qemu-e2k/target/mips/fpu_helper.c
Alex Richardson dda97e385b target/mips: Fix ADD.S FPU instruction
After merging latest QEMU upstream into our CHERI fork,
I noticed that some of the FPU tests in our MIPS baremetal
testsuite [*] started failing.
It turns out commit 1ace099f2a accidentally changed add.s
into a subtract.

[*] https://github.com/CTSRD-CHERI/cheritest

Fixes: 1ace099f2a ("target/mips: fpu: Demacro ADD.<D|S|PS>")
Signed-off-by: Alex Richardson <Alexander.Richardson@cl.cam.ac.uk>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20200703161515.25966-1-Alexander.Richardson@cl.cam.ac.uk>
Signed-off-by: Aleksandar Markovic <aleksandar.qemu.devel@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
2020-07-14 21:49:33 +02:00

2160 lines
77 KiB
C

/*
* Helpers for emulation of FPU-related MIPS instructions.
*
* Copyright (C) 2004-2005 Jocelyn Mayer
* Copyright (C) 2020 Wave Computing, Inc.
* Copyright (C) 2020 Aleksandar Markovic <amarkovic@wavecomp.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "internal.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/memop.h"
#include "sysemu/kvm.h"
#include "fpu/softfloat.h"
/* Complex FPU operations which may need stack space. */
#define FLOAT_TWO32 make_float32(1 << 30)
#define FLOAT_TWO64 make_float64(1ULL << 62)
#define FP_TO_INT32_OVERFLOW 0x7fffffff
#define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
/* convert MIPS rounding mode in FCR31 to IEEE library */
unsigned int ieee_rm[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
{
target_ulong arg1 = 0;
switch (reg) {
case 0:
arg1 = (int32_t)env->active_fpu.fcr0;
break;
case 1:
/* UFR Support - Read Status FR */
if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
arg1 = (int32_t)
((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
} else {
do_raise_exception(env, EXCP_RI, GETPC());
}
}
break;
case 5:
/* FRE Support - read Config5.FRE bit */
if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
} else {
helper_raise_exception(env, EXCP_RI);
}
}
break;
case 25:
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) |
((env->active_fpu.fcr31 >> 23) & 0x1);
break;
case 26:
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
break;
case 28:
arg1 = (env->active_fpu.fcr31 & 0x00000f83) |
((env->active_fpu.fcr31 >> 22) & 0x4);
break;
default:
arg1 = (int32_t)env->active_fpu.fcr31;
break;
}
return arg1;
}
void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
{
switch (fs) {
case 1:
/* UFR Alias - Reset Status FR */
if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
env->CP0_Status &= ~(1 << CP0St_FR);
compute_hflags(env);
} else {
do_raise_exception(env, EXCP_RI, GETPC());
}
break;
case 4:
/* UNFR Alias - Set Status FR */
if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
env->CP0_Status |= (1 << CP0St_FR);
compute_hflags(env);
} else {
do_raise_exception(env, EXCP_RI, GETPC());
}
break;
case 5:
/* FRE Support - clear Config5.FRE bit */
if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
env->CP0_Config5 &= ~(1 << CP0C5_FRE);
compute_hflags(env);
} else {
helper_raise_exception(env, EXCP_RI);
}
break;
case 6:
/* FRE Support - set Config5.FRE bit */
if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
env->CP0_Config5 |= (1 << CP0C5_FRE);
compute_hflags(env);
} else {
helper_raise_exception(env, EXCP_RI);
}
break;
case 25:
if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
return;
}
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) |
((arg1 & 0xfe) << 24) |
((arg1 & 0x1) << 23);
break;
case 26:
if (arg1 & 0x007c0000) {
return;
}
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) |
(arg1 & 0x0003f07c);
break;
case 28:
if (arg1 & 0x007c0000) {
return;
}
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) |
(arg1 & 0x00000f83) |
((arg1 & 0x4) << 22);
break;
case 31:
env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
(env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
break;
default:
if (env->insn_flags & ISA_MIPS32R6) {
do_raise_exception(env, EXCP_RI, GETPC());
}
return;
}
restore_fp_status(env);
set_float_exception_flags(0, &env->active_fpu.fp_status);
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) &
GET_FP_CAUSE(env->active_fpu.fcr31)) {
do_raise_exception(env, EXCP_FPE, GETPC());
}
}
static inline int ieee_to_mips_xcpt(int ieee_xcpt)
{
int mips_xcpt = 0;
if (ieee_xcpt & float_flag_invalid) {
mips_xcpt |= FP_INVALID;
}
if (ieee_xcpt & float_flag_overflow) {
mips_xcpt |= FP_OVERFLOW;
}
if (ieee_xcpt & float_flag_underflow) {
mips_xcpt |= FP_UNDERFLOW;
}
if (ieee_xcpt & float_flag_divbyzero) {
mips_xcpt |= FP_DIV0;
}
if (ieee_xcpt & float_flag_inexact) {
mips_xcpt |= FP_INEXACT;
}
return mips_xcpt;
}
static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
{
int ieee_exception_flags = get_float_exception_flags(
&env->active_fpu.fp_status);
int mips_exception_flags = 0;
if (ieee_exception_flags) {
mips_exception_flags = ieee_to_mips_xcpt(ieee_exception_flags);
}
SET_FP_CAUSE(env->active_fpu.fcr31, mips_exception_flags);
if (mips_exception_flags) {
set_float_exception_flags(0, &env->active_fpu.fp_status);
if (GET_FP_ENABLE(env->active_fpu.fcr31) & mips_exception_flags) {
do_raise_exception(env, EXCP_FPE, pc);
} else {
UPDATE_FP_FLAGS(env->active_fpu.fcr31, mips_exception_flags);
}
}
}
/*
* Float support.
* Single precition routines have a "s" suffix, double precision a
* "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
* paired single lower "pl", paired single upper "pu".
*/
/* unary operations, modifying fp status */
uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
{
fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt0;
}
uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
{
fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t fdt2;
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
{
uint64_t fdt2;
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
{
uint64_t fdt2;
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
uint32_t wth2;
int excp, excph;
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
excp = get_float_exception_flags(&env->active_fpu.fp_status);
if (excp & (float_flag_overflow | float_flag_invalid)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
set_float_exception_flags(0, &env->active_fpu.fp_status);
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
excph = get_float_exception_flags(&env->active_fpu.fp_status);
if (excph & (float_flag_overflow | float_flag_invalid)) {
wth2 = FP_TO_INT32_OVERFLOW;
}
set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wt2;
}
uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
{
uint32_t fst2;
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
{
uint32_t fst2;
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
{
uint32_t wt2;
wt2 = wt0;
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
{
uint32_t wt2;
wt2 = wth0;
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64_round_to_zero(fdt0,
&env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
{ \
return float64_ ## name(fdt0); \
} \
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
{ \
return float32_ ## name(fst0); \
} \
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
{ \
uint32_t wt0; \
uint32_t wth0; \
\
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
wth0 = float32_ ## name(fdt0 >> 32); \
return ((uint64_t)wth0 << 32) | wt0; \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
/* MIPS specific unary operations */
uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fstl2;
uint32_t fsth2;
fstl2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF,
&env->active_fpu.fp_status);
fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fstl2;
}
uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fstl2;
uint32_t fsth2;
fstl2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
fstl2 = float32_div(float32_one, fstl2, &env->active_fpu.fp_status);
fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fstl2;
}
uint64_t helper_float_rint_d(CPUMIPSState *env, uint64_t fs)
{
uint64_t fdret;
fdret = float64_round_to_int(fs, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdret;
}
uint32_t helper_float_rint_s(CPUMIPSState *env, uint32_t fs)
{
uint32_t fdret;
fdret = float32_round_to_int(fs, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdret;
}
#define FLOAT_CLASS_SIGNALING_NAN 0x001
#define FLOAT_CLASS_QUIET_NAN 0x002
#define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
#define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
#define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
#define FLOAT_CLASS_NEGATIVE_ZERO 0x020
#define FLOAT_CLASS_POSITIVE_INFINITY 0x040
#define FLOAT_CLASS_POSITIVE_NORMAL 0x080
#define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
#define FLOAT_CLASS_POSITIVE_ZERO 0x200
uint64_t float_class_d(uint64_t arg, float_status *status)
{
if (float64_is_signaling_nan(arg, status)) {
return FLOAT_CLASS_SIGNALING_NAN;
} else if (float64_is_quiet_nan(arg, status)) {
return FLOAT_CLASS_QUIET_NAN;
} else if (float64_is_neg(arg)) {
if (float64_is_infinity(arg)) {
return FLOAT_CLASS_NEGATIVE_INFINITY;
} else if (float64_is_zero(arg)) {
return FLOAT_CLASS_NEGATIVE_ZERO;
} else if (float64_is_zero_or_denormal(arg)) {
return FLOAT_CLASS_NEGATIVE_SUBNORMAL;
} else {
return FLOAT_CLASS_NEGATIVE_NORMAL;
}
} else {
if (float64_is_infinity(arg)) {
return FLOAT_CLASS_POSITIVE_INFINITY;
} else if (float64_is_zero(arg)) {
return FLOAT_CLASS_POSITIVE_ZERO;
} else if (float64_is_zero_or_denormal(arg)) {
return FLOAT_CLASS_POSITIVE_SUBNORMAL;
} else {
return FLOAT_CLASS_POSITIVE_NORMAL;
}
}
}
uint64_t helper_float_class_d(CPUMIPSState *env, uint64_t arg)
{
return float_class_d(arg, &env->active_fpu.fp_status);
}
uint32_t float_class_s(uint32_t arg, float_status *status)
{
if (float32_is_signaling_nan(arg, status)) {
return FLOAT_CLASS_SIGNALING_NAN;
} else if (float32_is_quiet_nan(arg, status)) {
return FLOAT_CLASS_QUIET_NAN;
} else if (float32_is_neg(arg)) {
if (float32_is_infinity(arg)) {
return FLOAT_CLASS_NEGATIVE_INFINITY;
} else if (float32_is_zero(arg)) {
return FLOAT_CLASS_NEGATIVE_ZERO;
} else if (float32_is_zero_or_denormal(arg)) {
return FLOAT_CLASS_NEGATIVE_SUBNORMAL;
} else {
return FLOAT_CLASS_NEGATIVE_NORMAL;
}
} else {
if (float32_is_infinity(arg)) {
return FLOAT_CLASS_POSITIVE_INFINITY;
} else if (float32_is_zero(arg)) {
return FLOAT_CLASS_POSITIVE_ZERO;
} else if (float32_is_zero_or_denormal(arg)) {
return FLOAT_CLASS_POSITIVE_SUBNORMAL;
} else {
return FLOAT_CLASS_POSITIVE_NORMAL;
}
}
}
uint32_t helper_float_class_s(CPUMIPSState *env, uint32_t arg)
{
return float_class_s(arg, &env->active_fpu.fp_status);
}
/* binary operations */
uint64_t helper_float_add_d(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint64_t dt2;
dt2 = float64_add(fdt0, fdt1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_add_s(CPUMIPSState *env,
uint32_t fst0, uint32_t fst1)
{
uint32_t wt2;
wt2 = float32_add(fst0, fst1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_add_ps(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t wtl2;
uint32_t wth2;
wtl2 = float32_add(fstl0, fstl1, &env->active_fpu.fp_status);
wth2 = float32_add(fsth0, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wtl2;
}
uint64_t helper_float_sub_d(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint64_t dt2;
dt2 = float64_sub(fdt0, fdt1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_sub_s(CPUMIPSState *env,
uint32_t fst0, uint32_t fst1)
{
uint32_t wt2;
wt2 = float32_sub(fst0, fst1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_sub_ps(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t wtl2;
uint32_t wth2;
wtl2 = float32_sub(fstl0, fstl1, &env->active_fpu.fp_status);
wth2 = float32_sub(fsth0, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wtl2;
}
uint64_t helper_float_mul_d(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint64_t dt2;
dt2 = float64_mul(fdt0, fdt1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_mul_s(CPUMIPSState *env,
uint32_t fst0, uint32_t fst1)
{
uint32_t wt2;
wt2 = float32_mul(fst0, fst1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_mul_ps(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t wtl2;
uint32_t wth2;
wtl2 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status);
wth2 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wtl2;
}
uint64_t helper_float_div_d(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint64_t dt2;
dt2 = float64_div(fdt0, fdt1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_div_s(CPUMIPSState *env,
uint32_t fst0, uint32_t fst1)
{
uint32_t wt2;
wt2 = float32_div(fst0, fst1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_div_ps(CPUMIPSState *env,
uint64_t fdt0, uint64_t fdt1)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t wtl2;
uint32_t wth2;
wtl2 = float32_div(fstl0, fstl1, &env->active_fpu.fp_status);
wth2 = float32_div(fsth0, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wtl2;
}
/* MIPS specific binary operations */
uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_sub(fdt2, float64_one,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
{
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, float32_one,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fstl2 = float32_mul(fstl0, fstl2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fstl2 = float32_chs(float32_sub(fstl2, float32_one,
&env->active_fpu.fp_status));
fsth2 = float32_chs(float32_sub(fsth2, float32_one,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fstl2;
}
uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
{
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fstl2 = float32_mul(fstl0, fstl2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fstl2 = float32_sub(fstl2, float32_one, &env->active_fpu.fp_status);
fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
fstl2 = float32_chs(float32_div(fstl2, FLOAT_TWO32,
&env->active_fpu.fp_status));
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fstl2;
}
uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fstl2;
uint32_t fsth2;
fstl2 = float32_add(fstl0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_add(fstl1, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fstl2;
}
uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fstl2;
uint32_t fsth2;
fstl2 = float32_mul(fstl0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_mul(fstl1, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fstl2;
}
#define FLOAT_MINMAX(name, bits, minmaxfunc) \
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
uint ## bits ## _t fs, \
uint ## bits ## _t ft) \
{ \
uint ## bits ## _t fdret; \
\
fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
&env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return fdret; \
}
FLOAT_MINMAX(max_s, 32, maxnum)
FLOAT_MINMAX(max_d, 64, maxnum)
FLOAT_MINMAX(maxa_s, 32, maxnummag)
FLOAT_MINMAX(maxa_d, 64, maxnummag)
FLOAT_MINMAX(min_s, 32, minnum)
FLOAT_MINMAX(min_d, 64, minnum)
FLOAT_MINMAX(mina_s, 32, minnummag)
FLOAT_MINMAX(mina_d, 64, minnummag)
#undef FLOAT_MINMAX
/* ternary operations */
uint64_t helper_float_madd_d(CPUMIPSState *env, uint64_t fst0,
uint64_t fst1, uint64_t fst2)
{
fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float64_add(fst0, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint32_t helper_float_madd_s(CPUMIPSState *env, uint32_t fst0,
uint32_t fst1, uint32_t fst2)
{
fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float32_add(fst0, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_madd_ps(CPUMIPSState *env, uint64_t fdt0,
uint64_t fdt1, uint64_t fdt2)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fstl2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status);
fstl0 = float32_add(fstl0, fstl2, &env->active_fpu.fp_status);
fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status);
fsth0 = float32_add(fsth0, fsth2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth0 << 32) | fstl0;
}
uint64_t helper_float_msub_d(CPUMIPSState *env, uint64_t fst0,
uint64_t fst1, uint64_t fst2)
{
fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float64_sub(fst0, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint32_t helper_float_msub_s(CPUMIPSState *env, uint32_t fst0,
uint32_t fst1, uint32_t fst2)
{
fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float32_sub(fst0, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_msub_ps(CPUMIPSState *env, uint64_t fdt0,
uint64_t fdt1, uint64_t fdt2)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fstl2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status);
fstl0 = float32_sub(fstl0, fstl2, &env->active_fpu.fp_status);
fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status);
fsth0 = float32_sub(fsth0, fsth2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth0 << 32) | fstl0;
}
uint64_t helper_float_nmadd_d(CPUMIPSState *env, uint64_t fst0,
uint64_t fst1, uint64_t fst2)
{
fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float64_add(fst0, fst2, &env->active_fpu.fp_status);
fst0 = float64_chs(fst0);
update_fcr31(env, GETPC());
return fst0;
}
uint32_t helper_float_nmadd_s(CPUMIPSState *env, uint32_t fst0,
uint32_t fst1, uint32_t fst2)
{
fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float32_add(fst0, fst2, &env->active_fpu.fp_status);
fst0 = float32_chs(fst0);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_nmadd_ps(CPUMIPSState *env, uint64_t fdt0,
uint64_t fdt1, uint64_t fdt2)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fstl2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status);
fstl0 = float32_add(fstl0, fstl2, &env->active_fpu.fp_status);
fstl0 = float32_chs(fstl0);
fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status);
fsth0 = float32_add(fsth0, fsth2, &env->active_fpu.fp_status);
fsth0 = float32_chs(fsth0);
update_fcr31(env, GETPC());
return ((uint64_t)fsth0 << 32) | fstl0;
}
uint64_t helper_float_nmsub_d(CPUMIPSState *env, uint64_t fst0,
uint64_t fst1, uint64_t fst2)
{
fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float64_sub(fst0, fst2, &env->active_fpu.fp_status);
fst0 = float64_chs(fst0);
update_fcr31(env, GETPC());
return fst0;
}
uint32_t helper_float_nmsub_s(CPUMIPSState *env, uint32_t fst0,
uint32_t fst1, uint32_t fst2)
{
fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status);
fst0 = float32_sub(fst0, fst2, &env->active_fpu.fp_status);
fst0 = float32_chs(fst0);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_nmsub_ps(CPUMIPSState *env, uint64_t fdt0,
uint64_t fdt1, uint64_t fdt2)
{
uint32_t fstl0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fstl1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fstl2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status);
fstl0 = float32_sub(fstl0, fstl2, &env->active_fpu.fp_status);
fstl0 = float32_chs(fstl0);
fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status);
fsth0 = float32_sub(fsth0, fsth2, &env->active_fpu.fp_status);
fsth0 = float32_chs(fsth0);
update_fcr31(env, GETPC());
return ((uint64_t)fsth0 << 32) | fstl0;
}
#define FLOAT_FMADDSUB(name, bits, muladd_arg) \
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
uint ## bits ## _t fs, \
uint ## bits ## _t ft, \
uint ## bits ## _t fd) \
{ \
uint ## bits ## _t fdret; \
\
fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
&env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return fdret; \
}
FLOAT_FMADDSUB(maddf_s, 32, 0)
FLOAT_FMADDSUB(maddf_d, 64, 0)
FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
#undef FLOAT_FMADDSUB
/* compare operations */
#define FOP_COND_D(op, cond) \
void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
int c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
int c; \
fdt0 = float64_abs(fdt0); \
fdt1 = float64_abs(fdt1); \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered_quiet() is still called.
*/
FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status))
FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered() is still called.
*/
FOP_COND_D(sf, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_COND_D(ngle, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status))
FOP_COND_D(seq, float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ngl, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(lt, float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(nge, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(le, float64_le(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ngt, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le(fdt0, fdt1,
&env->active_fpu.fp_status))
#define FOP_COND_S(op, cond) \
void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1, int cc) \
{ \
int c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1, int cc) \
{ \
int c; \
fst0 = float32_abs(fst0); \
fst1 = float32_abs(fst1); \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called.
*/
FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_COND_S(un, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status))
FOP_COND_S(eq, float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(olt, float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ole, float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called.
*/
FOP_COND_S(sf, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_COND_S(ngle, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status))
FOP_COND_S(seq, float32_eq(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ngl, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(lt, float32_lt(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(nge, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(le, float32_le(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ngt, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status))
#define FOP_COND_PS(op, condl, condh) \
void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = fdt0 & 0XFFFFFFFF; \
fsth0 = fdt0 >> 32; \
fst1 = fdt1 & 0XFFFFFFFF; \
fsth1 = fdt1 >> 32; \
cl = condl; \
ch = condh; \
update_fcr31(env, GETPC()); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
} \
void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
fsth0 = float32_abs(fdt0 >> 32); \
fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
fsth1 = float32_abs(fdt1 >> 32); \
cl = condl; \
ch = condh; \
update_fcr31(env, GETPC()); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called.
*/
FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status), 0),
(float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status), 0))
FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status))
FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_eq_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_lt_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ole, float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_le_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called.
*/
FOP_COND_PS(sf, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status), 0),
(float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status), 0))
FOP_COND_PS(ngle, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status))
FOP_COND_PS(seq, float32_eq(fst0, fst1,
&env->active_fpu.fp_status),
float32_eq(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ngl, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_eq(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(lt, float32_lt(fst0, fst1,
&env->active_fpu.fp_status),
float32_lt(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(nge, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_lt(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(le, float32_le(fst0, fst1,
&env->active_fpu.fp_status),
float32_le(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ngt, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_le(fsth0, fsth1,
&env->active_fpu.fp_status))
/* R6 compare operations */
#define FOP_CONDN_D(op, cond) \
uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1) \
{ \
uint64_t c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) { \
return -1; \
} else { \
return 0; \
} \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered_quiet() is still called.
*/
FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)))
FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered() is still called.\
*/
FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)))
FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sle, (float64_le(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sor, (float64_le(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
#define FOP_CONDN_S(op, cond) \
uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1) \
{ \
uint64_t c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) { \
return -1; \
} else { \
return 0; \
} \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called.
*/
FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)))
FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called.
*/
FOP_CONDN_S(saf, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_S(sun, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)))
FOP_CONDN_S(seq, (float32_eq(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(slt, (float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sult, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sle, (float32_le(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sule, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sor, (float32_le(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sune, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sne, (float32_lt(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))