1974 lines
65 KiB
C
1974 lines
65 KiB
C
/*
|
|
* QEMU Crypto block device encryption LUKS format
|
|
*
|
|
* Copyright (c) 2015-2016 Red Hat, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/bswap.h"
|
|
|
|
#include "block-luks.h"
|
|
|
|
#include "crypto/hash.h"
|
|
#include "crypto/afsplit.h"
|
|
#include "crypto/pbkdf.h"
|
|
#include "crypto/secret.h"
|
|
#include "crypto/random.h"
|
|
#include "qemu/uuid.h"
|
|
|
|
#include "qemu/coroutine.h"
|
|
#include "qemu/bitmap.h"
|
|
|
|
/*
|
|
* Reference for the LUKS format implemented here is
|
|
*
|
|
* docs/on-disk-format.pdf
|
|
*
|
|
* in 'cryptsetup' package source code
|
|
*
|
|
* This file implements the 1.2.1 specification, dated
|
|
* Oct 16, 2011.
|
|
*/
|
|
|
|
typedef struct QCryptoBlockLUKS QCryptoBlockLUKS;
|
|
typedef struct QCryptoBlockLUKSHeader QCryptoBlockLUKSHeader;
|
|
typedef struct QCryptoBlockLUKSKeySlot QCryptoBlockLUKSKeySlot;
|
|
|
|
|
|
/* The following constants are all defined by the LUKS spec */
|
|
#define QCRYPTO_BLOCK_LUKS_VERSION 1
|
|
|
|
#define QCRYPTO_BLOCK_LUKS_MAGIC_LEN 6
|
|
#define QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN 32
|
|
#define QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN 32
|
|
#define QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN 32
|
|
#define QCRYPTO_BLOCK_LUKS_DIGEST_LEN 20
|
|
#define QCRYPTO_BLOCK_LUKS_SALT_LEN 32
|
|
#define QCRYPTO_BLOCK_LUKS_UUID_LEN 40
|
|
#define QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS 8
|
|
#define QCRYPTO_BLOCK_LUKS_STRIPES 4000
|
|
#define QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS 1000
|
|
#define QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS 1000
|
|
#define QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET 4096
|
|
|
|
#define QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED 0x0000DEAD
|
|
#define QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED 0x00AC71F3
|
|
|
|
#define QCRYPTO_BLOCK_LUKS_SECTOR_SIZE 512LL
|
|
|
|
#define QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS 2000
|
|
#define QCRYPTO_BLOCK_LUKS_ERASE_ITERATIONS 40
|
|
|
|
static const char qcrypto_block_luks_magic[QCRYPTO_BLOCK_LUKS_MAGIC_LEN] = {
|
|
'L', 'U', 'K', 'S', 0xBA, 0xBE
|
|
};
|
|
|
|
typedef struct QCryptoBlockLUKSNameMap QCryptoBlockLUKSNameMap;
|
|
struct QCryptoBlockLUKSNameMap {
|
|
const char *name;
|
|
int id;
|
|
};
|
|
|
|
typedef struct QCryptoBlockLUKSCipherSizeMap QCryptoBlockLUKSCipherSizeMap;
|
|
struct QCryptoBlockLUKSCipherSizeMap {
|
|
uint32_t key_bytes;
|
|
int id;
|
|
};
|
|
typedef struct QCryptoBlockLUKSCipherNameMap QCryptoBlockLUKSCipherNameMap;
|
|
struct QCryptoBlockLUKSCipherNameMap {
|
|
const char *name;
|
|
const QCryptoBlockLUKSCipherSizeMap *sizes;
|
|
};
|
|
|
|
|
|
static const QCryptoBlockLUKSCipherSizeMap
|
|
qcrypto_block_luks_cipher_size_map_aes[] = {
|
|
{ 16, QCRYPTO_CIPHER_ALG_AES_128 },
|
|
{ 24, QCRYPTO_CIPHER_ALG_AES_192 },
|
|
{ 32, QCRYPTO_CIPHER_ALG_AES_256 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static const QCryptoBlockLUKSCipherSizeMap
|
|
qcrypto_block_luks_cipher_size_map_cast5[] = {
|
|
{ 16, QCRYPTO_CIPHER_ALG_CAST5_128 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static const QCryptoBlockLUKSCipherSizeMap
|
|
qcrypto_block_luks_cipher_size_map_serpent[] = {
|
|
{ 16, QCRYPTO_CIPHER_ALG_SERPENT_128 },
|
|
{ 24, QCRYPTO_CIPHER_ALG_SERPENT_192 },
|
|
{ 32, QCRYPTO_CIPHER_ALG_SERPENT_256 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static const QCryptoBlockLUKSCipherSizeMap
|
|
qcrypto_block_luks_cipher_size_map_twofish[] = {
|
|
{ 16, QCRYPTO_CIPHER_ALG_TWOFISH_128 },
|
|
{ 24, QCRYPTO_CIPHER_ALG_TWOFISH_192 },
|
|
{ 32, QCRYPTO_CIPHER_ALG_TWOFISH_256 },
|
|
{ 0, 0 },
|
|
};
|
|
|
|
static const QCryptoBlockLUKSCipherNameMap
|
|
qcrypto_block_luks_cipher_name_map[] = {
|
|
{ "aes", qcrypto_block_luks_cipher_size_map_aes },
|
|
{ "cast5", qcrypto_block_luks_cipher_size_map_cast5 },
|
|
{ "serpent", qcrypto_block_luks_cipher_size_map_serpent },
|
|
{ "twofish", qcrypto_block_luks_cipher_size_map_twofish },
|
|
};
|
|
|
|
|
|
/*
|
|
* This struct is written to disk in big-endian format,
|
|
* but operated upon in native-endian format.
|
|
*/
|
|
struct QCryptoBlockLUKSKeySlot {
|
|
/* state of keyslot, enabled/disable */
|
|
uint32_t active;
|
|
/* iterations for PBKDF2 */
|
|
uint32_t iterations;
|
|
/* salt for PBKDF2 */
|
|
uint8_t salt[QCRYPTO_BLOCK_LUKS_SALT_LEN];
|
|
/* start sector of key material */
|
|
uint32_t key_offset_sector;
|
|
/* number of anti-forensic stripes */
|
|
uint32_t stripes;
|
|
};
|
|
|
|
QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSKeySlot) != 48);
|
|
|
|
|
|
/*
|
|
* This struct is written to disk in big-endian format,
|
|
* but operated upon in native-endian format.
|
|
*/
|
|
struct QCryptoBlockLUKSHeader {
|
|
/* 'L', 'U', 'K', 'S', '0xBA', '0xBE' */
|
|
char magic[QCRYPTO_BLOCK_LUKS_MAGIC_LEN];
|
|
|
|
/* LUKS version, currently 1 */
|
|
uint16_t version;
|
|
|
|
/* cipher name specification (aes, etc) */
|
|
char cipher_name[QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN];
|
|
|
|
/* cipher mode specification (cbc-plain, xts-essiv:sha256, etc) */
|
|
char cipher_mode[QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN];
|
|
|
|
/* hash specification (sha256, etc) */
|
|
char hash_spec[QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN];
|
|
|
|
/* start offset of the volume data (in 512 byte sectors) */
|
|
uint32_t payload_offset_sector;
|
|
|
|
/* Number of key bytes */
|
|
uint32_t master_key_len;
|
|
|
|
/* master key checksum after PBKDF2 */
|
|
uint8_t master_key_digest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN];
|
|
|
|
/* salt for master key PBKDF2 */
|
|
uint8_t master_key_salt[QCRYPTO_BLOCK_LUKS_SALT_LEN];
|
|
|
|
/* iterations for master key PBKDF2 */
|
|
uint32_t master_key_iterations;
|
|
|
|
/* UUID of the partition in standard ASCII representation */
|
|
uint8_t uuid[QCRYPTO_BLOCK_LUKS_UUID_LEN];
|
|
|
|
/* key slots */
|
|
QCryptoBlockLUKSKeySlot key_slots[QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS];
|
|
};
|
|
|
|
QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSHeader) != 592);
|
|
|
|
|
|
struct QCryptoBlockLUKS {
|
|
QCryptoBlockLUKSHeader header;
|
|
|
|
/* Main encryption algorithm used for encryption*/
|
|
QCryptoCipherAlgorithm cipher_alg;
|
|
|
|
/* Mode of encryption for the selected encryption algorithm */
|
|
QCryptoCipherMode cipher_mode;
|
|
|
|
/* Initialization vector generation algorithm */
|
|
QCryptoIVGenAlgorithm ivgen_alg;
|
|
|
|
/* Hash algorithm used for IV generation*/
|
|
QCryptoHashAlgorithm ivgen_hash_alg;
|
|
|
|
/*
|
|
* Encryption algorithm used for IV generation.
|
|
* Usually the same as main encryption algorithm
|
|
*/
|
|
QCryptoCipherAlgorithm ivgen_cipher_alg;
|
|
|
|
/* Hash algorithm used in pbkdf2 function */
|
|
QCryptoHashAlgorithm hash_alg;
|
|
|
|
/* Name of the secret that was used to open the image */
|
|
char *secret;
|
|
};
|
|
|
|
|
|
static int qcrypto_block_luks_cipher_name_lookup(const char *name,
|
|
QCryptoCipherMode mode,
|
|
uint32_t key_bytes,
|
|
Error **errp)
|
|
{
|
|
const QCryptoBlockLUKSCipherNameMap *map =
|
|
qcrypto_block_luks_cipher_name_map;
|
|
size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map);
|
|
size_t i, j;
|
|
|
|
if (mode == QCRYPTO_CIPHER_MODE_XTS) {
|
|
key_bytes /= 2;
|
|
}
|
|
|
|
for (i = 0; i < maplen; i++) {
|
|
if (!g_str_equal(map[i].name, name)) {
|
|
continue;
|
|
}
|
|
for (j = 0; j < map[i].sizes[j].key_bytes; j++) {
|
|
if (map[i].sizes[j].key_bytes == key_bytes) {
|
|
return map[i].sizes[j].id;
|
|
}
|
|
}
|
|
}
|
|
|
|
error_setg(errp, "Algorithm %s with key size %d bytes not supported",
|
|
name, key_bytes);
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
qcrypto_block_luks_cipher_alg_lookup(QCryptoCipherAlgorithm alg,
|
|
Error **errp)
|
|
{
|
|
const QCryptoBlockLUKSCipherNameMap *map =
|
|
qcrypto_block_luks_cipher_name_map;
|
|
size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map);
|
|
size_t i, j;
|
|
for (i = 0; i < maplen; i++) {
|
|
for (j = 0; j < map[i].sizes[j].key_bytes; j++) {
|
|
if (map[i].sizes[j].id == alg) {
|
|
return map[i].name;
|
|
}
|
|
}
|
|
}
|
|
|
|
error_setg(errp, "Algorithm '%s' not supported",
|
|
QCryptoCipherAlgorithm_str(alg));
|
|
return NULL;
|
|
}
|
|
|
|
/* XXX replace with qapi_enum_parse() in future, when we can
|
|
* make that function emit a more friendly error message */
|
|
static int qcrypto_block_luks_name_lookup(const char *name,
|
|
const QEnumLookup *map,
|
|
const char *type,
|
|
Error **errp)
|
|
{
|
|
int ret = qapi_enum_parse(map, name, -1, NULL);
|
|
|
|
if (ret < 0) {
|
|
error_setg(errp, "%s %s not supported", type, name);
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define qcrypto_block_luks_cipher_mode_lookup(name, errp) \
|
|
qcrypto_block_luks_name_lookup(name, \
|
|
&QCryptoCipherMode_lookup, \
|
|
"Cipher mode", \
|
|
errp)
|
|
|
|
#define qcrypto_block_luks_hash_name_lookup(name, errp) \
|
|
qcrypto_block_luks_name_lookup(name, \
|
|
&QCryptoHashAlgorithm_lookup, \
|
|
"Hash algorithm", \
|
|
errp)
|
|
|
|
#define qcrypto_block_luks_ivgen_name_lookup(name, errp) \
|
|
qcrypto_block_luks_name_lookup(name, \
|
|
&QCryptoIVGenAlgorithm_lookup, \
|
|
"IV generator", \
|
|
errp)
|
|
|
|
|
|
static bool
|
|
qcrypto_block_luks_has_format(const uint8_t *buf,
|
|
size_t buf_size)
|
|
{
|
|
const QCryptoBlockLUKSHeader *luks_header = (const void *)buf;
|
|
|
|
if (buf_size >= offsetof(QCryptoBlockLUKSHeader, cipher_name) &&
|
|
memcmp(luks_header->magic, qcrypto_block_luks_magic,
|
|
QCRYPTO_BLOCK_LUKS_MAGIC_LEN) == 0 &&
|
|
be16_to_cpu(luks_header->version) == QCRYPTO_BLOCK_LUKS_VERSION) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Deal with a quirk of dm-crypt usage of ESSIV.
|
|
*
|
|
* When calculating ESSIV IVs, the cipher length used by ESSIV
|
|
* may be different from the cipher length used for the block
|
|
* encryption, becauses dm-crypt uses the hash digest length
|
|
* as the key size. ie, if you have AES 128 as the block cipher
|
|
* and SHA 256 as ESSIV hash, then ESSIV will use AES 256 as
|
|
* the cipher since that gets a key length matching the digest
|
|
* size, not AES 128 with truncated digest as might be imagined
|
|
*/
|
|
static QCryptoCipherAlgorithm
|
|
qcrypto_block_luks_essiv_cipher(QCryptoCipherAlgorithm cipher,
|
|
QCryptoHashAlgorithm hash,
|
|
Error **errp)
|
|
{
|
|
size_t digestlen = qcrypto_hash_digest_len(hash);
|
|
size_t keylen = qcrypto_cipher_get_key_len(cipher);
|
|
if (digestlen == keylen) {
|
|
return cipher;
|
|
}
|
|
|
|
switch (cipher) {
|
|
case QCRYPTO_CIPHER_ALG_AES_128:
|
|
case QCRYPTO_CIPHER_ALG_AES_192:
|
|
case QCRYPTO_CIPHER_ALG_AES_256:
|
|
if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_AES_128)) {
|
|
return QCRYPTO_CIPHER_ALG_AES_128;
|
|
} else if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_AES_192)) {
|
|
return QCRYPTO_CIPHER_ALG_AES_192;
|
|
} else if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_AES_256)) {
|
|
return QCRYPTO_CIPHER_ALG_AES_256;
|
|
} else {
|
|
error_setg(errp, "No AES cipher with key size %zu available",
|
|
digestlen);
|
|
return 0;
|
|
}
|
|
break;
|
|
case QCRYPTO_CIPHER_ALG_SERPENT_128:
|
|
case QCRYPTO_CIPHER_ALG_SERPENT_192:
|
|
case QCRYPTO_CIPHER_ALG_SERPENT_256:
|
|
if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_SERPENT_128)) {
|
|
return QCRYPTO_CIPHER_ALG_SERPENT_128;
|
|
} else if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_SERPENT_192)) {
|
|
return QCRYPTO_CIPHER_ALG_SERPENT_192;
|
|
} else if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_SERPENT_256)) {
|
|
return QCRYPTO_CIPHER_ALG_SERPENT_256;
|
|
} else {
|
|
error_setg(errp, "No Serpent cipher with key size %zu available",
|
|
digestlen);
|
|
return 0;
|
|
}
|
|
break;
|
|
case QCRYPTO_CIPHER_ALG_TWOFISH_128:
|
|
case QCRYPTO_CIPHER_ALG_TWOFISH_192:
|
|
case QCRYPTO_CIPHER_ALG_TWOFISH_256:
|
|
if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_TWOFISH_128)) {
|
|
return QCRYPTO_CIPHER_ALG_TWOFISH_128;
|
|
} else if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_TWOFISH_192)) {
|
|
return QCRYPTO_CIPHER_ALG_TWOFISH_192;
|
|
} else if (digestlen == qcrypto_cipher_get_key_len(
|
|
QCRYPTO_CIPHER_ALG_TWOFISH_256)) {
|
|
return QCRYPTO_CIPHER_ALG_TWOFISH_256;
|
|
} else {
|
|
error_setg(errp, "No Twofish cipher with key size %zu available",
|
|
digestlen);
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
error_setg(errp, "Cipher %s not supported with essiv",
|
|
QCryptoCipherAlgorithm_str(cipher));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns number of sectors needed to store the key material
|
|
* given number of anti forensic stripes
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_splitkeylen_sectors(const QCryptoBlockLUKS *luks,
|
|
unsigned int header_sectors,
|
|
unsigned int stripes)
|
|
{
|
|
/*
|
|
* This calculation doesn't match that shown in the spec,
|
|
* but instead follows the cryptsetup implementation.
|
|
*/
|
|
|
|
size_t splitkeylen = luks->header.master_key_len * stripes;
|
|
|
|
/* First align the key material size to block size*/
|
|
size_t splitkeylen_sectors =
|
|
DIV_ROUND_UP(splitkeylen, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE);
|
|
|
|
/* Then also align the key material size to the size of the header */
|
|
return ROUND_UP(splitkeylen_sectors, header_sectors);
|
|
}
|
|
|
|
/*
|
|
* Stores the main LUKS header, taking care of endianess
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_store_header(QCryptoBlock *block,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
const QCryptoBlockLUKS *luks = block->opaque;
|
|
Error *local_err = NULL;
|
|
size_t i;
|
|
g_autofree QCryptoBlockLUKSHeader *hdr_copy = NULL;
|
|
|
|
/* Create a copy of the header */
|
|
hdr_copy = g_new0(QCryptoBlockLUKSHeader, 1);
|
|
memcpy(hdr_copy, &luks->header, sizeof(QCryptoBlockLUKSHeader));
|
|
|
|
/*
|
|
* Everything on disk uses Big Endian (tm), so flip header fields
|
|
* before writing them
|
|
*/
|
|
cpu_to_be16s(&hdr_copy->version);
|
|
cpu_to_be32s(&hdr_copy->payload_offset_sector);
|
|
cpu_to_be32s(&hdr_copy->master_key_len);
|
|
cpu_to_be32s(&hdr_copy->master_key_iterations);
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
cpu_to_be32s(&hdr_copy->key_slots[i].active);
|
|
cpu_to_be32s(&hdr_copy->key_slots[i].iterations);
|
|
cpu_to_be32s(&hdr_copy->key_slots[i].key_offset_sector);
|
|
cpu_to_be32s(&hdr_copy->key_slots[i].stripes);
|
|
}
|
|
|
|
/* Write out the partition header and key slot headers */
|
|
writefunc(block, 0, (const uint8_t *)hdr_copy, sizeof(*hdr_copy),
|
|
opaque, &local_err);
|
|
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Loads the main LUKS header,and byteswaps it to native endianess
|
|
* And run basic sanity checks on it
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_load_header(QCryptoBlock *block,
|
|
QCryptoBlockReadFunc readfunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
int rv;
|
|
size_t i;
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
|
|
/*
|
|
* Read the entire LUKS header, minus the key material from
|
|
* the underlying device
|
|
*/
|
|
rv = readfunc(block, 0,
|
|
(uint8_t *)&luks->header,
|
|
sizeof(luks->header),
|
|
opaque,
|
|
errp);
|
|
if (rv < 0) {
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* The header is always stored in big-endian format, so
|
|
* convert everything to native
|
|
*/
|
|
be16_to_cpus(&luks->header.version);
|
|
be32_to_cpus(&luks->header.payload_offset_sector);
|
|
be32_to_cpus(&luks->header.master_key_len);
|
|
be32_to_cpus(&luks->header.master_key_iterations);
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
be32_to_cpus(&luks->header.key_slots[i].active);
|
|
be32_to_cpus(&luks->header.key_slots[i].iterations);
|
|
be32_to_cpus(&luks->header.key_slots[i].key_offset_sector);
|
|
be32_to_cpus(&luks->header.key_slots[i].stripes);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Does basic sanity checks on the LUKS header
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_check_header(const QCryptoBlockLUKS *luks, Error **errp)
|
|
{
|
|
size_t i, j;
|
|
|
|
unsigned int header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET /
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
|
|
|
|
if (memcmp(luks->header.magic, qcrypto_block_luks_magic,
|
|
QCRYPTO_BLOCK_LUKS_MAGIC_LEN) != 0) {
|
|
error_setg(errp, "Volume is not in LUKS format");
|
|
return -1;
|
|
}
|
|
|
|
if (luks->header.version != QCRYPTO_BLOCK_LUKS_VERSION) {
|
|
error_setg(errp, "LUKS version %" PRIu32 " is not supported",
|
|
luks->header.version);
|
|
return -1;
|
|
}
|
|
|
|
/* Check all keyslots for corruption */
|
|
for (i = 0 ; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; i++) {
|
|
|
|
const QCryptoBlockLUKSKeySlot *slot1 = &luks->header.key_slots[i];
|
|
unsigned int start1 = slot1->key_offset_sector;
|
|
unsigned int len1 =
|
|
qcrypto_block_luks_splitkeylen_sectors(luks,
|
|
header_sectors,
|
|
slot1->stripes);
|
|
|
|
if (slot1->stripes == 0) {
|
|
error_setg(errp, "Keyslot %zu is corrupted (stripes == 0)", i);
|
|
return -1;
|
|
}
|
|
|
|
if (slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED &&
|
|
slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) {
|
|
error_setg(errp,
|
|
"Keyslot %zu state (active/disable) is corrupted", i);
|
|
return -1;
|
|
}
|
|
|
|
if (start1 + len1 > luks->header.payload_offset_sector) {
|
|
error_setg(errp,
|
|
"Keyslot %zu is overlapping with the encrypted payload",
|
|
i);
|
|
return -1;
|
|
}
|
|
|
|
for (j = i + 1 ; j < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; j++) {
|
|
const QCryptoBlockLUKSKeySlot *slot2 = &luks->header.key_slots[j];
|
|
unsigned int start2 = slot2->key_offset_sector;
|
|
unsigned int len2 =
|
|
qcrypto_block_luks_splitkeylen_sectors(luks,
|
|
header_sectors,
|
|
slot2->stripes);
|
|
|
|
if (start1 + len1 > start2 && start2 + len2 > start1) {
|
|
error_setg(errp,
|
|
"Keyslots %zu and %zu are overlapping in the header",
|
|
i, j);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Parses the crypto parameters that are stored in the LUKS header
|
|
*/
|
|
|
|
static int
|
|
qcrypto_block_luks_parse_header(QCryptoBlockLUKS *luks, Error **errp)
|
|
{
|
|
g_autofree char *cipher_mode = g_strdup(luks->header.cipher_mode);
|
|
char *ivgen_name, *ivhash_name;
|
|
Error *local_err = NULL;
|
|
|
|
/*
|
|
* The cipher_mode header contains a string that we have
|
|
* to further parse, of the format
|
|
*
|
|
* <cipher-mode>-<iv-generator>[:<iv-hash>]
|
|
*
|
|
* eg cbc-essiv:sha256, cbc-plain64
|
|
*/
|
|
ivgen_name = strchr(cipher_mode, '-');
|
|
if (!ivgen_name) {
|
|
error_setg(errp, "Unexpected cipher mode string format %s",
|
|
luks->header.cipher_mode);
|
|
return -1;
|
|
}
|
|
*ivgen_name = '\0';
|
|
ivgen_name++;
|
|
|
|
ivhash_name = strchr(ivgen_name, ':');
|
|
if (!ivhash_name) {
|
|
luks->ivgen_hash_alg = 0;
|
|
} else {
|
|
*ivhash_name = '\0';
|
|
ivhash_name++;
|
|
|
|
luks->ivgen_hash_alg = qcrypto_block_luks_hash_name_lookup(ivhash_name,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
luks->cipher_mode = qcrypto_block_luks_cipher_mode_lookup(cipher_mode,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
|
|
luks->cipher_alg =
|
|
qcrypto_block_luks_cipher_name_lookup(luks->header.cipher_name,
|
|
luks->cipher_mode,
|
|
luks->header.master_key_len,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
|
|
luks->hash_alg =
|
|
qcrypto_block_luks_hash_name_lookup(luks->header.hash_spec,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
|
|
luks->ivgen_alg = qcrypto_block_luks_ivgen_name_lookup(ivgen_name,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
|
|
if (luks->ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
|
|
if (!ivhash_name) {
|
|
error_setg(errp, "Missing IV generator hash specification");
|
|
return -1;
|
|
}
|
|
luks->ivgen_cipher_alg =
|
|
qcrypto_block_luks_essiv_cipher(luks->cipher_alg,
|
|
luks->ivgen_hash_alg,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
} else {
|
|
|
|
/*
|
|
* Note we parsed the ivhash_name earlier in the cipher_mode
|
|
* spec string even with plain/plain64 ivgens, but we
|
|
* will ignore it, since it is irrelevant for these ivgens.
|
|
* This is for compat with dm-crypt which will silently
|
|
* ignore hash names with these ivgens rather than report
|
|
* an error about the invalid usage
|
|
*/
|
|
luks->ivgen_cipher_alg = luks->cipher_alg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given a key slot, user password, and the master key,
|
|
* will store the encrypted master key there, and update the
|
|
* in-memory header. User must then write the in-memory header
|
|
*
|
|
* Returns:
|
|
* 0 if the keyslot was written successfully
|
|
* with the provided password
|
|
* -1 if a fatal error occurred while storing the key
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_store_key(QCryptoBlock *block,
|
|
unsigned int slot_idx,
|
|
const char *password,
|
|
uint8_t *masterkey,
|
|
uint64_t iter_time,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
QCryptoBlockLUKSKeySlot *slot;
|
|
g_autofree uint8_t *splitkey = NULL;
|
|
size_t splitkeylen;
|
|
g_autofree uint8_t *slotkey = NULL;
|
|
g_autoptr(QCryptoCipher) cipher = NULL;
|
|
g_autoptr(QCryptoIVGen) ivgen = NULL;
|
|
Error *local_err = NULL;
|
|
uint64_t iters;
|
|
int ret = -1;
|
|
|
|
assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
|
|
slot = &luks->header.key_slots[slot_idx];
|
|
if (qcrypto_random_bytes(slot->salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
errp) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
splitkeylen = luks->header.master_key_len * slot->stripes;
|
|
|
|
/*
|
|
* Determine how many iterations are required to
|
|
* hash the user password while consuming 1 second of compute
|
|
* time
|
|
*/
|
|
iters = qcrypto_pbkdf2_count_iters(luks->hash_alg,
|
|
(uint8_t *)password, strlen(password),
|
|
slot->salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
luks->header.master_key_len,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
goto cleanup;
|
|
}
|
|
|
|
if (iters > (ULLONG_MAX / iter_time)) {
|
|
error_setg_errno(errp, ERANGE,
|
|
"PBKDF iterations %llu too large to scale",
|
|
(unsigned long long)iters);
|
|
goto cleanup;
|
|
}
|
|
|
|
/* iter_time was in millis, but count_iters reported for secs */
|
|
iters = iters * iter_time / 1000;
|
|
|
|
if (iters > UINT32_MAX) {
|
|
error_setg_errno(errp, ERANGE,
|
|
"PBKDF iterations %llu larger than %u",
|
|
(unsigned long long)iters, UINT32_MAX);
|
|
goto cleanup;
|
|
}
|
|
|
|
slot->iterations =
|
|
MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS);
|
|
|
|
|
|
/*
|
|
* Generate a key that we'll use to encrypt the master
|
|
* key, from the user's password
|
|
*/
|
|
slotkey = g_new0(uint8_t, luks->header.master_key_len);
|
|
if (qcrypto_pbkdf2(luks->hash_alg,
|
|
(uint8_t *)password, strlen(password),
|
|
slot->salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
slot->iterations,
|
|
slotkey, luks->header.master_key_len,
|
|
errp) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
|
|
/*
|
|
* Setup the encryption objects needed to encrypt the
|
|
* master key material
|
|
*/
|
|
cipher = qcrypto_cipher_new(luks->cipher_alg,
|
|
luks->cipher_mode,
|
|
slotkey, luks->header.master_key_len,
|
|
errp);
|
|
if (!cipher) {
|
|
goto cleanup;
|
|
}
|
|
|
|
ivgen = qcrypto_ivgen_new(luks->ivgen_alg,
|
|
luks->ivgen_cipher_alg,
|
|
luks->ivgen_hash_alg,
|
|
slotkey, luks->header.master_key_len,
|
|
errp);
|
|
if (!ivgen) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Before storing the master key, we need to vastly
|
|
* increase its size, as protection against forensic
|
|
* disk data recovery
|
|
*/
|
|
splitkey = g_new0(uint8_t, splitkeylen);
|
|
|
|
if (qcrypto_afsplit_encode(luks->hash_alg,
|
|
luks->header.master_key_len,
|
|
slot->stripes,
|
|
masterkey,
|
|
splitkey,
|
|
errp) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Now we encrypt the split master key with the key generated
|
|
* from the user's password, before storing it
|
|
*/
|
|
if (qcrypto_block_cipher_encrypt_helper(cipher, block->niv, ivgen,
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
0,
|
|
splitkey,
|
|
splitkeylen,
|
|
errp) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Write out the slot's master key material. */
|
|
if (writefunc(block,
|
|
slot->key_offset_sector *
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
splitkey, splitkeylen,
|
|
opaque,
|
|
errp) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED;
|
|
|
|
if (qcrypto_block_luks_store_header(block, writefunc, opaque, errp) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
if (slotkey) {
|
|
memset(slotkey, 0, luks->header.master_key_len);
|
|
}
|
|
if (splitkey) {
|
|
memset(splitkey, 0, splitkeylen);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a key slot, and user password, this will attempt to unlock
|
|
* the master encryption key from the key slot.
|
|
*
|
|
* Returns:
|
|
* 0 if the key slot is disabled, or key could not be decrypted
|
|
* with the provided password
|
|
* 1 if the key slot is enabled, and key decrypted successfully
|
|
* with the provided password
|
|
* -1 if a fatal error occurred loading the key
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_load_key(QCryptoBlock *block,
|
|
size_t slot_idx,
|
|
const char *password,
|
|
uint8_t *masterkey,
|
|
QCryptoBlockReadFunc readfunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
const QCryptoBlockLUKSKeySlot *slot;
|
|
g_autofree uint8_t *splitkey = NULL;
|
|
size_t splitkeylen;
|
|
g_autofree uint8_t *possiblekey = NULL;
|
|
int rv;
|
|
g_autoptr(QCryptoCipher) cipher = NULL;
|
|
uint8_t keydigest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN];
|
|
g_autoptr(QCryptoIVGen) ivgen = NULL;
|
|
size_t niv;
|
|
|
|
assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
|
|
slot = &luks->header.key_slots[slot_idx];
|
|
if (slot->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) {
|
|
return 0;
|
|
}
|
|
|
|
splitkeylen = luks->header.master_key_len * slot->stripes;
|
|
splitkey = g_new0(uint8_t, splitkeylen);
|
|
possiblekey = g_new0(uint8_t, luks->header.master_key_len);
|
|
|
|
/*
|
|
* The user password is used to generate a (possible)
|
|
* decryption key. This may or may not successfully
|
|
* decrypt the master key - we just blindly assume
|
|
* the key is correct and validate the results of
|
|
* decryption later.
|
|
*/
|
|
if (qcrypto_pbkdf2(luks->hash_alg,
|
|
(const uint8_t *)password, strlen(password),
|
|
slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
slot->iterations,
|
|
possiblekey, luks->header.master_key_len,
|
|
errp) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* We need to read the master key material from the
|
|
* LUKS key material header. What we're reading is
|
|
* not the raw master key, but rather the data after
|
|
* it has been passed through AFSplit and the result
|
|
* then encrypted.
|
|
*/
|
|
rv = readfunc(block,
|
|
slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
splitkey, splitkeylen,
|
|
opaque,
|
|
errp);
|
|
if (rv < 0) {
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* Setup the cipher/ivgen that we'll use to try to decrypt
|
|
* the split master key material */
|
|
cipher = qcrypto_cipher_new(luks->cipher_alg,
|
|
luks->cipher_mode,
|
|
possiblekey,
|
|
luks->header.master_key_len,
|
|
errp);
|
|
if (!cipher) {
|
|
return -1;
|
|
}
|
|
|
|
niv = qcrypto_cipher_get_iv_len(luks->cipher_alg,
|
|
luks->cipher_mode);
|
|
|
|
ivgen = qcrypto_ivgen_new(luks->ivgen_alg,
|
|
luks->ivgen_cipher_alg,
|
|
luks->ivgen_hash_alg,
|
|
possiblekey,
|
|
luks->header.master_key_len,
|
|
errp);
|
|
if (!ivgen) {
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* The master key needs to be decrypted in the same
|
|
* way that the block device payload will be decrypted
|
|
* later. In particular we'll be using the IV generator
|
|
* to reset the encryption cipher every time the master
|
|
* key crosses a sector boundary.
|
|
*/
|
|
if (qcrypto_block_cipher_decrypt_helper(cipher,
|
|
niv,
|
|
ivgen,
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
0,
|
|
splitkey,
|
|
splitkeylen,
|
|
errp) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Now we've decrypted the split master key, join
|
|
* it back together to get the actual master key.
|
|
*/
|
|
if (qcrypto_afsplit_decode(luks->hash_alg,
|
|
luks->header.master_key_len,
|
|
slot->stripes,
|
|
splitkey,
|
|
masterkey,
|
|
errp) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* We still don't know that the masterkey we got is valid,
|
|
* because we just blindly assumed the user's password
|
|
* was correct. This is where we now verify it. We are
|
|
* creating a hash of the master key using PBKDF and
|
|
* then comparing that to the hash stored in the key slot
|
|
* header
|
|
*/
|
|
if (qcrypto_pbkdf2(luks->hash_alg,
|
|
masterkey,
|
|
luks->header.master_key_len,
|
|
luks->header.master_key_salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
luks->header.master_key_iterations,
|
|
keydigest,
|
|
G_N_ELEMENTS(keydigest),
|
|
errp) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (memcmp(keydigest, luks->header.master_key_digest,
|
|
QCRYPTO_BLOCK_LUKS_DIGEST_LEN) == 0) {
|
|
/* Success, we got the right master key */
|
|
return 1;
|
|
}
|
|
|
|
/* Fail, user's password was not valid for this key slot,
|
|
* tell caller to try another slot */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a user password, this will iterate over all key
|
|
* slots and try to unlock each active key slot using the
|
|
* password until it successfully obtains a master key.
|
|
*
|
|
* Returns 0 if a key was loaded, -1 if no keys could be loaded
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_find_key(QCryptoBlock *block,
|
|
const char *password,
|
|
uint8_t *masterkey,
|
|
QCryptoBlockReadFunc readfunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
size_t i;
|
|
int rv;
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
rv = qcrypto_block_luks_load_key(block,
|
|
i,
|
|
password,
|
|
masterkey,
|
|
readfunc,
|
|
opaque,
|
|
errp);
|
|
if (rv < 0) {
|
|
goto error;
|
|
}
|
|
if (rv == 1) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
error_setg(errp, "Invalid password, cannot unlock any keyslot");
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Returns true if a slot i is marked as active
|
|
* (contains encrypted copy of the master key)
|
|
*/
|
|
static bool
|
|
qcrypto_block_luks_slot_active(const QCryptoBlockLUKS *luks,
|
|
unsigned int slot_idx)
|
|
{
|
|
uint32_t val;
|
|
|
|
assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
|
|
val = luks->header.key_slots[slot_idx].active;
|
|
return val == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of slots that are marked as active
|
|
* (slots that contain encrypted copy of the master key)
|
|
*/
|
|
static unsigned int
|
|
qcrypto_block_luks_count_active_slots(const QCryptoBlockLUKS *luks)
|
|
{
|
|
size_t i = 0;
|
|
unsigned int ret = 0;
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
if (qcrypto_block_luks_slot_active(luks, i)) {
|
|
ret++;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Finds first key slot which is not active
|
|
* Returns the key slot index, or -1 if it doesn't exist
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_find_free_keyslot(const QCryptoBlockLUKS *luks)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
if (!qcrypto_block_luks_slot_active(luks, i)) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Erases an keyslot given its index
|
|
* Returns:
|
|
* 0 if the keyslot was erased successfully
|
|
* -1 if a error occurred while erasing the keyslot
|
|
*
|
|
*/
|
|
static int
|
|
qcrypto_block_luks_erase_key(QCryptoBlock *block,
|
|
unsigned int slot_idx,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
QCryptoBlockLUKSKeySlot *slot;
|
|
g_autofree uint8_t *garbagesplitkey = NULL;
|
|
size_t splitkeylen;
|
|
size_t i;
|
|
Error *local_err = NULL;
|
|
int ret;
|
|
|
|
assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
|
|
slot = &luks->header.key_slots[slot_idx];
|
|
|
|
splitkeylen = luks->header.master_key_len * slot->stripes;
|
|
assert(splitkeylen > 0);
|
|
|
|
garbagesplitkey = g_new0(uint8_t, splitkeylen);
|
|
|
|
/* Reset the key slot header */
|
|
memset(slot->salt, 0, QCRYPTO_BLOCK_LUKS_SALT_LEN);
|
|
slot->iterations = 0;
|
|
slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED;
|
|
|
|
ret = qcrypto_block_luks_store_header(block, writefunc,
|
|
opaque, &local_err);
|
|
|
|
if (ret < 0) {
|
|
error_propagate(errp, local_err);
|
|
}
|
|
/*
|
|
* Now try to erase the key material, even if the header
|
|
* update failed
|
|
*/
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_ERASE_ITERATIONS; i++) {
|
|
if (qcrypto_random_bytes(garbagesplitkey,
|
|
splitkeylen, &local_err) < 0) {
|
|
/*
|
|
* If we failed to get the random data, still write
|
|
* at least zeros to the key slot at least once
|
|
*/
|
|
error_propagate(errp, local_err);
|
|
|
|
if (i > 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (writefunc(block,
|
|
slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
garbagesplitkey,
|
|
splitkeylen,
|
|
opaque,
|
|
&local_err) < 0) {
|
|
error_propagate(errp, local_err);
|
|
return -1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
qcrypto_block_luks_open(QCryptoBlock *block,
|
|
QCryptoBlockOpenOptions *options,
|
|
const char *optprefix,
|
|
QCryptoBlockReadFunc readfunc,
|
|
void *opaque,
|
|
unsigned int flags,
|
|
size_t n_threads,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = NULL;
|
|
g_autofree uint8_t *masterkey = NULL;
|
|
g_autofree char *password = NULL;
|
|
|
|
if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) {
|
|
if (!options->u.luks.key_secret) {
|
|
error_setg(errp, "Parameter '%skey-secret' is required for cipher",
|
|
optprefix ? optprefix : "");
|
|
return -1;
|
|
}
|
|
password = qcrypto_secret_lookup_as_utf8(
|
|
options->u.luks.key_secret, errp);
|
|
if (!password) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
luks = g_new0(QCryptoBlockLUKS, 1);
|
|
block->opaque = luks;
|
|
luks->secret = g_strdup(options->u.luks.key_secret);
|
|
|
|
if (qcrypto_block_luks_load_header(block, readfunc, opaque, errp) < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
if (qcrypto_block_luks_check_header(luks, errp) < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
if (qcrypto_block_luks_parse_header(luks, errp) < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) {
|
|
/* Try to find which key slot our password is valid for
|
|
* and unlock the master key from that slot.
|
|
*/
|
|
|
|
masterkey = g_new0(uint8_t, luks->header.master_key_len);
|
|
|
|
if (qcrypto_block_luks_find_key(block,
|
|
password,
|
|
masterkey,
|
|
readfunc, opaque,
|
|
errp) < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
/* We have a valid master key now, so can setup the
|
|
* block device payload decryption objects
|
|
*/
|
|
block->kdfhash = luks->hash_alg;
|
|
block->niv = qcrypto_cipher_get_iv_len(luks->cipher_alg,
|
|
luks->cipher_mode);
|
|
|
|
block->ivgen = qcrypto_ivgen_new(luks->ivgen_alg,
|
|
luks->ivgen_cipher_alg,
|
|
luks->ivgen_hash_alg,
|
|
masterkey,
|
|
luks->header.master_key_len,
|
|
errp);
|
|
if (!block->ivgen) {
|
|
goto fail;
|
|
}
|
|
|
|
if (qcrypto_block_init_cipher(block,
|
|
luks->cipher_alg,
|
|
luks->cipher_mode,
|
|
masterkey,
|
|
luks->header.master_key_len,
|
|
n_threads,
|
|
errp) < 0) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
|
|
block->payload_offset = luks->header.payload_offset_sector *
|
|
block->sector_size;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
qcrypto_block_free_cipher(block);
|
|
qcrypto_ivgen_free(block->ivgen);
|
|
g_free(luks->secret);
|
|
g_free(luks);
|
|
return -1;
|
|
}
|
|
|
|
|
|
static void
|
|
qcrypto_block_luks_uuid_gen(uint8_t *uuidstr)
|
|
{
|
|
QemuUUID uuid;
|
|
qemu_uuid_generate(&uuid);
|
|
qemu_uuid_unparse(&uuid, (char *)uuidstr);
|
|
}
|
|
|
|
static int
|
|
qcrypto_block_luks_create(QCryptoBlock *block,
|
|
QCryptoBlockCreateOptions *options,
|
|
const char *optprefix,
|
|
QCryptoBlockInitFunc initfunc,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks;
|
|
QCryptoBlockCreateOptionsLUKS luks_opts;
|
|
Error *local_err = NULL;
|
|
g_autofree uint8_t *masterkey = NULL;
|
|
size_t header_sectors;
|
|
size_t split_key_sectors;
|
|
size_t i;
|
|
g_autofree char *password = NULL;
|
|
const char *cipher_alg;
|
|
const char *cipher_mode;
|
|
const char *ivgen_alg;
|
|
const char *ivgen_hash_alg = NULL;
|
|
const char *hash_alg;
|
|
g_autofree char *cipher_mode_spec = NULL;
|
|
uint64_t iters;
|
|
|
|
memcpy(&luks_opts, &options->u.luks, sizeof(luks_opts));
|
|
if (!luks_opts.has_iter_time) {
|
|
luks_opts.iter_time = QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS;
|
|
}
|
|
if (!luks_opts.has_cipher_alg) {
|
|
luks_opts.cipher_alg = QCRYPTO_CIPHER_ALG_AES_256;
|
|
}
|
|
if (!luks_opts.has_cipher_mode) {
|
|
luks_opts.cipher_mode = QCRYPTO_CIPHER_MODE_XTS;
|
|
}
|
|
if (!luks_opts.has_ivgen_alg) {
|
|
luks_opts.ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64;
|
|
}
|
|
if (!luks_opts.has_hash_alg) {
|
|
luks_opts.hash_alg = QCRYPTO_HASH_ALG_SHA256;
|
|
}
|
|
if (luks_opts.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
|
|
if (!luks_opts.has_ivgen_hash_alg) {
|
|
luks_opts.ivgen_hash_alg = QCRYPTO_HASH_ALG_SHA256;
|
|
luks_opts.has_ivgen_hash_alg = true;
|
|
}
|
|
}
|
|
|
|
luks = g_new0(QCryptoBlockLUKS, 1);
|
|
block->opaque = luks;
|
|
|
|
luks->cipher_alg = luks_opts.cipher_alg;
|
|
luks->cipher_mode = luks_opts.cipher_mode;
|
|
luks->ivgen_alg = luks_opts.ivgen_alg;
|
|
luks->ivgen_hash_alg = luks_opts.ivgen_hash_alg;
|
|
luks->hash_alg = luks_opts.hash_alg;
|
|
|
|
|
|
/* Note we're allowing ivgen_hash_alg to be set even for
|
|
* non-essiv iv generators that don't need a hash. It will
|
|
* be silently ignored, for compatibility with dm-crypt */
|
|
|
|
if (!options->u.luks.key_secret) {
|
|
error_setg(errp, "Parameter '%skey-secret' is required for cipher",
|
|
optprefix ? optprefix : "");
|
|
goto error;
|
|
}
|
|
luks->secret = g_strdup(options->u.luks.key_secret);
|
|
|
|
password = qcrypto_secret_lookup_as_utf8(luks_opts.key_secret, errp);
|
|
if (!password) {
|
|
goto error;
|
|
}
|
|
|
|
|
|
memcpy(luks->header.magic, qcrypto_block_luks_magic,
|
|
QCRYPTO_BLOCK_LUKS_MAGIC_LEN);
|
|
|
|
/* We populate the header in native endianness initially and
|
|
* then convert everything to big endian just before writing
|
|
* it out to disk
|
|
*/
|
|
luks->header.version = QCRYPTO_BLOCK_LUKS_VERSION;
|
|
qcrypto_block_luks_uuid_gen(luks->header.uuid);
|
|
|
|
cipher_alg = qcrypto_block_luks_cipher_alg_lookup(luks_opts.cipher_alg,
|
|
errp);
|
|
if (!cipher_alg) {
|
|
goto error;
|
|
}
|
|
|
|
cipher_mode = QCryptoCipherMode_str(luks_opts.cipher_mode);
|
|
ivgen_alg = QCryptoIVGenAlgorithm_str(luks_opts.ivgen_alg);
|
|
if (luks_opts.has_ivgen_hash_alg) {
|
|
ivgen_hash_alg = QCryptoHashAlgorithm_str(luks_opts.ivgen_hash_alg);
|
|
cipher_mode_spec = g_strdup_printf("%s-%s:%s", cipher_mode, ivgen_alg,
|
|
ivgen_hash_alg);
|
|
} else {
|
|
cipher_mode_spec = g_strdup_printf("%s-%s", cipher_mode, ivgen_alg);
|
|
}
|
|
hash_alg = QCryptoHashAlgorithm_str(luks_opts.hash_alg);
|
|
|
|
|
|
if (strlen(cipher_alg) >= QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN) {
|
|
error_setg(errp, "Cipher name '%s' is too long for LUKS header",
|
|
cipher_alg);
|
|
goto error;
|
|
}
|
|
if (strlen(cipher_mode_spec) >= QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN) {
|
|
error_setg(errp, "Cipher mode '%s' is too long for LUKS header",
|
|
cipher_mode_spec);
|
|
goto error;
|
|
}
|
|
if (strlen(hash_alg) >= QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN) {
|
|
error_setg(errp, "Hash name '%s' is too long for LUKS header",
|
|
hash_alg);
|
|
goto error;
|
|
}
|
|
|
|
if (luks_opts.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
|
|
luks->ivgen_cipher_alg =
|
|
qcrypto_block_luks_essiv_cipher(luks_opts.cipher_alg,
|
|
luks_opts.ivgen_hash_alg,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
goto error;
|
|
}
|
|
} else {
|
|
luks->ivgen_cipher_alg = luks_opts.cipher_alg;
|
|
}
|
|
|
|
strcpy(luks->header.cipher_name, cipher_alg);
|
|
strcpy(luks->header.cipher_mode, cipher_mode_spec);
|
|
strcpy(luks->header.hash_spec, hash_alg);
|
|
|
|
luks->header.master_key_len =
|
|
qcrypto_cipher_get_key_len(luks_opts.cipher_alg);
|
|
|
|
if (luks_opts.cipher_mode == QCRYPTO_CIPHER_MODE_XTS) {
|
|
luks->header.master_key_len *= 2;
|
|
}
|
|
|
|
/* Generate the salt used for hashing the master key
|
|
* with PBKDF later
|
|
*/
|
|
if (qcrypto_random_bytes(luks->header.master_key_salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
errp) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* Generate random master key */
|
|
masterkey = g_new0(uint8_t, luks->header.master_key_len);
|
|
if (qcrypto_random_bytes(masterkey,
|
|
luks->header.master_key_len, errp) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
|
|
/* Setup the block device payload encryption objects */
|
|
if (qcrypto_block_init_cipher(block, luks_opts.cipher_alg,
|
|
luks_opts.cipher_mode, masterkey,
|
|
luks->header.master_key_len, 1, errp) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
block->kdfhash = luks_opts.hash_alg;
|
|
block->niv = qcrypto_cipher_get_iv_len(luks_opts.cipher_alg,
|
|
luks_opts.cipher_mode);
|
|
block->ivgen = qcrypto_ivgen_new(luks_opts.ivgen_alg,
|
|
luks->ivgen_cipher_alg,
|
|
luks_opts.ivgen_hash_alg,
|
|
masterkey, luks->header.master_key_len,
|
|
errp);
|
|
|
|
if (!block->ivgen) {
|
|
goto error;
|
|
}
|
|
|
|
|
|
/* Determine how many iterations we need to hash the master
|
|
* key, in order to have 1 second of compute time used
|
|
*/
|
|
iters = qcrypto_pbkdf2_count_iters(luks_opts.hash_alg,
|
|
masterkey, luks->header.master_key_len,
|
|
luks->header.master_key_salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
QCRYPTO_BLOCK_LUKS_DIGEST_LEN,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
goto error;
|
|
}
|
|
|
|
if (iters > (ULLONG_MAX / luks_opts.iter_time)) {
|
|
error_setg_errno(errp, ERANGE,
|
|
"PBKDF iterations %llu too large to scale",
|
|
(unsigned long long)iters);
|
|
goto error;
|
|
}
|
|
|
|
/* iter_time was in millis, but count_iters reported for secs */
|
|
iters = iters * luks_opts.iter_time / 1000;
|
|
|
|
/* Why /= 8 ? That matches cryptsetup, but there's no
|
|
* explanation why they chose /= 8... Probably so that
|
|
* if all 8 keyslots are active we only spend 1 second
|
|
* in total time to check all keys */
|
|
iters /= 8;
|
|
if (iters > UINT32_MAX) {
|
|
error_setg_errno(errp, ERANGE,
|
|
"PBKDF iterations %llu larger than %u",
|
|
(unsigned long long)iters, UINT32_MAX);
|
|
goto error;
|
|
}
|
|
iters = MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS);
|
|
luks->header.master_key_iterations = iters;
|
|
|
|
/* Hash the master key, saving the result in the LUKS
|
|
* header. This hash is used when opening the encrypted
|
|
* device to verify that the user password unlocked a
|
|
* valid master key
|
|
*/
|
|
if (qcrypto_pbkdf2(luks_opts.hash_alg,
|
|
masterkey, luks->header.master_key_len,
|
|
luks->header.master_key_salt,
|
|
QCRYPTO_BLOCK_LUKS_SALT_LEN,
|
|
luks->header.master_key_iterations,
|
|
luks->header.master_key_digest,
|
|
QCRYPTO_BLOCK_LUKS_DIGEST_LEN,
|
|
errp) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* start with the sector that follows the header*/
|
|
header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET /
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
|
|
|
|
split_key_sectors =
|
|
qcrypto_block_luks_splitkeylen_sectors(luks,
|
|
header_sectors,
|
|
QCRYPTO_BLOCK_LUKS_STRIPES);
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
QCryptoBlockLUKSKeySlot *slot = &luks->header.key_slots[i];
|
|
slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED;
|
|
|
|
slot->key_offset_sector = header_sectors + i * split_key_sectors;
|
|
slot->stripes = QCRYPTO_BLOCK_LUKS_STRIPES;
|
|
}
|
|
|
|
/* The total size of the LUKS headers is the partition header + key
|
|
* slot headers, rounded up to the nearest sector, combined with
|
|
* the size of each master key material region, also rounded up
|
|
* to the nearest sector */
|
|
luks->header.payload_offset_sector = header_sectors +
|
|
QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS * split_key_sectors;
|
|
|
|
block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
|
|
block->payload_offset = luks->header.payload_offset_sector *
|
|
block->sector_size;
|
|
|
|
/* Reserve header space to match payload offset */
|
|
initfunc(block, block->payload_offset, opaque, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
goto error;
|
|
}
|
|
|
|
|
|
/* populate the slot 0 with the password encrypted master key*/
|
|
/* This will also store the header */
|
|
if (qcrypto_block_luks_store_key(block,
|
|
0,
|
|
password,
|
|
masterkey,
|
|
luks_opts.iter_time,
|
|
writefunc,
|
|
opaque,
|
|
errp) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
memset(masterkey, 0, luks->header.master_key_len);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (masterkey) {
|
|
memset(masterkey, 0, luks->header.master_key_len);
|
|
}
|
|
|
|
qcrypto_block_free_cipher(block);
|
|
qcrypto_ivgen_free(block->ivgen);
|
|
|
|
g_free(luks->secret);
|
|
g_free(luks);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
qcrypto_block_luks_amend_add_keyslot(QCryptoBlock *block,
|
|
QCryptoBlockReadFunc readfunc,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
QCryptoBlockAmendOptionsLUKS *opts_luks,
|
|
bool force,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
uint64_t iter_time = opts_luks->has_iter_time ?
|
|
opts_luks->iter_time :
|
|
QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS;
|
|
int keyslot;
|
|
g_autofree char *old_password = NULL;
|
|
g_autofree char *new_password = NULL;
|
|
g_autofree uint8_t *master_key = NULL;
|
|
|
|
char *secret = opts_luks->has_secret ? opts_luks->secret : luks->secret;
|
|
|
|
if (!opts_luks->has_new_secret) {
|
|
error_setg(errp, "'new-secret' is required to activate a keyslot");
|
|
return -1;
|
|
}
|
|
if (opts_luks->has_old_secret) {
|
|
error_setg(errp,
|
|
"'old-secret' must not be given when activating keyslots");
|
|
return -1;
|
|
}
|
|
|
|
if (opts_luks->has_keyslot) {
|
|
keyslot = opts_luks->keyslot;
|
|
if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) {
|
|
error_setg(errp,
|
|
"Invalid keyslot %u specified, must be between 0 and %u",
|
|
keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1);
|
|
return -1;
|
|
}
|
|
} else {
|
|
keyslot = qcrypto_block_luks_find_free_keyslot(luks);
|
|
if (keyslot == -1) {
|
|
error_setg(errp,
|
|
"Can't add a keyslot - all keyslots are in use");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!force && qcrypto_block_luks_slot_active(luks, keyslot)) {
|
|
error_setg(errp,
|
|
"Refusing to overwrite active keyslot %i - "
|
|
"please erase it first",
|
|
keyslot);
|
|
return -1;
|
|
}
|
|
|
|
/* Locate the password that will be used to retrieve the master key */
|
|
old_password = qcrypto_secret_lookup_as_utf8(secret, errp);
|
|
if (!old_password) {
|
|
return -1;
|
|
}
|
|
|
|
/* Retrieve the master key */
|
|
master_key = g_new0(uint8_t, luks->header.master_key_len);
|
|
|
|
if (qcrypto_block_luks_find_key(block, old_password, master_key,
|
|
readfunc, opaque, errp) < 0) {
|
|
error_append_hint(errp, "Failed to retrieve the master key");
|
|
return -1;
|
|
}
|
|
|
|
/* Locate the new password*/
|
|
new_password = qcrypto_secret_lookup_as_utf8(opts_luks->new_secret, errp);
|
|
if (!new_password) {
|
|
return -1;
|
|
}
|
|
|
|
/* Now set the new keyslots */
|
|
if (qcrypto_block_luks_store_key(block, keyslot, new_password, master_key,
|
|
iter_time, writefunc, opaque, errp)) {
|
|
error_append_hint(errp, "Failed to write to keyslot %i", keyslot);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qcrypto_block_luks_amend_erase_keyslots(QCryptoBlock *block,
|
|
QCryptoBlockReadFunc readfunc,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
QCryptoBlockAmendOptionsLUKS *opts_luks,
|
|
bool force,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
g_autofree uint8_t *tmpkey = NULL;
|
|
g_autofree char *old_password = NULL;
|
|
|
|
if (opts_luks->has_new_secret) {
|
|
error_setg(errp,
|
|
"'new-secret' must not be given when erasing keyslots");
|
|
return -1;
|
|
}
|
|
if (opts_luks->has_iter_time) {
|
|
error_setg(errp,
|
|
"'iter-time' must not be given when erasing keyslots");
|
|
return -1;
|
|
}
|
|
if (opts_luks->has_secret) {
|
|
error_setg(errp,
|
|
"'secret' must not be given when erasing keyslots");
|
|
return -1;
|
|
}
|
|
|
|
/* Load the old password if given */
|
|
if (opts_luks->has_old_secret) {
|
|
old_password = qcrypto_secret_lookup_as_utf8(opts_luks->old_secret,
|
|
errp);
|
|
if (!old_password) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Allocate a temporary key buffer that we will need when
|
|
* checking if slot matches the given old password
|
|
*/
|
|
tmpkey = g_new0(uint8_t, luks->header.master_key_len);
|
|
}
|
|
|
|
/* Erase an explicitly given keyslot */
|
|
if (opts_luks->has_keyslot) {
|
|
int keyslot = opts_luks->keyslot;
|
|
|
|
if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) {
|
|
error_setg(errp,
|
|
"Invalid keyslot %i specified, must be between 0 and %i",
|
|
keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1);
|
|
return -1;
|
|
}
|
|
|
|
if (opts_luks->has_old_secret) {
|
|
int rv = qcrypto_block_luks_load_key(block,
|
|
keyslot,
|
|
old_password,
|
|
tmpkey,
|
|
readfunc,
|
|
opaque,
|
|
errp);
|
|
if (rv == -1) {
|
|
return -1;
|
|
} else if (rv == 0) {
|
|
error_setg(errp,
|
|
"Given keyslot %i doesn't contain the given "
|
|
"old password for erase operation",
|
|
keyslot);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!force && !qcrypto_block_luks_slot_active(luks, keyslot)) {
|
|
error_setg(errp,
|
|
"Given keyslot %i is already erased (inactive) ",
|
|
keyslot);
|
|
return -1;
|
|
}
|
|
|
|
if (!force && qcrypto_block_luks_count_active_slots(luks) == 1) {
|
|
error_setg(errp,
|
|
"Attempt to erase the only active keyslot %i "
|
|
"which will erase all the data in the image "
|
|
"irreversibly - refusing operation",
|
|
keyslot);
|
|
return -1;
|
|
}
|
|
|
|
if (qcrypto_block_luks_erase_key(block, keyslot,
|
|
writefunc, opaque, errp)) {
|
|
error_append_hint(errp, "Failed to erase keyslot %i", keyslot);
|
|
return -1;
|
|
}
|
|
|
|
/* Erase all keyslots that match the given old password */
|
|
} else if (opts_luks->has_old_secret) {
|
|
|
|
unsigned long slots_to_erase_bitmap = 0;
|
|
size_t i;
|
|
int slot_count;
|
|
|
|
assert(QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS <=
|
|
sizeof(slots_to_erase_bitmap) * 8);
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
int rv = qcrypto_block_luks_load_key(block,
|
|
i,
|
|
old_password,
|
|
tmpkey,
|
|
readfunc,
|
|
opaque,
|
|
errp);
|
|
if (rv == -1) {
|
|
return -1;
|
|
} else if (rv == 1) {
|
|
bitmap_set(&slots_to_erase_bitmap, i, 1);
|
|
}
|
|
}
|
|
|
|
slot_count = bitmap_count_one(&slots_to_erase_bitmap,
|
|
QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
|
|
if (slot_count == 0) {
|
|
error_setg(errp,
|
|
"No keyslots match given (old) password for erase operation");
|
|
return -1;
|
|
}
|
|
|
|
if (!force &&
|
|
slot_count == qcrypto_block_luks_count_active_slots(luks)) {
|
|
error_setg(errp,
|
|
"All the active keyslots match the (old) password that "
|
|
"was given and erasing them will erase all the data in "
|
|
"the image irreversibly - refusing operation");
|
|
return -1;
|
|
}
|
|
|
|
/* Now apply the update */
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
if (!test_bit(i, &slots_to_erase_bitmap)) {
|
|
continue;
|
|
}
|
|
if (qcrypto_block_luks_erase_key(block, i, writefunc,
|
|
opaque, errp)) {
|
|
error_append_hint(errp, "Failed to erase keyslot %zu", i);
|
|
return -1;
|
|
}
|
|
}
|
|
} else {
|
|
error_setg(errp,
|
|
"To erase keyslot(s), either explicit keyslot index "
|
|
"or the password currently contained in them must be given");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
qcrypto_block_luks_amend_options(QCryptoBlock *block,
|
|
QCryptoBlockReadFunc readfunc,
|
|
QCryptoBlockWriteFunc writefunc,
|
|
void *opaque,
|
|
QCryptoBlockAmendOptions *options,
|
|
bool force,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockAmendOptionsLUKS *opts_luks = &options->u.luks;
|
|
|
|
switch (opts_luks->state) {
|
|
case Q_CRYPTO_BLOCKLUKS_KEYSLOT_STATE_ACTIVE:
|
|
return qcrypto_block_luks_amend_add_keyslot(block, readfunc,
|
|
writefunc, opaque,
|
|
opts_luks, force, errp);
|
|
case Q_CRYPTO_BLOCKLUKS_KEYSLOT_STATE_INACTIVE:
|
|
return qcrypto_block_luks_amend_erase_keyslots(block, readfunc,
|
|
writefunc, opaque,
|
|
opts_luks, force, errp);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static int qcrypto_block_luks_get_info(QCryptoBlock *block,
|
|
QCryptoBlockInfo *info,
|
|
Error **errp)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
QCryptoBlockInfoLUKSSlot *slot;
|
|
QCryptoBlockInfoLUKSSlotList **tail = &info->u.luks.slots;
|
|
size_t i;
|
|
|
|
info->u.luks.cipher_alg = luks->cipher_alg;
|
|
info->u.luks.cipher_mode = luks->cipher_mode;
|
|
info->u.luks.ivgen_alg = luks->ivgen_alg;
|
|
if (info->u.luks.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
|
|
info->u.luks.has_ivgen_hash_alg = true;
|
|
info->u.luks.ivgen_hash_alg = luks->ivgen_hash_alg;
|
|
}
|
|
info->u.luks.hash_alg = luks->hash_alg;
|
|
info->u.luks.payload_offset = block->payload_offset;
|
|
info->u.luks.master_key_iters = luks->header.master_key_iterations;
|
|
info->u.luks.uuid = g_strndup((const char *)luks->header.uuid,
|
|
sizeof(luks->header.uuid));
|
|
|
|
for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
|
|
slot = g_new0(QCryptoBlockInfoLUKSSlot, 1);
|
|
slot->active = luks->header.key_slots[i].active ==
|
|
QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED;
|
|
slot->key_offset = luks->header.key_slots[i].key_offset_sector
|
|
* QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
|
|
if (slot->active) {
|
|
slot->has_iters = true;
|
|
slot->iters = luks->header.key_slots[i].iterations;
|
|
slot->has_stripes = true;
|
|
slot->stripes = luks->header.key_slots[i].stripes;
|
|
}
|
|
|
|
QAPI_LIST_APPEND(tail, slot);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void qcrypto_block_luks_cleanup(QCryptoBlock *block)
|
|
{
|
|
QCryptoBlockLUKS *luks = block->opaque;
|
|
if (luks) {
|
|
g_free(luks->secret);
|
|
g_free(luks);
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
qcrypto_block_luks_decrypt(QCryptoBlock *block,
|
|
uint64_t offset,
|
|
uint8_t *buf,
|
|
size_t len,
|
|
Error **errp)
|
|
{
|
|
assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
|
|
assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
|
|
return qcrypto_block_decrypt_helper(block,
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
offset, buf, len, errp);
|
|
}
|
|
|
|
|
|
static int
|
|
qcrypto_block_luks_encrypt(QCryptoBlock *block,
|
|
uint64_t offset,
|
|
uint8_t *buf,
|
|
size_t len,
|
|
Error **errp)
|
|
{
|
|
assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
|
|
assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
|
|
return qcrypto_block_encrypt_helper(block,
|
|
QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
|
|
offset, buf, len, errp);
|
|
}
|
|
|
|
|
|
const QCryptoBlockDriver qcrypto_block_driver_luks = {
|
|
.open = qcrypto_block_luks_open,
|
|
.create = qcrypto_block_luks_create,
|
|
.amend = qcrypto_block_luks_amend_options,
|
|
.get_info = qcrypto_block_luks_get_info,
|
|
.cleanup = qcrypto_block_luks_cleanup,
|
|
.decrypt = qcrypto_block_luks_decrypt,
|
|
.encrypt = qcrypto_block_luks_encrypt,
|
|
.has_format = qcrypto_block_luks_has_format,
|
|
};
|