Eric Blake
40812d9373
tests: Add coverage for recent block geometry fixes
Use blkdebug's new geometry constraints to emulate setups that have needed past regression fixes: write zeroes asserting when running through a loopback block device with max-transfer smaller than cluster size, and discard rounding away portions of requests not aligned to preferred boundaries. Also, add coverage that the block layer is honoring max transfer limits. For now, a single iotest performs all actions, with the idea that we can add future blkdebug constraint test cases in the same file; but it can be split into multiple iotests if we find reason to run one portion of the test in more setups than what are possible in the other. For reference, the final portion of the test (checking whether discard passes as much as possible to the lowest layers of the stack) works as follows: qemu-io: discard 30M at 80000001, passed to blkdebug blkdebug: discard 511 bytes at 80000001, -ENOTSUP (smaller than blkdebug's 512 align) blkdebug: discard 14371328 bytes at 80000512, passed to qcow2 qcow2: discard 739840 bytes at 80000512, -ENOTSUP (smaller than qcow2's 1M align) qcow2: discard 13M bytes at 77M, succeeds blkdebug: discard 15M bytes at 90M, passed to qcow2 qcow2: discard 15M bytes at 90M, succeeds blkdebug: discard 1356800 bytes at 105M, passed to qcow2 qcow2: discard 1M at 105M, succeeds qcow2: discard 308224 bytes at 106M, -ENOTSUP (smaller than qcow2's 1M align) blkdebug: discard 1 byte at 111457280, -ENOTSUP (smaller than blkdebug's 512 align) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Max Reitz <mreitz@redhat.com> Message-id: 20170429191419.30051-10-eblake@redhat.com [mreitz: For cooperation with image locking, add -r to the qemu-io invocation which verifies the image content] Signed-off-by: Max Reitz <mreitz@redhat.com>
…
…
…
…
…
…
…
…
…
QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: http://qemu-project.org/Hosts/Linux http://qemu-project.org/Hosts/Mac http://qemu-project.org/Hosts/W32 Submitting patches ================== The QEMU source code is maintained under the GIT version control system. git clone git://git.qemu-project.org/qemu.git When submitting patches, the preferred approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the HACKING and CODING_STYLE files. Additional information on submitting patches can be found online via the QEMU website http://qemu-project.org/Contribute/SubmitAPatch http://qemu-project.org/Contribute/TrivialPatches Bug reporting ============= The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs found when running code built from QEMU git or upstream released sources should be reported via: https://bugs.launchpad.net/qemu/ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via launchpad. For additional information on bug reporting consult: http://qemu-project.org/Contribute/ReportABug Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC - qemu-devel@nongnu.org http://lists.nongnu.org/mailman/listinfo/qemu-devel - #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: http://qemu-project.org/Contribute/StartHere -- End
Description
Languages
C
83.1%
C++
6.3%
Python
3.2%
Dylan
2.8%
Shell
1.6%
Other
2.8%