
build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
build_state, tables.rsdp,
ACPI_BUILD_RSDP_FILE, 0);
qemu_register_reset(virt_acpi_build_reset, build_state);
virt_acpi_build_reset(build_state);
vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
/* Cleanup tables but don't free the memory: we track it
* in build_state.
*/
acpi_build_tables_cleanup(&tables, false);
}