qemu-e2k/plugins/api.c

443 lines
12 KiB
C

/*
* QEMU Plugin API
*
* This provides the API that is available to the plugins to interact
* with QEMU. We have to be careful not to expose internal details of
* how QEMU works so we abstract out things like translation and
* instructions to anonymous data types:
*
* qemu_plugin_tb
* qemu_plugin_insn
*
* Which can then be passed back into the API to do additional things.
* As such all the public functions in here are exported in
* qemu-plugin.h.
*
* The general life-cycle of a plugin is:
*
* - plugin is loaded, public qemu_plugin_install called
* - the install func registers callbacks for events
* - usually an atexit_cb is registered to dump info at the end
* - when a registered event occurs the plugin is called
* - some events pass additional info
* - during translation the plugin can decide to instrument any
* instruction
* - when QEMU exits all the registered atexit callbacks are called
*
* Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
* Copyright (C) 2019, Linaro
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
*/
#include "qemu/osdep.h"
#include "qemu/plugin.h"
#include "qemu/log.h"
#include "tcg/tcg.h"
#include "exec/exec-all.h"
#include "exec/ram_addr.h"
#include "disas/disas.h"
#include "plugin.h"
#ifndef CONFIG_USER_ONLY
#include "qemu/plugin-memory.h"
#include "hw/boards.h"
#else
#include "qemu.h"
#ifdef CONFIG_LINUX
#include "loader.h"
#endif
#endif
/* Uninstall and Reset handlers */
void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
plugin_reset_uninstall(id, cb, false);
}
void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
plugin_reset_uninstall(id, cb, true);
}
/*
* Plugin Register Functions
*
* This allows the plugin to register callbacks for various events
* during the translation.
*/
void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
}
void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
}
void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
if (!tb->mem_only) {
plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
cb, flags, udata);
}
}
void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
enum qemu_plugin_op op,
void *ptr, uint64_t imm)
{
if (!tb->mem_only) {
plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
}
}
void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
if (!insn->mem_only) {
plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
cb, flags, udata);
}
}
void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
enum qemu_plugin_op op,
void *ptr, uint64_t imm)
{
if (!insn->mem_only) {
plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
0, op, ptr, imm);
}
}
/*
* We always plant memory instrumentation because they don't finalise until
* after the operation has complete.
*/
void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_mem_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_mem_rw rw,
void *udata)
{
plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
cb, flags, rw, udata);
}
void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
enum qemu_plugin_mem_rw rw,
enum qemu_plugin_op op, void *ptr,
uint64_t imm)
{
plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
rw, op, ptr, imm);
}
void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_tb_trans_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
}
void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_syscall_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
}
void
qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_syscall_ret_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
}
/*
* Plugin Queries
*
* These are queries that the plugin can make to gauge information
* from our opaque data types. We do not want to leak internal details
* here just information useful to the plugin.
*/
/*
* Translation block information:
*
* A plugin can query the virtual address of the start of the block
* and the number of instructions in it. It can also get access to
* each translated instruction.
*/
size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
{
return tb->n;
}
uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
{
return tb->vaddr;
}
struct qemu_plugin_insn *
qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
{
struct qemu_plugin_insn *insn;
if (unlikely(idx >= tb->n)) {
return NULL;
}
insn = g_ptr_array_index(tb->insns, idx);
insn->mem_only = tb->mem_only;
return insn;
}
/*
* Instruction information
*
* These queries allow the plugin to retrieve information about each
* instruction being translated.
*/
const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
{
return insn->data->data;
}
size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
{
return insn->data->len;
}
uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
{
return insn->vaddr;
}
void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
{
return insn->haddr;
}
char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
{
CPUState *cpu = current_cpu;
return plugin_disas(cpu, insn->vaddr, insn->data->len);
}
const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
{
const char *sym = lookup_symbol(insn->vaddr);
return sym[0] != 0 ? sym : NULL;
}
/*
* The memory queries allow the plugin to query information about a
* memory access.
*/
unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return op & MO_SIZE;
}
bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return op & MO_SIGN;
}
bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return (op & MO_BSWAP) == MO_BE;
}
bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
{
return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
}
/*
* Virtual Memory queries
*/
#ifdef CONFIG_SOFTMMU
static __thread struct qemu_plugin_hwaddr hwaddr_info;
#endif
struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
uint64_t vaddr)
{
#ifdef CONFIG_SOFTMMU
CPUState *cpu = current_cpu;
unsigned int mmu_idx = get_mmuidx(info);
enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
hwaddr_info.is_store, &hwaddr_info)) {
error_report("invalid use of qemu_plugin_get_hwaddr");
return NULL;
}
return &hwaddr_info;
#else
return NULL;
#endif
}
bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
{
#ifdef CONFIG_SOFTMMU
return haddr->is_io;
#else
return false;
#endif
}
uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
{
#ifdef CONFIG_SOFTMMU
if (haddr) {
if (!haddr->is_io) {
RAMBlock *block;
ram_addr_t offset;
void *hostaddr = haddr->v.ram.hostaddr;
block = qemu_ram_block_from_host(hostaddr, false, &offset);
if (!block) {
error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr);
abort();
}
return block->offset + offset + block->mr->addr;
} else {
MemoryRegionSection *mrs = haddr->v.io.section;
return mrs->offset_within_address_space + haddr->v.io.offset;
}
}
#endif
return 0;
}
const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
{
#ifdef CONFIG_SOFTMMU
if (h && h->is_io) {
MemoryRegionSection *mrs = h->v.io.section;
if (!mrs->mr->name) {
unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
return g_intern_string(temp);
} else {
return g_intern_string(mrs->mr->name);
}
} else {
return g_intern_static_string("RAM");
}
#else
return g_intern_static_string("Invalid");
#endif
}
/*
* Queries to the number and potential maximum number of vCPUs there
* will be. This helps the plugin dimension per-vcpu arrays.
*/
#ifndef CONFIG_USER_ONLY
static MachineState * get_ms(void)
{
return MACHINE(qdev_get_machine());
}
#endif
int qemu_plugin_n_vcpus(void)
{
#ifdef CONFIG_USER_ONLY
return -1;
#else
return get_ms()->smp.cpus;
#endif
}
int qemu_plugin_n_max_vcpus(void)
{
#ifdef CONFIG_USER_ONLY
return -1;
#else
return get_ms()->smp.max_cpus;
#endif
}
/*
* Plugin output
*/
void qemu_plugin_outs(const char *string)
{
qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
}
bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
{
return name && value && qapi_bool_parse(name, value, ret, NULL);
}
/*
* Binary path, start and end locations
*/
const char *qemu_plugin_path_to_binary(void)
{
char *path = NULL;
#ifdef CONFIG_USER_ONLY
TaskState *ts = (TaskState *) current_cpu->opaque;
path = g_strdup(ts->bprm->filename);
#endif
return path;
}
uint64_t qemu_plugin_start_code(void)
{
uint64_t start = 0;
#ifdef CONFIG_USER_ONLY
TaskState *ts = (TaskState *) current_cpu->opaque;
start = ts->info->start_code;
#endif
return start;
}
uint64_t qemu_plugin_end_code(void)
{
uint64_t end = 0;
#ifdef CONFIG_USER_ONLY
TaskState *ts = (TaskState *) current_cpu->opaque;
end = ts->info->end_code;
#endif
return end;
}
uint64_t qemu_plugin_entry_code(void)
{
uint64_t entry = 0;
#ifdef CONFIG_USER_ONLY
TaskState *ts = (TaskState *) current_cpu->opaque;
entry = ts->info->entry;
#endif
return entry;
}